Advertisement

Catabolic Pathways Involved in the Anaerobic Degradation of Saturated Hydrocarbons

  • H. Wilkes
  • R. Rabus
Living reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Structurally diverse saturated hydrocarbons (n-alkanes, branched alkanes, cycloalkanes) occur frequently and abundantly in microbial habitats. A diversity of enrichment and pure cultures of microorganisms which originate from such environments and degrade saturated hydrocarbons under strictly anoxic conditions have been characterized physiologically and phylogenetically. Typically, n-alkane-degrading anaerobic microorganisms exhibit more or less pronounced substrate specificities with respect to chain length range of utilizable n-alkanes; notably, very limited knowledge exists regarding anaerobic degradation of ethane. Currently, four different metabolic strategies are known to be employed by such organisms when growing anaerobically with n-alkanes. Best characterized is the pathway initiated by the addition of the hydrocarbon substrate to the co-substrate fumarate catalyzed by a glycyl radical enzyme. Other enzyme reactions apparently used for activation of the highly inert substrates include dehydrogenation/anaerobic hydroxylation, transformation to alkyl-coenzyme M, and “intra-aerobic” oxidation. Subsequent catabolic pathways necessarily differ depending on the chemical nature of the initial activation product. Branched alkanes and cycloalkanes appear to be metabolized through analogous activation reactions and catabolic pathways; however, their degradation by anaerobic microorganisms is less well understood.

References

  1. Abbasian F, Lockington R, Mallavarapu M, Naidu R (2015) A comprehensive review of aliphatic hydrocarbon biodegradation by bacteria. Appl Biochem Biotechnol 176:670–699.  https://doi.org/10.1007/s12010-015-1603-5CrossRefPubMedGoogle Scholar
  2. Abu Laban N, Dao A, Semple K, Foght J (2015) Biodegradation of C7 and C8 iso-alkanes under methanogenic conditions. Environ Microbiol 17:4898–4915.  https://doi.org/10.1111/1462-2920.12643CrossRefPubMedGoogle Scholar
  3. Aeckersberg F, Bak F, Widdel F (1991) Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium. Arch Microbiol 156:5–14.  https://doi.org/10.1007/BF00418180CrossRefGoogle Scholar
  4. Aeckersberg F, Rainey FA, Widdel F (1998) Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions. Arch Microbiol 170:361–369.  https://doi.org/10.1007/s002030050654CrossRefPubMedGoogle Scholar
  5. Agrawal A, Gieg L (2013) In situ detection of anaerobic alkane metabolites in subsurface environments. Front Microbiol 4.  https://doi.org/10.3389/fmicb.2013.00140
  6. Baena-Nogueras RM, Rojas-Ojeda P, Sanz JL, González-Mazo E, Lara-Martín PA (2014) Reactivity and fate of secondary alkane sulfonates (SAS) in marine sediments. Environ Pollut 189:35–42.  https://doi.org/10.1016/j.envpol.2014.02.019CrossRefPubMedGoogle Scholar
  7. Beasley KK, Nanny MA (2012) Potential energy surface for anaerobic oxidation of methane via fumarate addition. Environ Sci Technol 46:8244–8252.  https://doi.org/10.1021/es3009503CrossRefPubMedGoogle Scholar
  8. Bharadwaj VS, Vyas S, Villano SM, Maupin CM, Dean AM (2015) Unravelling the impact of hydrocarbon structure on the fumarate addition mechanism - a gas-phase ab initio study. Phys Chem Chem Phys 17:4054–4066.  https://doi.org/10.1039/C4CP04317KCrossRefPubMedGoogle Scholar
  9. Boll M, Estelmann S (2018) Catabolic pathways and enzymes involved in the anaerobic degradation of polycyclic aromatic hydrocarbons. In: Boll M (ed) Anaerobic utilization of hydrocarbons, oils and lipids, handbook of hydrocarbon and lipid microbiology series. Springer International Publishing AG, pp XX–YYGoogle Scholar
  10. Boll M, Estelmann S, Heider J (2018) Catabolic pathways and enzymes involved in the anaerobic degradation of monocyclic aromatic compounds. In: Boll M (ed) Anaerobic utilization of hydrocarbons, oils and lipids, handbook of hydrocarbon and lipid microbiology series. Springer International Publishing AG, pp XX–YYGoogle Scholar
  11. Bonin P, Cravo-Laureau C, Michotey V, Hirschler-Réa A (2004) The anaerobic hydrocarbon biodegrading bacteria: An overview. Ophelia 58:243–254.  https://doi.org/10.1080/00785236.2004.10410232CrossRefGoogle Scholar
  12. Bregnard T, Häner A, Höhener P, Zeyer J (1997) Anaerobic degradation of pristane in nitrate-reducing microcosms and enrichment cultures. Appl Environ Microbiol 63:2077–2081PubMedPubMedCentralGoogle Scholar
  13. Callaghan AV (2013a) Enzymes involved in the anaerobic oxidation of n-alkanes: from methane to long-chain paraffins. Front Microbiol:4.  https://doi.org/10.3389/fmicb.2013.00089
  14. Callaghan AV (2013b) Metabolomic investigations of anaerobic hydrocarbon-impacted environments. Curr Opin Biotechnol 24:506–515.  https://doi.org/10.1016/j.copbio.2012.08.012CrossRefPubMedGoogle Scholar
  15. Callaghan AV, Gieg LM, Kropp KG, Suflita JM, Young LY (2006) Comparison of mechanisms of alkane metabolism under sulfate-reducing conditions among two bacterial isolates and a bacterial consortium. Appl Environ Microbiol 72:4274–4282.  https://doi.org/10.1128/AEM.02896-05CrossRefPubMedPubMedCentralGoogle Scholar
  16. Callaghan AV, Wawrik B, Ní Chadhain SM, Young LY, Zylstra GJ (2008) Anaerobic alkane-degrading strain AK-01 contains two alkylsuccinate synthase genes. Biochem Biophys Res Commun 366:142–148.  https://doi.org/10.1016/j.bbrc.2007.11.094CrossRefPubMedGoogle Scholar
  17. Callaghan AV, Tierney M, Phelps CD, Young LY (2009) Anaerobic biodegradation of n-hexadecane by a nitrate-reducing consortium. Appl Environ Microbiol 75:1339–1344.  https://doi.org/10.1128/AEM.02491-08CrossRefPubMedGoogle Scholar
  18. Callaghan AV, Davidova IA, Savage-Ashlock K, Parisi VA, Gieg LM, Suflita JM, Kukor JJ, Wawrik B (2010) Diversity of benzyl- and alkylsuccinate synthase genes in hydrocarbon-impacted environments and enrichment cultures. Environ Sci Technol 44:7287–7294.  https://doi.org/10.1021/es1002023CrossRefPubMedGoogle Scholar
  19. Callaghan AV, Morris BEL, Pereira IAC, McInerney MJ, Austin RN, Groves JT, Kukor JJ, Suflita JM, Young LY, Zylstra GJ, Wawrik B (2012) The genome sequence of Desulfatibacillum alkenivorans AK-01: a blueprint for anaerobic alkane oxidation. Environ Microbiol 14:101–113.  https://doi.org/10.1111/j.1462-2920.2011.02516.xCrossRefPubMedGoogle Scholar
  20. Cheng L, He Q, Ding C, Dai L-R, Li Q, Zhang H (2013) Novel bacterial groups dominate in a thermophilic methanogenic hexadecane-degrading consortium. FEMS Microbiol Ecol 85:568–577.  https://doi.org/10.1111/1574-6941.12141CrossRefPubMedGoogle Scholar
  21. Cravo-Laureau C, Matheron R, Cayol J-L, Joulian C, Hirschler-Rea A (2004) Desulfatibacillum aliphaticivorans gen. nov., sp. nov., an n-alkane- and n-alkene-degrading, sulfate-reducing bacterium. Int J Syst Evol Microbiol 54:77–83.  https://doi.org/10.1099/ijs.0.02717-0CrossRefPubMedGoogle Scholar
  22. Cravo-Laureau C, Grossi V, Raphel D, Matheron R, Hirschler-Rea A (2005) Anaerobic n-alkane metabolism by a sulfate-reducing bacterium, Desulfatibacillum aliphaticivorans strain CV2803T. Appl Environ Microbiol 71:3458–3467.  https://doi.org/10.1128/AEM.71.7.3458-3467.2005CrossRefPubMedPubMedCentralGoogle Scholar
  23. Davidova IA, Suflita JM (2005) Enrichment and isolation of anaerobic hydrocarbon-degrading bacteria. In: Leadbetter JR (ed) Methods in Enzymology. Elsevier, Amsterdam, pp 17–34.  https://doi.org/10.1016/S0076-6879(05)97002-XCrossRefGoogle Scholar
  24. Davidova IA, Gieg LM, Nanny M, Kropp KG, Suflita JM (2005) Stable isotopic studies of n-alkane metabolism by a sulfate-reducing bacterial enrichment culture. Appl Environ Microbiol 71:8174–8182.  https://doi.org/10.1128/AEM.71.12.8174-8182.2005CrossRefPubMedPubMedCentralGoogle Scholar
  25. Davidova IA, Duncan KE, Choi OK, Suflita JM (2006) Desulfoglaeba alkanexedens gen. nov., sp. nov., an n-alkane-degrading, sulfate-reducing bacterium. Int J Syst Evol Microbiol 56:2737–2742.  https://doi.org/10.1099/ijs.0.64398-0CrossRefPubMedGoogle Scholar
  26. Dawson KS, Schaperdoth I, Freeman KH, Macalady JL (2013) Anaerobic biodegradation of the isoprenoid biomarkers pristane and phytane. Org Geochem 65:118–126.  https://doi.org/10.1016/j.orggeochem.2013.10.010CrossRefGoogle Scholar
  27. Ding C, Ma T, Hu A, Dai L, He Q, Cheng L, Zhang H (2015) Enrichment and characterization of a psychrotolerant consortium degrading crude oil alkanes under methanogenic conditions. Microb Ecol 70:433–444.  https://doi.org/10.1007/s00248-015-0590-yCrossRefPubMedGoogle Scholar
  28. Ehrenreich P, Behrends A, Harder J, Widdel F (2000) Anaerobic oxidation of alkanes by newly isolated denitrifying bacteria. Arch Microbiol 173:58–64.  https://doi.org/10.1007/s002030050008CrossRefPubMedGoogle Scholar
  29. Elias R, Vieth A, Riva A, Horsfield B, Wilkes H (2007) Improved assessment of biodegradation extent and prediction of petroleum quality. Org Geochem 38:2111–2130.  https://doi.org/10.1016/j.orggeochem.2007.07.004CrossRefGoogle Scholar
  30. Embree M, Liu JK, Al-Bassam MM, Zengler K (2015) Networks of energetic and metabolic interactions define dynamics in microbial communities. PNAS 112:15450–15455.  https://doi.org/10.1073/pnas.1506034112CrossRefPubMedGoogle Scholar
  31. Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MMM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJCT, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, Op den Camp HJM, Janssen-Megens EM, Francoijs K-J, Stunnenberg H, Weissenbach J, Jetten MSM, Strous M (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548.  https://doi.org/10.1038/nature08883CrossRefGoogle Scholar
  32. Ettwig KF, Speth DR, Reimann J, Wu ML, Jetten MSM, Keltjens JT (2012) Bacterial oxygen production in the dark. Front Microbiol 3.  https://doi.org/10.3389/fmicb.2012.00273
  33. Evans CR, Rogers MA, Bailey NJL (1971) Evolution and alteration of petroleum in western Canada. Chem Geol 8:147–170.  https://doi.org/10.1016/0009-2541(71)90002-7CrossRefGoogle Scholar
  34. Funk MA, Judd ET, Marsh ENG, Elliott SJ, Drennan CL (2014) Structures of benzylsuccinate synthase elucidate roles of accessory subunits in glycyl radical enzyme activation and activity. Proc Natl Acad Sci U S A 111:10161–10166.  https://doi.org/10.1073/pnas.1405983111CrossRefPubMedPubMedCentralGoogle Scholar
  35. Funk MA, Marsh ENG, Drennan CL (2015) Substrate-bound structures of benzylsuccinate synthase reveal how toluene is activated in anaerobic hydrocarbon degradation. J Biol Chem 290:22398–22408.  https://doi.org/10.1074/jbc.M115.670737CrossRefPubMedPubMedCentralGoogle Scholar
  36. Gieg LM, Duncan KE, Suflita JM (2008) Bioenergy production via microbial conversion of residual oil to natural gas. Appl Environ Microbiol 74:3022–3029.  https://doi.org/10.1128/AEM.00119-08CrossRefPubMedPubMedCentralGoogle Scholar
  37. Gieg LM, Fowler SJ, Berdugo-Clavijo C (2014) Syntrophic biodegradation of hydrocarbon contaminants. Curr Opin Biotechnol 27:21–29.  https://doi.org/10.1016/j.copbio.2013.09.002CrossRefGoogle Scholar
  38. Gittel A, Donhauser J, Røy H, Girguis PR, Jørgensen BB, Kjeldsen KU (2015) Ubiquitous presence and novel diversity of anaerobic alkane degraders in cold marine sediments. Front Microbiol 6.  https://doi.org/10.3389/fmicb.2015.01414
  39. Grossi V, Raphel D, Hirschler-Rea A, Gilewicz M, Mouzdahir A, Bertrand J-C, Rontani J-F (2000) Anaerobic biodegradation of pristane by a marine sedimentary bacterial and/or archaeal community. Org Geochem 31:769–772.  https://doi.org/10.1016/S0146-6380(00)00060-7CrossRefGoogle Scholar
  40. Grossi V, Cravo-Laureau C, Guyoneaud R, Ranchou-Peyruse A, Hirschler-Réa A (2008) Metabolism of n-alkanes and n-alkenes by anaerobic bacteria: A summary. Org Geochem 39:1197–1203.  https://doi.org/10.1016/j.orggeochem.2008.02.010CrossRefGoogle Scholar
  41. Grundmann O, Behrends A, Rabus R, Amann J, Halder T, Heider J, Widdel F (2008) Genes encoding the candidate enzyme for anaerobic activation of n-alkanes in the denitrifying bacterium, strain HxN1. Environ Microbiol 10:376–385.  https://doi.org/10.1111/j.1462-2920.2007.01458.xCrossRefPubMedGoogle Scholar
  42. Harder J, Marmulla R (2017) Catabolic pathways and enzymes involved in the anaerobic degradation of terpenes. In: Boll M (ed) Anaerobic utilization of hydrocarbons, oils and lipids, handbook of hydrocarbon and lipid microbiology series. Springer International Publishing AG, pp XX–YYGoogle Scholar
  43. Heider J, Schühle K (2013) Anaerobic biodegradation of hydrocarbons including methane. In: Rosenberg E, DeLong E, Lory S, Stackebrandt E, Thompson F (eds) The Prokaryotes. Springer, Berlin/Heidelberg, pp 605–634.  https://doi.org/10.1007/978-3-642-30141-4_80CrossRefGoogle Scholar
  44. Heider J, Szaleniec M, Sünwoldt K, Boll M (2016) Ethylbenzene dehydrogenase and related molybdenum enzymes involved in oxygen-independent alkyl chain hydroxylation. J Mol Microbiol Biotechnol 26:45–62.  https://doi.org/10.1159/000441357CrossRefPubMedGoogle Scholar
  45. Herath A, Wawrik B, Qin Y, Zhou J, Callaghan AV (2016) Transcriptional response of Desulfatibacillum alkenivorans AK-01 to growth on alkanes: insights from RT-qPCR and microarray analyses. FEMS Microbiol Ecol 92:fiw062.  https://doi.org/10.1093/femsec/fiw062CrossRefPubMedGoogle Scholar
  46. Higashioka Y, Kojima H, Nakagawa T, Sato S, Fukui M (2009) A novel n-alkane-degrading bacterium as a minor member of p-xylene-degrading sulfate-reducing consortium. Biodegradation 20:383–390.  https://doi.org/10.1007/s10532-008-9229-8CrossRefPubMedGoogle Scholar
  47. Jaekel U, Musat N, Adam B, Kuypers M, Grundmann O, Musat F (2013) Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps. ISME J 7:885–895.  https://doi.org/10.1038/ismej.2012.159CrossRefPubMedGoogle Scholar
  48. Jaekel U, Vogt C, Fischer A, Richnow H-H, Musat F (2014) Carbon and hydrogen stable isotope fractionation associated with the anaerobic degradation of propane and butane by marine sulfate-reducing bacteria. Environ Microbiol 16:130–140.  https://doi.org/10.1111/1462-2920.12251CrossRefPubMedGoogle Scholar
  49. Jaekel U, Zedelius J, Wilkes H, Musat F (2015) Anaerobic degradation of cyclohexane by sulfate-reducing bacteria from hydrocarbon-contaminated marine sediments. Front Microbiol 6.  https://doi.org/10.3389/fmicb.2015.00116
  50. Jarling R, Sadeghi M, Drozdowska M, Lahme S, Buckel W, Rabus R, Widdel F, Golding BT, Wilkes H (2012) Stereochemical investigations reveal the mechanism of the bacterial activation of n-alkanes without oxygen. Angew Chem Int Ed Engl 51:1334–1338.  https://doi.org/10.1002/anie.201106055CrossRefPubMedGoogle Scholar
  51. Jarling R, Kühner S, Basílio Janke E, Gruner A, Drozdowska M, Golding BT, Rabus R, Wilkes H (2015) Versatile transformations of hydrocarbons in anaerobic bacteria: substrate ranges and regio- and stereochemistry of activation reactions. Front Microbiol 6.  https://doi.org/10.3389/fmicb.2015.00880
  52. Jones DM, Head IM, Gray ND, Adams JJ, Rowan AK, Aitken CM, Bennett B, Huang H, Brown A, Bowler BFJ, Oldenburg T, Erdmann M, Larter SR (2008) Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature 451:176–180.  https://doi.org/10.1038/nature06484CrossRefPubMedGoogle Scholar
  53. Kaiya S, Rubaba O, Yoshida N, Yamada T, Hiraishi A (2012) Characterization of Rhizobium naphthalenivorans sp. nov. with special emphasis on aromatic compound degradation and multilocus sequence analysis of housekeeping genes. J Gen Appl Microbiol 58:211–224.  https://doi.org/10.2323/jgam.58.211CrossRefPubMedGoogle Scholar
  54. Khelifi N, Grossi V, Hamdi M, Dolla A, Tholozan J-L, Ollivier B, Hirschler-Rea A (2010) Anaerobic oxidation of fatty acids and alkenes by the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus. Appl Environ Microbiol 76:3057–3060.  https://doi.org/10.1128/AEM.02810-09CrossRefPubMedPubMedCentralGoogle Scholar
  55. Khelifi N, Amin Ali O, Roche P, Grossi V, Brochier-Armanet C, Valette O, Ollivier B, Dolla A, Hirschler-Rea A (2014) Anaerobic oxidation of long-chain n-alkanes by the hyperthermophilic sulfate-reducing archaeon, Archaeoglobus fulgidus. ISME J 8:2153–2166.  https://doi.org/10.1038/ismej.2014.58CrossRefPubMedPubMedCentralGoogle Scholar
  56. Kleindienst S, Herbst F-A, Stagars M, von Netzer F, von Bergen M, Seifert J, Peplies J, Amann R, Musat F, Lueders T, Knittel K (2014) Diverse sulfate-reducing bacteria of the Desulfosarcina/Desulfococcus clade are the key alkane degraders at marine seeps. ISME J 8:2029–2044.  https://doi.org/10.1038/ismej.2014.51CrossRefPubMedPubMedCentralGoogle Scholar
  57. Kniemeyer O, Musat F, Sievert SM, Knittel K, Wilkes H, Blumenberg M, Michaelis W, Classen A, Bolm C, Joye SB, Widdel F (2007) Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria. Nature 449:898–901.  https://doi.org/10.1038/nature06200CrossRefPubMedGoogle Scholar
  58. Kropp KG, Davidova IA, Suflita JM (2000) Anaerobic oxidation of n-dodecane by an addition reaction in a sulfate-reducing bacterial enrichment culture. Appl Environ Microbiol 66:5393–5398.  https://doi.org/10.1128/AEM.66.12.5393-5398.2000CrossRefPubMedPubMedCentralGoogle Scholar
  59. Lara-Martín PA, Gómez-Parra A, Sanz JL, González-Mazo E (2010) Anaerobic degradation pathway of linear alkylbenzene sulfonates (LAS) in sulfate-reducing marine sediments. Environ Sci Technol 44:1670–1676.  https://doi.org/10.1021/es9032887CrossRefPubMedGoogle Scholar
  60. Laso-Pérez R, Wegener G, Knittel K, Widdel F, Harding KJ, Krukenberg V, Meier DV, Richter M, Tegetmeyer HE, Riedel D, Richnow H-H, Adrian L, Reemtsma T, Lechtenfeld OJ, Musat F (2016) Thermophilic archaea activate butane via alkyl-coenzyme M formation. Nature 539:396–401.  https://doi.org/10.1038/nature20152CrossRefPubMedGoogle Scholar
  61. Leuthner B, Leutwein C, Schulz H, Hörth P, Haehnel W, Schiltz E, Schägger H, Heider J (1998) Biochemical and genetic characterization of benzylsuccinate synthase from Thauera aromatica: a new glycyl radical enzyme catalysing the first step in anaerobic toluene metabolism. Mol Microbiol 28:615–628.  https://doi.org/10.1046/j.1365-2958.1998.00826.xCrossRefPubMedGoogle Scholar
  62. Liang B, Wang LY, Zhou Z, Mbadinga SM, Zhou L, Liu JF, Yang SZ, Gu JD, Mu BZ (2016) High frequency of Thermodesulfovibrio spp. and Anaerolineaceae in Association with Methanoculleus spp. in a long-term incubation of n-alkanes-degrading methanogenic enrichment culture. Front Microbiol 7.  https://doi.org/10.3389/fmicb.2016.01431
  63. Mbadinga SM, Li KP, Zhou L, Wang LY, Yang SZ, Liu JF, Gu JD, Mu BZ (2012) Analysis of alkane-dependent methanogenic community derived from production water of a high-temperature petroleum reservoir. Appl Microbiol Biotechnol 96:531–542.  https://doi.org/10.1007/s00253-011-3828-8CrossRefPubMedGoogle Scholar
  64. Mehboob F, Junca H, Schraa G, Stams AJM (2009) Growth of Pseudomonas chloritidismutans AW-1T on n-alkanes with chlorate as electron acceptor. Appl Microbiol Biotechnol 83:739–747.  https://doi.org/10.1007/s00253-009-1985-9CrossRefPubMedPubMedCentralGoogle Scholar
  65. Mehboob F, Oosterkamp MJ, Koehorst JJ, Farrakh S, Veuskens T, Plugge CM, Boeren S, de Vos WM, Schraa G, Stams AJM, Schaap PJ (2016) Genome and proteome analysis of Pseudomonas chloritidismutans AW-1T that grows on n-decane with chlorate or oxygen as electron acceptor. Environ Microbiol 18:3247–3257.  https://doi.org/10.1111/1462-2920.12880CrossRefPubMedGoogle Scholar
  66. Milkov AV (2018) Secondary microbial gas. In: Wilkes H (ed) Hydrocarbons, oils, and lipids: diversity, origin, chemistry and fate, handbook of hydrocarbon and lipid microbiology series. Springer Academic Publishing, pp XX–YYGoogle Scholar
  67. Mohapatra B, Sarkar A, Joshi S, Chatterjee A, Kazy SK, Maiti MK, Satyanarayana T, Sar P (2017) An arsenate-reducing and alkane-metabolizing novel bacterium, Rhizobium arsenicireducens sp. nov., isolated from arsenic-rich groundwater. Arch Microbiol 199:191–201.  https://doi.org/10.1007/s00203-016-1286-5CrossRefPubMedGoogle Scholar
  68. Musat F (2015) The anaerobic degradation of gaseous, nonmethane alkanes — From in situ processes to microorganisms. Comput Struct Biotechnol J 13:222–228.  https://doi.org/10.1016/j.csbj.2015.03.002CrossRefPubMedPubMedCentralGoogle Scholar
  69. Musat F, Wilkes H, Behrends A, Woebken D, Widdel F (2010) Microbial nitrate-dependent cyclohexane degradation coupled with anaerobic ammonium oxidation. ISME J 4:1290–1301.  https://doi.org/10.1038/ismej.2010.50CrossRefPubMedGoogle Scholar
  70. Peters KE, Walters CC, Moldowan JM (2005) The Biomarker Guide, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  71. Rabus R, Wilkes H, Behrends A, Armstroff A, Fischer T, Pierik AJ, Widdel F (2001) Anaerobic initial reaction of n-alkanes in a denitrifying bacterium: Evidence for (1-methylpentyl)succinate as initial product and for involvement of an organic radical in n-hexane metabolism. J Bacteriol 183:1707–1715.  https://doi.org/10.1128/JB.183.5.1707-1715.2001CrossRefPubMedPubMedCentralGoogle Scholar
  72. Rabus R, Jarling R, Lahme S, Kühner S, Heider J, Widdel F, Wilkes H (2011) Co-metabolic conversion of toluene in anaerobic n-alkane-degrading bacteria. Environ Microbiol 13:2576–2586.  https://doi.org/10.1111/j.1462-2920.2011.02529.xCrossRefPubMedGoogle Scholar
  73. Rétey J (1982) Methylmalonyl-CoA mutase. In: Dolphin D (ed) B12. 2. Biochemistry and medicine. John Wiley & Sons, New York, pp 357–379Google Scholar
  74. Rios-Hernandez LA, Gieg LM, Suflita JM (2003) Biodegradation of an alicyclic hydrocarbon by a sulfate-reducing enrichment from a gas condensate-contaminated aquifer. Appl Environ Microbiol 69:434–443.  https://doi.org/10.1128/AEM.69.1.434-443.2003CrossRefPubMedPubMedCentralGoogle Scholar
  75. Rueter P, Rabus R, Wilkes H, Aeckersberg F, Rainey FA, Jannasch HW, Widdel F (1994) Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature 372:455–458.  https://doi.org/10.1038/372455a0CrossRefPubMedGoogle Scholar
  76. Savage KN, Krumholz LR, Gieg LM, Parisi VA, Suflita JM, Allen J, Philp RP, Elshahed MS (2010) Biodegradation of low-molecular-weight alkanes under mesophilic, sulfate-reducing conditions: metabolic intermediates and community patterns. FEMS Microbiol Ecol 72:485–495.  https://doi.org/10.1111/j.1574-6941.2010.00866.xCrossRefPubMedGoogle Scholar
  77. Scheller S, Ermler U, Shima S (2017) Catabolic pathways and enzymes involved in anaerobic methane oxidation. In: Boll M (ed) Anaerobic utilization of hydrocarbons, oils and lipids, handbook of hydrocarbon and lipid microbiology series. Springer International Publishing AG, pp XX–YYGoogle Scholar
  78. Schouw A, Leiknes Eide T, Stokke R, Pedersen RB, Steen IH, Bødtker G (2016) Abyssivirga alkaniphila gen. nov., sp. nov., an alkane-degrading, anaerobic bacterium from a deep-sea hydrothermal vent system, and emended descriptions of Natranaerovirga pectinivora and Natranaerovirga hydrolytica. Int J Syst Evol Microbiol 66:1724–1734.  https://doi.org/10.1099/ijsem.0.000934CrossRefPubMedGoogle Scholar
  79. Siddique T, Fedorak PM, Foght JM (2006) Biodegradation of short-chain n-alkanes in oil sands tailings under methanogenic conditions. Environ Sci Technol 40:5459–5464.  https://doi.org/10.1021/es060993mCrossRefPubMedGoogle Scholar
  80. Siddique T, Penner T, Semple K, Foght JM (2011) Anaerobic biodegradation of longer-chain n-alkanes coupled to methane production in oil sands tailings. Environ Sci Technol 45:5892–5899.  https://doi.org/10.1021/es200649tCrossRefPubMedGoogle Scholar
  81. Siddique T, Penner T, Klassen J, Nesbø C, Foght JM (2012) Microbial communities involved in methane production from hydrocarbons in oil sands tailings. Environ Sci Technol 46:9802–9810.  https://doi.org/10.1021/es302202cCrossRefPubMedGoogle Scholar
  82. Siddique T, Mohamad Shahimin MF, Zamir S, Semple K, Li C, Foght JM (2015) Long-term incubation reveals methanogenic biodegradation of C5 and C6 iso-alkanes in oil sands tailings. Environ Sci Technol 49:14732–14739.  https://doi.org/10.1021/acs.est.5b04370CrossRefPubMedGoogle Scholar
  83. So CM, Young LY (1999) Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes. Appl Environ Microbiol 65:2969–2976PubMedPubMedCentralGoogle Scholar
  84. So CM, Phelps CD, Young LY (2003) Anaerobic transformation of alkanes to fatty acids by a sulfate-reducing bacterium, strain Hxd3. Appl Environ Microbiol 69:3892–3900.  https://doi.org/10.1128/AEM.69.7.3892-3900.2003CrossRefPubMedPubMedCentralGoogle Scholar
  85. Stagars MH, Ruff SE, Amann R, Knittel K (2016) High diversity of anaerobic alkane-degrading microbial communities in marine seep sediments based on (1-methylalkyl)succinate synthase genes. Front Microbiol 6.  https://doi.org/10.3389/fmicb.2015.01511
  86. Tan B, Dong X, Sensen CW, Foght J (2013) Metagenomic analysis of an anaerobic alkane-degrading microbial culture: Potential hydrocarbon-activating pathways and inferred roles of community members. Genome 56:599–611.  https://doi.org/10.1139/gen-2013-0069CrossRefPubMedGoogle Scholar
  87. Tan B, Nesbo C, Foght J (2014) Re-analysis of omics data indicates Smithella may degrade alkanes by addition to fumarate under methanogenic conditions. ISME J 8:2353–2356.  https://doi.org/10.1038/ismej.2014.87CrossRefPubMedPubMedCentralGoogle Scholar
  88. Tan B, Fowler SJ, Abu Laban N, Dong X, Sensen CW, Foght J, Gieg LM (2015a) Comparative analysis of metagenomes from three methanogenic hydrocarbon-degrading enrichment cultures with 41 environmental samples. ISME J 9:2028–2045.  https://doi.org/10.1038/ismej.2015.22CrossRefPubMedPubMedCentralGoogle Scholar
  89. Tan B, Semple K, Foght J (2015b) Anaerobic alkane biodegradation by cultures enriched from oil sands tailings ponds involves multiple species capable of fumarate addition. FEMS Microbiol Ecol 91:fiv042.  https://doi.org/10.1093/femsec/fiv042CrossRefPubMedGoogle Scholar
  90. Thauer RK, Shima S (2008) Methane as fuel for anaerobic microorganisms. Ann N Y Acad Sci 1125:158–170.  https://doi.org/10.1196/annals.1419.000CrossRefPubMedGoogle Scholar
  91. Venkidusamy K, Megharaj M (2016a) Identification of electrode respiring, hydrocarbonoclastic bacterial strain Stenotrophomonas maltophilia MK2 highlights the untapped potential for environmental bioremediation. Front Microbiol 7.  https://doi.org/10.3389/fmicb.2016.01965
  92. Venkidusamy K, Megharaj M (2016b) A novel electrophototrophic bacterium Rhodopseudomonas palustris strain RP2, exhibits hydrocarbonoclastic potential in anaerobic environments. Front Microbiol 7.  https://doi.org/10.3389/fmicb.2016.01071
  93. Wang L-Y, Gao C-X, Mbadinga SM, Zhou L, Liu J-F, Gu J-D, Mu B-Z (2011) Characterization of an alkane-degrading methanogenic enrichment culture from production water of an oil reservoir after 274 days of incubation. Int Biodeter Biodegr 65:444–450.  https://doi.org/10.1016/j.ibiod.2010.12.010CrossRefGoogle Scholar
  94. Wawrik B, Marks CR, Davidova IA, McInerney MJ, Pruitt S, Duncan KE, Suflita JM, Callaghan AV (2016) Methanogenic paraffin degradation proceeds via alkane addition to fumarate by ‘Smithella’ spp. mediated by a syntrophic coupling with hydrogenotrophic methanogens. Environ Microbiol 18:2604–2619.  https://doi.org/10.1111/1462-2920.13374CrossRefPubMedGoogle Scholar
  95. Wilkes H, Rabus R, Fischer T, Armstroff A, Behrends A, Widdel F (2002) Anaerobic degradation of n-hexane in a denitrifying bacterium: Further degradation of the initial intermediate (1-methylpentyl)succinate via C-skeleton rearrangement. Arch Microbiol 177:235–243.  https://doi.org/10.1007/s00203-001-0381-3CrossRefPubMedGoogle Scholar
  96. Wilkes H, Kühner S, Bolm C, Fischer T, Classen A, Widdel F, Rabus R (2003) Formation of n-alkane- and cycloalkane-derived organic acids during anaerobic growth of a denitrifying bacterium with crude oil. Org Geochem 34:1313–1323.  https://doi.org/10.1016/S0146-6380(03)00099-8CrossRefGoogle Scholar
  97. Wilkes H, Buckel W, Golding BT, Rabus R (2016) Metabolism of hydrocarbons in n-alkane-utilizing anaerobic bacteria. J Mol Microbiol Biotechnol 26:138–151.  https://doi.org/10.1159/000442160CrossRefPubMedGoogle Scholar
  98. Wilkes H, Jarling R, Schwarzbauer J (2019) Hydrocarbons and lipids: an introduction to structure, physicochemical properties and natural occurrence. In: Wilkes H (ed) Hydrocarbons, oils, and lipids: diversity, origin, chemistry and fate, handbook of hydrocarbon and lipid microbiology series. Springer International Publishing AG, pp XX–YYGoogle Scholar
  99. Zedelius J, Rabus R, Grundmann O, Werner I, Brodkorb D, Schreiber F, Ehrenreich P, Behrends A, Wilkes H, Kube M, Reinhardt R, Widdel F (2011) Alkane degradation under anoxic conditions by a nitrate-reducing bacterium with possible involvement of the electron acceptor in substrate activation. Environ Microbiol Rep 3:125–135.  https://doi.org/10.1111/j.1758-2229.2010.00198.xCrossRefPubMedPubMedCentralGoogle Scholar
  100. Zengler K, Richnow HH, Rossello-Mora R, Michaelis W, Widdel F (1999) Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401:266–269.  https://doi.org/10.1038/45777CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Organic Geochemistry, Institute for Chemistry and Biology of the Marine Environment (ICBM)Carl von Ossietzky University OldenburgOldenburgGermany
  2. 2.General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM)Carl von Ossietzky University OldenburgOldenburgGermany

Personalised recommendations