Advertisement

Stem Cells: Umbilical Cord/Wharton’s Jelly Derived

  • John T. Walker
  • Armand Keating
  • John E. DaviesEmail author
Living reference work entry
Part of the Reference Series in Biomedical Engineering book series (RSBE)

Abstract

As a commonly discarded tissue, the umbilical cord contains a rich source of mesenchymal stromal cells, which are therefore obtained non-invasively. As a perinatal population, replicative senescence is delayed and cell expansion is expedited, enabling collection of many clinically relevant doses from a single donor cord at low passage numbers. In this chapter, we will discuss the structure of the umbilical cord and the various stromal populations contained within that have been described. We also highlight the lack of consensus on both anatomical descriptors of the cord tissue, and standardized isolation techniques for these different populations, which together with insufficient methodological transparency may be hampering progress within the field. We then review the basic and preclinical models of disease that have been targets of umbilical cord-derived mesenchymal stromal cells. Finally, we close with a discussion of their use in clinical trials.

References

  1. Agah ME, Parivar K, Nabiuni M, Hashemi M, Soleimani M (2013) Induction of human umbilical Wharton’s jelly-derived stem cells toward oligodendrocyte phenotype. J Mol Neurosci 51:328–336CrossRefGoogle Scholar
  2. Ayuzawa R, Doi C, Rachakatla RS, Pyle MM, Maurya DK, Troyer D, Tamura M (2009) Naïve human umbilical cord matrix derived stem cells significantly attenuate growth of human breast cancer cells in vitro and in vivo. Cancer Lett 280:31–37CrossRefGoogle Scholar
  3. Bosch J, Houben AP, Radke TF, Stapelkamp D, Bunemann E, Balan P, Buchheiser A, Liedtke S, Kögler G (2012) Distinct differentiation potential of “MSC” derived from cord blood and umbilical cord: are cord-derived cells true mesenchymal stromal cells? Stem Cells Dev 21:1977–88CrossRefGoogle Scholar
  4. Bouma G, Strober W (2003) The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol 3:521–533CrossRefGoogle Scholar
  5. Braid LR, Hu W-G, Davies JE, Nagata LP (2016) Engineered mesenchymal cells improve passive immune protection against lethal venezuelan equine encephalitis virus exposure. Stem Cels Transl Med 5:1–10CrossRefGoogle Scholar
  6. Can A, Karahuseyinoglu S (2007) Concise review: human umbilical cord stroma with regard to the source of fetus-derived stem cells. Stem Cells 25:2886–2895CrossRefGoogle Scholar
  7. Cao H, Qian H, Xu W, Zhu W, Zhang X, Chen Y, Wang M, Yan Y, Xie Y (2010) Mesenchymal stem cells derived from human umbilical cord ameliorate ischemia/reperfusion-induced acute renal failure in rats. Biotechnol Lett 32:725–732CrossRefGoogle Scholar
  8. Caplan AI (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213:341–347CrossRefGoogle Scholar
  9. Chai N-L, Zhang X-B, Chen S-W, Fan K-X, Linghu E-Q (2016) Umbilical cord-derived mesenchymal stem cells alleviate liver fibrosis in rats. World J Gastroenterol 22:6036CrossRefGoogle Scholar
  10. Chao YH, Wu HP, Wu KH, Tsai YG, Peng CT, Lin KC, Chao WR, Lee MS, Fu YC (2014) An increase in CD3+CD4+CD25 + regulatory T cells after administration of umbilical cord-derived mesenchymal stem cells during sepsis. PLoS One 9:1–8Google Scholar
  11. Chen Y, Song Y, Miao H, Xu Y, Lv M, Wang T, Hou Y (2015) Gene delivery with IFN-gamma-expression plasmids enhances the therapeutic effects of MSCs on DSS-induced mouse colitis. Inflamm Res 64:671–681CrossRefGoogle Scholar
  12. Cohen J (2002) The immunopathogenesis of sepsis. Nature 420:885–891CrossRefGoogle Scholar
  13. Coskun H, Can A (2015) The assessment of the in vivo to in vitro cellular transition of human umbilical cord multipotent stromal cells. Placenta 36:232–239CrossRefGoogle Scholar
  14. Curley GF, Jerkic M, Dixon S, Hogan G, Masterson C, O’Toole D, Devaney J, Laffey JG (2017) Cryopreserved, xeno-free human umbilical cord mesenchymal stromal cells reduce lung injury severity and bacterial burden in rodent. Escherichia coli–induced acute respiratory distress syndrome. Crit Care Med. 45:e202–e212CrossRefGoogle Scholar
  15. Davies JE, Walker JT, Keating AK (2017) Wharton’s jelly: the rich, but enigmatic, source of MSCs. Stem Cells Transl Med 6(7):1620–1630CrossRefGoogle Scholar
  16. Dayan V, Yannarelli G, Billia F, Filomeno P, Wang XH, Davies JE, Keating A (2011) Mesenchymal stromal cells mediate a switch to alternatively activated monocytes/macrophages after acute myocardial infarction. Basic Res Cardiol 106:1299–1310CrossRefGoogle Scholar
  17. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 8:315–317CrossRefGoogle Scholar
  18. Donders R, Vanheusden M, Bogie JFJ, Ravanidis S, Thewissen K, Stinissen P, Gyselaers W, Hendriks JJA, Hellings N (2015) Human Wharton’s jelly-derived stem cells display immunomodulatory properties and transiently improve rat experimental autoimmune encephalomyelitis. Cell Transplant 24:2077–2098CrossRefGoogle Scholar
  19. Du T, Cheng J, Zhong L, Zhao X, Zhu J, Zhu Y-J, Liu G-H (2012) The alleviation of acute and chronic kidney injury by human Wharton’s jelly-derived mesenchymal stromal cells triggered by ischemia-reperfusion injury via an endocrine mechanism. Cytotherapy 14:1215–1227CrossRefGoogle Scholar
  20. Du T, Zou X, Cheng J, Wu S, Zhong L, Ju G, Zhu J, Liu G (2013) Human Wharton ’ s jelly-derived mesenchymal stromal cells reduce renal fibrosis through induction of native and foreign hepatocyte growth factor synthesis in injured tubular epithelial cells. Stem Cell Res Ther 4:1CrossRefGoogle Scholar
  21. Emrani H, Davies JE (2011) Umbilical cord perivascular cells: A mesenchymal cell source for treatment of tendon injuries. Open Tiss Eng Regen Med J 4:112–119CrossRefGoogle Scholar
  22. Ennis J, Götherström C, Le Blanc K, Davies JE (2008) In vitro immunologic properties of human umbilical cord perivascular cells. Cytotherapy 10:174–181CrossRefGoogle Scholar
  23. Fan H, Zhao G, Liu L, Liu F, Gong W, Liu X, Yang L, Wang J, Hou Y (2012) Pre-treatment with IL-1β enhances the efficacy of MSC transplantation in DSS-induced colitis. Cell Mol Immunol 9:473–481CrossRefGoogle Scholar
  24. Fang TC, Pang CY, Chiu SC, Ding DC, Tsai RK (2012) Renoprotective effect of human umbilical cord-derived mesenchymal stem cells in immunodeficient mice suffering from acute kidney injury. PLoS One 7:1–15Google Scholar
  25. Farias VA, Linares-Fernández JL, Peñalver JL, Payá Colmenero JA, Ferrón GO, Duran EL, Fernández RM, Olivares EG, O’Valle F, Puertas A, Oliver FJ, Ruiz De Almodóvar JM (2011) Human umbilical cord stromal stem cell express CD10 and exert contractile properties. Placenta 32:86–95CrossRefGoogle Scholar
  26. Fong CY, Subramanian A, Biswas A, Gauthaman K, Srikanth P, Hande MP, Bongso A (2010) Derivation efficiency, vcell proliferation, freeze-thaw survival, stem-cell properties and differentiation of human Wharton’s jelly stem cells. Reprod Biomed Online 21:391–401CrossRefGoogle Scholar
  27. Fong CY, Tam K, Cheyyatraivendran S, Gan SU, Gauthaman K, Armugam A, Jeyaseelan K, Choolani M, Biswas A, Bongso A (2014) Human Wharton’s Jelly stem cells and its conditioned medium enhance healing of excisional and diabetic wounds. J Cell Biochem 115:290–302CrossRefGoogle Scholar
  28. Hammam OA, Elkhafif N, Attia YM, Mansour MT, Elmazar MM, Abdelsalam RM, Kenawy SA, El-Khatib AS (2016) Wharton’s jelly-derived mesenchymal stem cells combined with praziquantel as a potential therapy for Schistosoma mansoni-induced liver fibrosis. Sci Rep 6:21005CrossRefGoogle Scholar
  29. Han KH, Kim AK, Kim MH, Kim DH, Go HN, Kim DI (2016) Enhancement of angiogenic effects by hypoxia-preconditioned human umbilical cord-derived mesenchymal stem cells in a mouse model of hindlimb ischemia. Cell Biol Int 40:27–35CrossRefGoogle Scholar
  30. Hong J, Jin H, Han J, Hu H, Liu J, Li L, Huang Y, Wang D, Wu M, Qiu L, Qian Q (2014) Infusion of human umbilical cord-derived mesenchymal stem cells effectively relieves liver cirrhosis in DEN-induced rats. Mol Med Rep 9:1103–1111CrossRefGoogle Scholar
  31. Hu J, Wang F, Sun R, Wang Z, Yu X, Wang L, Gao H, Zhao W, Yan S, Wang Y (2014) Effect of combined therapy of human Wharton’s jelly-derived mesenchymal stem cells from umbilical cord with sitagliptin in type 2 diabetic rats. Endocrine 45:279–287CrossRefGoogle Scholar
  32. Ilancheran S, Michalska A, Peh G, Wallace EM, Pera M, Manuelpillai U (2007) Stem Cells Derived from Human Fetal Membranes Display Multilineage Differentiation Potential. Biol Reprod 77(3):577–588CrossRefGoogle Scholar
  33. Jin J, Liu Z, Lu Z, Guan D, Wang C, Chen Z, Zhang W, Wu J, Xu Y (2013) Safety and efficacy of umbilical cord mesenchymal stem cell therapy in hereditary spinocerebellar ataxia. Curr Neurovasc Res 10:11–20CrossRefGoogle Scholar
  34. Kadam SS, Bhonde RR (2010) Islet neogenesis from the constitutively nestin expressing human umbilical cord matrix derived mesenchymal stem cells. Islets 2:112–120CrossRefGoogle Scholar
  35. Kajiyama S, Ujiie Y, Nishikawa S, Inoue K, Shirakawa S, Hanada N, Liddell R, Davies JE, Gomi K (2015) Bone formation by human umbilical cord perivascular cells. J Biomed Mater Res Part A 103:2807–2814CrossRefGoogle Scholar
  36. Kim WY, Hong SB (2016) Sepsis and acute respiratory distress syndrome: recent update. Tuberc Respir Dis 79:53–57CrossRefGoogle Scholar
  37. Kita K, Gauglitz GG, Phan TT, Herndon DN, Jeschke MG (2010) Isolation and characterization of mesenchymal stem cells from the sub-amniotic human umbilical cord lining membrane. Stem Cells Dev 19:491–502CrossRefGoogle Scholar
  38. Li J, Li D, Liu X, Tang S, Wei F (2012) Human umbilical cord mesenchymal stem cells reduce systemic inflammation and attenuate LPS-induced acute lung injury in rats. J Inflamm 9:33CrossRefGoogle Scholar
  39. Liang L, Dong C, Chen X, Fang Z, Xu J, Liu M, Zhang X, Gu DS, Wang D, Du W, Zhu D, Han Z (2011) Human umbilical cord mesenchymal stem cells ameliorate mice TNBS-induced colitis. Cell Transplant 20:1395–1408CrossRefGoogle Scholar
  40. Lin S-Z, Chang Y-J, Liu J-W, Chang L-F, Sun L-Y, Li Y-S, Luo G-H, Liao C-H, Chen P-H, Chen T-M, Lee R-P, Yang K-L, Harn H-J, Chiou T-W (2010) Transplantation of human Wharton’s Jelly-derived stem cells alleviates chemically induced liver fibrosis in rats. Cell Transplant 19:1451–1463CrossRefGoogle Scholar
  41. Lin Y, Lin L, Wang Q, Jin Y, Zhang Y, Cao Y, Zheng C (2015) Transplantation of human umbilical mesenchymal stem cells attenuates dextran sulfate sodium-induced colitis in mice. Clin Exp Pharmacol Physiol 42:76–86CrossRefGoogle Scholar
  42. Liu R, Zhang Z, Lu Z, Borlongan C, Pan J, Chen J, Qian L, Liu Z, Zhu L, Zhang J, Xu Y (2013) Human umbilical cord stem cells ameliorate experimental autoimmune encephalomyelitis by regulating immunoinflammation and remyelination. Stem Cells Dev 22:1053–1062CrossRefGoogle Scholar
  43. Liu P, Feng Y, Dong D, Liu X, Chen Y, Wang Y, Zhou Y (2016a) Enhanced renoprotective effect of IGF-1 modified human umbilical cord-derived mesenchymal stem cells on gentamicin-induced acute kidney injury. Sci Rep 6:20287CrossRefGoogle Scholar
  44. Liu C-B, Huang H, Sun P, Ma S-Z, Liu A-H, Xue J, Fu J-H, Liang Y-Q, Liu B, Wu D-Y, Lu S-H, Zhang X-Z (2016b) Human umbilical cord-derived mesenchymal stromal cells improve left ventricular function, perfusion, and remodeling in a porcine model of chronic myocardial ischemia. Stem Cells Transl Med 5:1004–1013CrossRefGoogle Scholar
  45. Liu F-B, Lin Q, Liu Z-W, Liu Z (2016c) A study on the role of apoptotic human umbilical cord mesenchymal stem cells in bleomycin-induced acute lung injury in rat models. Eur Rev Med Pharmacol Sci 20:969–982Google Scholar
  46. Lu L, Zhao Q, Wang X, Xu Z, Lu Y, Chen Z, Liu Y (2006) Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica 91:1017–1026Google Scholar
  47. Lv Y, Zhang Y, Liu M, Qiuwaxi J, Ashwood P, Cho SC, Huan Y, Ge R, Chen X, Wang Z, Kim B, Hu X (2013) Transplantation of human cord blood mononuclear cells and umbilical cord-derived mesenchymal stem cells in autism. J Transl Med 11:196CrossRefGoogle Scholar
  48. Ma J, Li L, Chen L, Wang X (2016) Effects of human umbilical cord mesenchymal stem cells in the treatment of CCl4-induced liver cirrhosis. Int J Clin Exp Med 9:5168–5180Google Scholar
  49. Machuca TN, Cypel M (2014) Ex vivo lung perfusion. J Thoracic Disease 6:1054–1062Google Scholar
  50. Maruyama Y (1963) The human endothelial cell in tissue culture. Zeitschrift fiir Zellforschung 60:69–79CrossRefGoogle Scholar
  51. Masterson C, Jerkic M, Curley GF, Laffey JG (2015) Mesenchymal stromal cell therapies: potential and pitfalls for ARDS. Minerva Anestesiol 81:179–194Google Scholar
  52. McQualter JL, Bernard CCA (2007) Multiple sclerosis: a battle between destruction and repair. J Neurochem 100:295–306CrossRefGoogle Scholar
  53. Min F, Gao F, Li Q, Liu Z (2014) Therapeutic effect of human umbilical cord mesenchymal stem cells modified by angiotensin-converting enzyme 2 gene on bleomycin-induced lung fibrosis injury. Mol Med Rep 11:2387–2396CrossRefGoogle Scholar
  54. Moodley Y, Atienza D, Manuelpillai U, Samuel CS, Tchongue J, Ilancheran S, Boyd R, Trounson A (2009) Human umbilical cord mesenchymal stem cells reduce fibrosis of bleomycin-induced lung injury. Am J Pathol 175:303–313CrossRefGoogle Scholar
  55. Mordant P, Nakajima D, Kalaf R, Iskender I, Maahs L, Behrens P, Coutinho R, Iyer RK, Davies JE, Cypel M, Liu M, Waddell TK, Keshavjee S (2016) Mesenchymal stem cell treatment is associated with decreased perfusate concentration of IL-8 during ex vivo perfusion of donor lungs after 18 h preservation. J Heart Lung Transplant 35:1245–1254CrossRefGoogle Scholar
  56. Nanaev AK, Kohnen G, Milovanov AP, Domogatsky SP, Kaufmann P (1997) Stromal differentiation and architecture of the human umbilical cord. Placenta 18(1):53–64CrossRefGoogle Scholar
  57. Payne NL, Sun G, Mcdonald C, Layton D, Moussa L, Emerson-Webber A, Veron N, Siatskas C, Herszfeld D, Price J, Bernard CCA (2013) Distinct immunomodulatory and migratory mechanisms underpin the therapeutic potential of human mesenchymal stem cells in autoimmune demyelination. Cell Transplant 22:1409–1425CrossRefGoogle Scholar
  58. Ribeiro J, Pereira T, Amorim I, Caseiro AR, Lopes MA, Lima J, Gartner A, Santos JD, Bártolo PJ, Rodrigues JM, Mauricio AC, Luís AL (2014) Cell therapy with human MSCs isolated from the umbilical cord Wharton Jelly associated to a PVA membrane in the treatment of chronic skin wounds. Int J Med Sci 11:979–987CrossRefGoogle Scholar
  59. Santos Nascimento D, Mosqueira D, Sousa LM, Teixeira M, Filipe M, Resende TP, Araújo AF, Valente M, Almeida J, Martins JP, Santos JM, Bárcia RN, Cruz P, Cruz H, Pinto-do-Ó P (2014) Human umbilical cord tissue-derived mesenchymal stromal cells attenuate remodeling after myocardial infarction by proangiogenic, antiapoptotic, and endogenous cell-activation mechanisms. Stem Cell Res Ther 5:5CrossRefGoogle Scholar
  60. Sarugaser R, Lickorish D, Baksh D, Hosseini M, Davies JE (2005) Human Umbilical Cord Perivascular (HUCPV) Cells: A Source of Mesenchymal Progenitors. Stem Cells 23(2):220–229CrossRefGoogle Scholar
  61. Sarugaser R, Hanoun L, Keating A, Stanford WL, Davies JE (2009) Human mesenchymal stem cells self-renew and differentiate according to a deterministic hierarchy. PLoS One 4:e6498CrossRefGoogle Scholar
  62. Saulnier N, Viguier E, Perrier-groult E, Chenu C, Pillet E, Roger T, Maddens S, Boulocher C (2015) Intra-articular administration of xenogeneic neonatal Mesenchymal Stromal Cells early after meniscal injury down-regulates metalloproteinase gene expression in synovium and prevents cartilage degradation in a rabbit model of osteoarthritis. Osteoarthr Cartil 23:122–133CrossRefGoogle Scholar
  63. Schugar RC, Chirieleison SM, Wescoe KE, Schmidt BT, Askew Y, Nance JJ, Evron JM, Peault B, Deasy BM (2009) High harvest yield, high expansion, and phenotype stability of CD146 mesenchymal stromal cells from whole primitive human umbilical cord tissue. J Biomed Biotechnol 2009:789526CrossRefGoogle Scholar
  64. Shen W, Liang C, Wu V-C, Wang S-H, Young G, Lai I, Chien C, Wang S, Wu K, Chen Y (2013) Endothelial progenitor cells derived from Wharton’s Jelly of the umbilical cord reduces ischemia-induced hind limb injury in diabetic mice by inducing HIF-1α/IL-8 expression. Stem Cells Dev 22:1408–1418CrossRefGoogle Scholar
  65. Shohara R, Yamamoto A, Takikawa S, Iwase A, Hibi H, Kikkawa F, Ueda M (2012) Mesenchymal stromal cells of human umbilical cord Wharton’s Jelly accelerate wound healing by paracrine mechanisms. Cytotherapy 14:1171–1181CrossRefGoogle Scholar
  66. Steinman L (2014) Immunology of relapse and remission in multiple sclerosis. Annu Rev Immunol 32:257–281CrossRefGoogle Scholar
  67. Subramanian A, Fong C-Y, Biswas A, Bongso A (2015) Comparative characterization of cells from the various compartments of the human umbilical cord shows that the Wharton’s Jelly compartment provides the best source of clinically utilizable mesenchymal stem cells. PLoS One 10:e0127992CrossRefGoogle Scholar
  68. Sun J, Han Z, Liao W, Yang SG, Yang Z, Yu J, Meng L, Wu R, Han ZC (2011) Intrapulmonary delivery of human umbilical cord mesenchymal stem cells attenuates acute lung (FOXP3) + regulatory T cells and balancing anti- and pro-inflammatory factors. Cell Physiol Biochem 27:587–596CrossRefGoogle Scholar
  69. Tam K, Cheyyatraviendran S, Venugopal J, Biswas A, Choolani M, Ramakrishna S, Bongso A, Fong CY (2014) A nanoscaffold impregnated with human Wharton’s Jelly stem cells or its secretions improves healing of wounds. J Cell Biochem 115:794–803CrossRefGoogle Scholar
  70. Todeschi MR, El Backly R, Capelli C, Daga A, Patrone E, Introna M, Cancedda R, El Backly R, Capelli C, Daga A, Patrone E, Introna M, Cancedda R, Mastrogiacomo M (2015) Transplanted umbilical cord mesenchymal stem cells modify the in vivo microenvironment enhancing angiogenesis and leading to bone regeneration. Stem Cells Dev 24:1570–1581CrossRefGoogle Scholar
  71. Troyer DL, Weiss ML (2008) Concise review: Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells 26:591–599CrossRefGoogle Scholar
  72. Tsai P, Fu T-W, Arthur Chen Y-M, Ko T, Chen T, Shih Y, Hung S, Fu Y (2009) The therapeutic potential of human umbilical mesenchymal stem cells from Wharton’s Jelly in the treatment of rat liver fibrosis. Liver Transpl 15:484–495CrossRefGoogle Scholar
  73. Tsai P-J, Wang H-S, Shyr Y-M, Weng Z-C, Tai L-C, Shyu J-F, Chen T-H (2012) Transplantation of insulin-producing cells from umbilical cord mesenchymal stem cells for the treatment of streptozotocin-induced diabetic rats. J Biomed Sci 19:47CrossRefGoogle Scholar
  74. Ujiie Y, Gomi K, Davies JE (2015) MSC functional phenotype: Assay, age and source dependence. Sci Proc 2:1–5Google Scholar
  75. Wang LL, Wang LL, Cong X, Liu G, Zhou J, Bai B, Li Y, Bai W, Li M, Ji H, Zhu D, Wu M, Liu Y (2013) Human umbilical cord mesenchymal stem cell therapy for patients with active rheumatoid arthritis: safety and efficacy. Stem Cells Dev 22:3192–3202CrossRefGoogle Scholar
  76. Wang D, Feng X, Lu LL, Konkel JE, Zhang H, Chen Z, Li X, Gao X, Lu LL, Shi S, Chen W, Sun L (2014a) A CD8 T cell/indoleamine 2,3-dioxygenase axis is required for mesenchymal stem cell suppression of human systemic lupus erythematosus. Arthritis Rheumatol 66:2234–2245CrossRefGoogle Scholar
  77. Wang G, Li Y, Wang Y, Dong Y, Wang FS, Ding Y, Kang Y, Xu X (2014b) Roles of the co-culture of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells with rat pancreatic cells in the treatment of rats with diabetes mellitus. Exp Ther Med 8:1389–1396CrossRefGoogle Scholar
  78. Wang D, Li J, Zhang Y, Zhang M, Chen J, Li X, Hu X, Jiang S, Shi S, Sun L, Wang D, Li J, Zhang Y, Zhang M, Chen J, Li X, Hu X, Jiang S, Shi S, Sun L (2014c) Umbilical cord mesenchymal stem cell transplantation in active and refractory systemic lupus erythematosus: a multicenter clinical study. Arthritis Res Ther 16:R79CrossRefGoogle Scholar
  79. Wang P, Liu X, Zhao L, Weir MD, Sun J, Chen W, Man Y, Xu HHK (2015) Bone tissue engineering via human induced pluripotent, umbilical cord and bone marrow mesenchymal stem cells in rat cranium. Acta Biomater 18:236–248CrossRefGoogle Scholar
  80. Wharton TW (1656) Adenographia. Translated by S. Freer 1996. Oxford University Press, Oxford, UK, p 243Google Scholar
  81. Wu S, Ju GQ, Du T, Zhu YJ, Liu GH (2013) Microvesicles derived from human umbilical cord Wharton’s Jelly mesenchymal stem cells attenuate bladder tumor cell growth in vitro and in vivo. PLoS One 8:1–12Google Scholar
  82. Wu K-H, Wu H-P, Chao W-R, Lo W-Y, Tseng P-C, Lee C-J, Peng C-T, Lee M-S, Chao Y-H (2016) Time-series expression of toll-like receptor 4 signaling in septic mice treated with mesenchymal stem cells. Shock 45:634–640CrossRefGoogle Scholar
  83. Xie Z, Hao H, Tong C, Cheng Y, Liu J, Pang Y, Si Y, Guo Y, Zang L, Mu Y, Han W (2016) Human umbilical cord-derived mesenchymal stem cells elicit macrophages into an anti-inflammatory phenotype to alleviate insulin resistance in type 2 diabetic rats. Stem Cells 34:627–639CrossRefGoogle Scholar
  84. Xu R, Zhang Z, Wang FS (2012) Liver fibrosis: mechanisms of immune-mediated liver injury. Cell Mol Immunol 9:296–301CrossRefGoogle Scholar
  85. Yan C, Song X, Yu W, Wei F, Li H, Lv M, Zhang X, Ren X (2016) Human umbilical cord mesenchymal stem cells delivering sTRAIL home to lung cancer mediated by MCP-1/CCR2 axis and exhibit antitumor effects. Tumor Biol 37:8425–8435CrossRefGoogle Scholar
  86. Yang X, Li Z, Ma Y, Gao J, Liu S, Gao Y, Wang G (2014) Human umbilical cord mesenchymal stem cells promote carcinoma growth and lymph node metastasis when co-injected with esophageal carcinoma cells in nude mice. Cancer Cell Int 14:93CrossRefGoogle Scholar
  87. Yannarelli G, Dayan V, Pacienza N, Lee CJ, Medin J, Keating A (2013) Human umbilical cord perivascular cells exhibit enhanced cardiomyocyte reprogramming and cardiac function after experimental acute myocardial infarction. Cell Transplant 22:1651–1666CrossRefGoogle Scholar
  88. Zebardast N, Lickorish D, Davies JE (2010) Human umbilical cord perivascular cells (HUCPVC) A mesenchymal cell source for dermal wound healing. Organogenesis 6:197–203CrossRefGoogle Scholar
  89. Zhang H-C, Liu X-B, Huang S, Bi X-Y, Wang H-X, Xie L-X, Wang Y-Q, Cao X-F, Lv J, Xiao F-J, Yang Y, Guo Z-K (2012a) Microvesicles derived from human umbilical cord mesenchymal stem cells stimulated by hypoxia promote angiogenesis both in vitro and in vivo. Stem Cells Dev 21:3289–3297CrossRefGoogle Scholar
  90. Zhang Q, O’Hearn S, Kavalukas SL, Barbul A (2012b) Role of high mobility group Box 1 (HMGB1) in wound healing. J Surg Res 176:343–347CrossRefGoogle Scholar
  91. Zhang Z, Fu J, Xu X, Wang S, Xu R, Zhao M, Nie W, Wang X, Zhang J, Li T, Su L, Wang F-S (2013a) Safety and immunological responses to human mesenchymal stem cell therapy in difficult-to-treat HIV-1-infected patients. AIDS 27:1283–1293CrossRefGoogle Scholar
  92. Zhang W, Liu X, Yang L, Zhu D, Zhang Y, Chen Y, Zhang H-Y (2013b) Wharton’s jelly-derived mesenchymal stem cells promote myocardial regeneration and cardiac repair after miniswine acute myocardial infarction. Coron Artery Dis 24:549–558CrossRefGoogle Scholar
  93. Zhou C, Li M, Qin A, Lv S-X, Wen-Tang, Zhu X-Y, Li L-Y, Dong Y, Hu C-Y, Hu D-M, Wang S-F (2013a) Reduction of fibrosis in dibutyltin dichloride-induced chronic pancreatitis using rat umbilical mesenchymal stem cells from Wharton’s jelly. Pancreas 42:1291–1302CrossRefGoogle Scholar
  94. Zhou Y, Xu H, Xu W, Wang B, Wu H, Tao Y, Zhang B, Wang M, Mao F, Yan Y, Gao S, Gu H, Zhu W, Qian H (2013b) Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res Ther 4:34CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • John T. Walker
    • 1
  • Armand Keating
    • 2
    • 3
    • 4
    • 5
    • 6
  • John E. Davies
    • 2
    • 7
    Email author
  1. 1.Anatomy & Cell Biology, Schulich School of Medicine and DentistryThe University of Western OntarioLondonCanada
  2. 2.Institute of Biomaterials and Biomedical EngineeringTorontoCanada
  3. 3.University of TorontoTorontoCanada
  4. 4.Cell Therapy ProgramUniversity Health NetworkTorontoCanada
  5. 5.Arthritis Program, Krembil Research InstituteUniversity Health NetworkTorontoCanada
  6. 6.Princess Margaret Cancer CentreUniversity Health NetworkTorontoCanada
  7. 7.Faculty of DentistryTorontoCanada

Personalised recommendations