Advertisement

Cancer Cells and Effects of Glucose Starvation

  • Wensheng Pan
  • Xiaoge Geng
  • Chenjing Zhang
Living reference work entry

Abstract

As the main energy source for the human body, glucose metabolism plays multiple roles in the physiology of cancer cells. In the environment of hypoxia and low sugar, cancer cells transform the normal glucose metabolism to aerobic glycolysis autonomously, regulated by different molecules. Under conditions of glucose deprivation, cancer cells suffer from the inhibition of growth, the arrest of cell cycle, apoptosis, and autophagy, regulated by respective associated proteins and pathways. It is possible that glucose deprivation alone or in combination with pharmacological therapy would be effective in the treatment of cancer “addicted” to glycolysis. However, several experiments have demonstrated that cancer cells may develop tolerance to glucose deprivation. In this review, we discuss these issues in order to provide a clear understanding of effects of glucose starvation on cancer therapy.

Keywords

Cancer cells Warburg effect Oncogene Pathway Apoptosis Autophagy Tolerance to glucose deprivation 

List of Abbreviations

AMP

Adenosine monophosphate

AMPK

Adenosine 5′-monophosphate (AMP)-activated protein kinase

ATG14

Autophagy-related 14

ATP

Adenosine triphosphate

BCL-2

B-cell lymphoma-2

GTP

Guanosine triphosphate

HIF1α

Hypoxia-inducible factor 1 alpha subunit

KRAS

KRAS proto-oncogene, GTPase

LC3

Autophagy marker light chain 3

MAX

MYC-associated factor X

MCL-1

Myeloid cell leukemia 1

mTORC1

Mechanistic target of rapamycin complexes 1 and 2

MYC

MYC proto-oncogene, bHLH transcription factor

NADPH

Triphosphopyridine nucleotide

PAQR3

Progestin and adipoQ receptor family member 3

PI3K/AKT

Phosphatidylinositol 3 kinase (PI3K)/protein kinase B(AKT)

PKA

Protein kinase A

PtdIns3P

Phosphatidylinositol 3-phosphate

ROS-PTP-TK

Reactive oxygen species – protein tyrosine phosphatases – tyrosine kinases

TNFα

Tumor necrosis factor-alpha

ULK1

unc-51-like autophagy activating kinase 1

UPR

Unfolded protein response

References

  1. Andersen JL, Kornbluth S (2013) The tangled circuitry of metabolism and apoptosis. Mol Cell 49:399–410CrossRefPubMedPubMedCentralGoogle Scholar
  2. Asati V, Mahapatra DK, Bharti SK (2017) K-Ras and its inhibitors towards personalized cancer treatment: pharmacological and structural perspectives. Eur J Med Chem 125:299–314CrossRefPubMedGoogle Scholar
  3. Bhola PD, Letai A (2016) Mitochondria-judges and executioners of cell death sentences. Mol Cell 61:695–704CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chang C, Su H, Zhang D, Wang Y, Shen Q, Liu B et al (2015) AMPK-dependent phosphorylation of GAPDH triggers sirt1 activation and is necessary for autophagy upon glucose starvation. Mol Cell 60:930–940CrossRefPubMedGoogle Scholar
  5. Dang CV, Kim J-w, Gao P, Yustein J (2008) The interplay between MYC and HIF in cancer. Nat Rev Cancer 8:51–56CrossRefPubMedGoogle Scholar
  6. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7:11–20CrossRefPubMedGoogle Scholar
  7. El Mjiyad N, Caro-Maldonado A, Ramirez-Peinado S, Munoz-Pinedo C (2011) Sugar-free approaches to cancer cell killing. Oncogene 30:253–264CrossRefPubMedGoogle Scholar
  8. Ferreira LMR, Hebrant A, Dumont JE (2012) Metabolic reprogramming of the tumor. Oncogene 31:3999–4011CrossRefPubMedGoogle Scholar
  9. Ferretti AC, Tonucci FM, Hidalgo F, Almada E, Larocca MC, Favre C (2016) AMPK and PKA interaction in the regulation of survival of liver cancer cells subjected to glucose starvation. Oncotarget 7:17815–17828CrossRefPubMedPubMedCentralGoogle Scholar
  10. Garufi A, Ricci A, Trisciuoglio D, Iorio E, Carpinelli G, Pistritto G et al (2013) Glucose restriction induces cell death in parental but not in homeodomain-interacting protein kinase 2-depleted RKO colon cancer cells: molecular mechanisms and implications for tumor therapy. Cell Death Dis 4:e639CrossRefPubMedPubMedCentralGoogle Scholar
  11. Graham NA, Tahmasian M, Kohli B, Komisopoulou E, Zhu M, Vivanco I et al (2012) Glucose deprivation activates a metabolic and signaling amplification loop leading to cell death. Mol Syst Biol 8:589CrossRefPubMedPubMedCentralGoogle Scholar
  12. Ha J, Guan K-L, Kim J (2015) AMPK and autophagy in glucose/glycogen metabolism. Mol Asp Med 46:46–62CrossRefGoogle Scholar
  13. Huang C, Sheng S, Li R, Sun X, Liu J, Huang G (2015a) Lactate promotes resistance to glucose starvation via upregulation of Bcl-2 mediated by mTOR activation. Oncol Rep 33:875–884CrossRefPubMedGoogle Scholar
  14. Huang R, Xu Y, Wan W, Shou X, Qian J, You Z et al (2015b) Deacetylation of nuclear LC3 drives autophagy initiation under starvation. Mol Cell 57:456–466CrossRefPubMedGoogle Scholar
  15. Jiang P, Du W, Wang X, Mancuso A, Gao X, Wu M et al (2011) p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat Cell Biol 13:310–316CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kress TR, Sabo A, Amati B (2015) MYC: connecting selective transcriptional control to global RNA production. Nat Rev Cancer 15:593–607CrossRefPubMedGoogle Scholar
  17. Le A, Lane AN, Hamaker M, Bose S, Gouw A, Barbi J et al (2012) Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab 15:110–121CrossRefPubMedPubMedCentralGoogle Scholar
  18. Levy P, Bartosch B (2016) Metabolic reprogramming: a hallmark of viral oncogenesis. Oncogene 35:4155–4164CrossRefPubMedGoogle Scholar
  19. Li Z, Zhang H (2016) Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression. Cell Mol Life Sci 73:377–392CrossRefPubMedGoogle Scholar
  20. MacFarlane M, Robinson GL, Cain K (2012) Glucose--a sweet way to die: metabolic switching modulates tumor cell death. Cell Cycle 11:3919–3925CrossRefPubMedPubMedCentralGoogle Scholar
  21. McCarthy N (2015) Metabolism: MYC clocks on. Nat Rev Cancer 15:636–637CrossRefPubMedGoogle Scholar
  22. Monica B, Bauer DE, Jones RG, Deberardinis RJ, Hatzivassiliou G, Elstrom RL et al (2005) The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid beta-oxidation. Oncogene 24:4165–4173CrossRefGoogle Scholar
  23. Palorini R, Cammarata FP, Balestrieri C, Monestiroli A, Vasso M, Gelfi C et al (2013) Glucose starvation induces cell death in K-ras-transformed cells by interfering with the hexosamine biosynthesis pathway and activating the unfolded protein response. Cell Death Dis 4:e732CrossRefPubMedPubMedCentralGoogle Scholar
  24. Palorini R, Votta G, Pirola Y, De Vitto H, De Palma S, Airoldi C et al (2016) Protein Kinase A activation promotes cancer cell resistance to glucose starvation and anoikis. PLoS Genet 12:e1005931CrossRefPubMedPubMedCentralGoogle Scholar
  25. Parker AL, Turner N, McCarroll JA, Kavallaris M (2016) BetaIII-tubulin alters glucose metabolism and stress response signaling to promote cell survival and proliferation in glucose-starved non-small cell lung cancer cells. Carcinogenesis 37:787–798CrossRefPubMedGoogle Scholar
  26. Pavlova NN, Thompson CB (2016) The emerging hallmarks of cancer metabolism. Cell Metab 23:27–47CrossRefPubMedPubMedCentralGoogle Scholar
  27. Potter M, Newport E, Morten KJ (2016) The Warburg effect: 80 years on. Biochem Soc Trans 44:1499–1505CrossRefPubMedPubMedCentralGoogle Scholar
  28. Roberts DJ, Tan-Sah VP, Ding EY, Smith JM, Miyamoto S (2014) Hexokinase-II positively regulates glucose starvation-induced autophagy through TORC1 inhibition. Mol Cell 53:521–533CrossRefPubMedPubMedCentralGoogle Scholar
  29. Simons AL, Mattson DM, Dornfeld K, Spitz DR (2009) Glucose deprivation-induced metabolic oxidative stress and cancer therapy. J Cancer Res Ther 5(Suppl 1):S2–S6PubMedPubMedCentralGoogle Scholar
  30. Tanaka Y, Yano H, Ogasawara S, Yoshioka SI, Imamura H, Okamoto K et al (2015) Mild glucose starvation induces KDM2A-mediated H3K36me2 demethylation through AMPK to reduce rRNA transcription and cell proliferation. Mol Cell Biol 35:4170–4184CrossRefPubMedPubMedCentralGoogle Scholar
  31. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033CrossRefPubMedPubMedCentralGoogle Scholar
  32. Wang G, Dai L, Luo L, Xu W, Zhang C, Zhu Y et al (2014) Non-essential amino acids attenuate apoptosis of gastric cancer cells induced by glucose starvation. Oncol Rep 32:332–340CrossRefPubMedGoogle Scholar
  33. Wyld L, Tomlinson M, Reed MWR, Brown NJ (2002) Aminolaevulinic acid-induced photodynamic therapy: cellular responses to glucose starvation. Brit J Cancer 86:1343–1347CrossRefPubMedGoogle Scholar
  34. Xing Y, Zhao S, Zhou BP, Mi J (2015) Metabolic reprogramming of the tumour microenvironment. FEBS J 282:3892–3898CrossRefPubMedGoogle Scholar
  35. Xu D, Wang Z, Chen Y (2016) Two-layer regulation of PAQR3 on ATG14-linked class III PtdIns3K activation upon glucose starvation. Autophagy 12:1047–1048CrossRefPubMedPubMedCentralGoogle Scholar
  36. Yun J, Rago C, Cheong I, Pagliarini R, Angenendt P, Rajagopalan H et al (2009) Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 325:1555–1559CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Gastroenterology & Endoscopy Center, Key Laboratory of Gastroenterology of Zhejiang ProvinceZhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical CollegeHangzhou/ZhejiangChina
  2. 2.Department of GastroenterologyThe Second Affiliated Hospital, School of Medicine, University of ZhejiangHangzhouChina

Personalised recommendations