Advertisement

Anaerobic Methane Oxidation in Freshwater Environments

  • Jörg Stefan Deutzmann
Living reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Anaerobic methane oxidation was long thought to be limited to marine environments. Meanwhile, anaerobic methane oxidation coupled to denitrification, carried out by Candidatus “Methylomirabilis oxyfera”-like bacteria and Candidatus “Methanoperedens nitroreducens”-like archaea, has been discovered in various freshwater environments. Furthermore, this process even has been identified as the major methane sink in some environments such as lakes and peatlands. Anaerobic methane oxidation with sulfate or with oxidized iron and manganese species might also take place in freshwater environments, but the organisms mediating these reactions are unknown, and data on these processes at low salinities are scarce. In addition, a clear distinction between sulfate- and metal-dependent anaerobic methane oxidation has not been possible in most environments. In general, there is not much data available on the importance of anaerobic methane oxidation in freshwater habitats, but the available studies – in concert with molecular detection and quantification of anaerobic methane oxidizing organisms in a variety of freshwater habitats – indicate that anaerobic methane oxidation in freshwater environments could be a globally important methane sink.

References

  1. Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325(5937):184–187CrossRefPubMedGoogle Scholar
  2. Bridgham SD, Cadillo-Quiroz H, Keller JK, Zhuang Q (2013) Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Glob Chang Biol 19(5):1325–1346CrossRefPubMedGoogle Scholar
  3. Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Le Quéré C, Myneni RB, Piao S, Thornton P (2013) In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Carbon and Other Biogeochemical Cycles. Climate Change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USAGoogle Scholar
  4. Crowe SA, Katsev S, Leslie K, Sturm A, Magen C, Nomosatryo S, Pack MA, Kessler JD, Reeburgh WS, Roberts JA, GonzÁLez L et al (2011) The methane cycle in ferruginous Lake Matano. Geobiology 9(1):61–78CrossRefPubMedGoogle Scholar
  5. Cui M, Ma A, Qi H, Zhuang X, Zhuang G (2015) Anaerobic oxidation of methane: an “active” microbial process. Microbiol Open 4(1):1–11CrossRefGoogle Scholar
  6. Deutzmann JS, Schink B (2011) Anaerobic oxidation of methane in sediments of Lake Constance, an oligotrophic freshwater lake. Appl Environ Microbiol 77(13):4429–4436CrossRefPubMedPubMedCentralGoogle Scholar
  7. Deutzmann JS, Stief P, Brandes J, Schink B (2014) Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake. Proc Natl Acad Sci U S A 111(51):18273–18278CrossRefPubMedPubMedCentralGoogle Scholar
  8. Ding Z-W, Ding J, Fu L, Zhang F, Zeng RJ (2014) Simultaneous enrichment of denitrifying methanotrophs and anammox bacteria. Appl Microbiol Biotechnol 98(24):10211–10221CrossRefPubMedGoogle Scholar
  9. Eller G, Känel L, Krüger M (2005) Cooccurrence of aerobic and anaerobic methane oxidation in the water column of Lake Plußsee. Appl Environ Microbiol 71(12):8925–8928CrossRefPubMedPubMedCentralGoogle Scholar
  10. EPA US (2009) National lakes assessment: a collaborative survey of the nation’s lakes. Office of Water and Office of Research and Development, Environmental Protection Agency, Washington, DCGoogle Scholar
  11. Ettwig KF, Shima S, van de Pas-Schoonen KT, Kahnt J, Medema MH, Op den Camp HJ, Jetten MS, Strous M (2008) Denitrifying bacteria anaerobically oxidize methane in the absence of archaea. Environ Microbiol 10(11):3164–3173CrossRefPubMedGoogle Scholar
  12. Ettwig KF, van Alen T, van de Pas-Schoonen KT, Jetten MS, Strous M (2009) Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum. Appl Environ Microbiol 75(11):3656–3662CrossRefPubMedPubMedCentralGoogle Scholar
  13. Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J et al (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464(7288):543–548CrossRefPubMedGoogle Scholar
  14. European Commission Report (2013). Report from the Commission to the Council and the European parliament on the implementation of council directive 91/676/EEC concerning the protection of waters against pollution caused by nitrates from agricultural sources based on Member State reports for the period 2008–2011Google Scholar
  15. Fu L, Li S-W, Ding Z-W, Ding J, Lu Y-Z, Zeng RJ (2016) Iron reduction in the DAMO/Shewanella oneidensis MR-1 coculture system and the fate of Fe(II). Water Res 88:808–815CrossRefPubMedGoogle Scholar
  16. Georgieva N, Yaneva Z, Kostadinova G (2013) Analyses and assessment of the spatial and temporal distribution of nitrogen compounds in surface waters. Water Environ J 27(2):187–196CrossRefGoogle Scholar
  17. Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan Z, Tyson GW (2013) Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500(7464):567–570CrossRefPubMedGoogle Scholar
  18. Holmer M, Storkholm P (2001) Sulphate reduction and sulphur cycling in lake sediments: a review. Freshw Biol 46(4):431–451CrossRefGoogle Scholar
  19. Hu BL, Shen LD, Lian X, Zhu Q, Liu S, Huang Q, He ZF, Geng S, Cheng DQ, Lou LP, Xu XY et al (2014) Evidence for nitrite-dependent anaerobic methane oxidation as a previously overlooked microbial methane sink in wetlands. Proc Natl Acad Sci U S A 111(12):4495–4500CrossRefPubMedPubMedCentralGoogle Scholar
  20. Jetten MSM (2008) The microbial nitrogen cycle. Environ Microbiol 10:2903–2909CrossRefPubMedGoogle Scholar
  21. Kappler A, Benz M, Schink B, Brune A (2004) Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment. FEMS Microbiol Ecol 47(1):85–92CrossRefPubMedGoogle Scholar
  22. Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63(1):311–334CrossRefPubMedGoogle Scholar
  23. Kojima H, Tsutsumi M, Ishikawa K, Iwata T, Mußmann M, Fukui M (2012) Distribution of putative denitrifying methane oxidizing bacteria in sediment of a freshwater lake, Lake Biwa. Syst Appl Microbiol 35(4):233–238CrossRefPubMedGoogle Scholar
  24. Luesken FA, Zhu B, van Alen TA, Butler MK, Diaz MR, Song B, Op den Camp HJ, Jetten MS, Ettwig KF (2011) pmoA primers for detection of anaerobic methanotrophs. Appl Environ Microbiol 77(11):3877–3880CrossRefPubMedPubMedCentralGoogle Scholar
  25. Luesken FA, Wu ML, Op den Camp HJM, Keltjens JT, Stunnenberg H, Francoijs K-J, Strous M, Jetten MSM (2012) Effect of oxygen on the anaerobic methanotroph ‘Candidatus Methylomirabilis oxyfera’: kinetic and transcriptional analysis. Environ Microbiol 14(4):1024–1034CrossRefPubMedGoogle Scholar
  26. McGlynn SE, Chadwick GL, Kempes CP, Orphan VJ (2015) Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526(7574):531–535CrossRefPubMedGoogle Scholar
  27. Milucka J, Ferdelman TG, Polerecky L, Franzke D, Wegener G, Schmid M, Lieberwirth I, Wagner M, Widdel F, Kuypers MMM (2012) Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature 491(7425):541–546CrossRefPubMedGoogle Scholar
  28. Norði K á, Thamdrup B (2014) Nitrate-dependent anaerobic methane oxidation in a freshwater sediment. Geochim Cosmochim Acta 132:141–150CrossRefGoogle Scholar
  29. Norði K à, Thamdrup B, Schubert CJ (2013) Anaerobic oxidation of methane in an iron-rich Danish freshwater lake sediment. Limnol Oceanogr 58(2):546–554CrossRefGoogle Scholar
  30. Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJ, Ettwig KF, Rijpstra WI, Schouten S, Damste JS, Op den Camp HJ, Jetten MS, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440(7086):918–921CrossRefPubMedGoogle Scholar
  31. Saunois M, Bousquet P, Poulter B, Peregon A, Ciais P, Canadell JG, Dlugokencky EJ, Etiope G, Bastviken D, Houweling S, Janssens-Maenhout G et al (2016) The global methane budget: 2000–2012. Earth Syst Sci Data Discuss.  https://doi.org/10.5194/essd-2016-5125
  32. Scheller S, Yu H, Chadwick GL, McGlynn SE, Orphan VJ (2016) Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science 351(6274):703–707CrossRefPubMedGoogle Scholar
  33. Schink B (2006) In: Overmann J (ed) Syntrophic associations in methanogenic degradation, Molecular Basis of Symbiosis. Springer, Berlin, pp 1–19Google Scholar
  34. Schubert CJ, Vazquez F, Lösekann-Behrens T, Knittel K, Tonolla M, Boetius A (2011) Evidence for anaerobic oxidation of methane in sediments of a freshwater system (Lago di Cadagno). FEMS Microbiol Ecol 76(1):26–38CrossRefPubMedGoogle Scholar
  35. Segarra KEA, Schubotz F, Samarkin V, Yoshinaga MY, Hinrichs KU, Joye SB (2015) High rates of anaerobic methane oxidation in freshwater wetlands reduce potential atmospheric methane emissions. Nat Commun 6Google Scholar
  36. Shen LD, Huang Q, He ZF, Lian X, Liu S, He YF, Lou LP, Xu XY, Zheng P, Hu BL (2015a) Vertical distribution of nitrite-dependent anaerobic methane-oxidising bacteria in natural freshwater wetland soils. Appl Microbiol Biotechnol 99(1):349–357CrossRefPubMedGoogle Scholar
  37. Shen LD, Wu HS, Gao ZQ (2015b) Distribution and environmental significance of nitrite-dependent anaerobic methane-oxidising bacteria in natural ecosystems. Appl Microbiol Biotechnol 99(1):133–142CrossRefPubMedGoogle Scholar
  38. Sivan O, Adler M, Pearson A, Gelman F, Bar-Or I, John SG, Eckert W (2011) Geochemical evidence for iron-mediated anaerobic oxidation of methane. Limnol Oceanogr 56(4):1536–1544CrossRefGoogle Scholar
  39. Smemo KA, Yavitt JB (2011) Anaerobic oxidation of methane: an underappreciated aspect of methane cycling in peatland ecosystems? Biogeosciences 8(3):779–793CrossRefGoogle Scholar
  40. Smith RL, Howes BL, Garabedian SP (1991) In situ measurement of methane oxidation in groundwater by using natural-gradient tracer tests. Appl Environ Microbiol 57(7):1997–2004PubMedPubMedCentralGoogle Scholar
  41. Thamdrup B (2000) In: Schink B (ed) Bacterial manganese and Iron reduction in aquatic sediments, Advances in Microbial Ecology. Springer, Boston, pp 41–84Google Scholar
  42. Thauer RK (2010) Functionalization of methane in anaerobic microorganisms. Angew Chem Int Ed 49(38):6712–6713CrossRefGoogle Scholar
  43. Timmers PHA, Suarez-Zuluaga DA, van Rossem M, Diender M, Stams AJM, Plugge CM (2016) Anaerobic oxidation of methane associated with sulfate reduction in a natural freshwater gas source. ISME J 10(6):1400–1412CrossRefPubMedGoogle Scholar
  44. Turner RE, Rabalais NN, Justic’ D, Dortch Q (2003) Global patterns of dissolved N, P and Si in large rivers. Biogeochemistry 64(3):297–317CrossRefGoogle Scholar
  45. Vaksmaa A, Lüke C, van Alen T, Valè G, Lupotto E, Jetten M, Ettwig K (2016) Distribution and activity of the anaerobic methanotrophic community in a nitrogen-fertilized Italian paddy soil. FEMS Microbiol Ecol 92(12)CrossRefPubMedGoogle Scholar
  46. Wang Y, Huang P, Ye F, Jiang Y, Song L, Op den Camp HJM, Zhu G, Wu S (2016) Nitrite-dependent anaerobic methane oxidizing bacteria along the water level fluctuation zone of the Three Gorges Reservoir. Appl Microbiol Biotechnol 100(4):1977–1986CrossRefPubMedGoogle Scholar
  47. Zhou L, Wang Y, Long X-E, Guo J, Zhu G (2014) High abundance and diversity of nitrite-dependent anaerobic methane-oxidizing bacteria in a paddy field profile. FEMS Microbiol Lett 360(1):33–41CrossRefPubMedGoogle Scholar
  48. Zhu B, van Dijk G, Fritz C, Smolders AJ, Pol A, Jetten MS, Ettwig KF (2012) Anaerobic oxidization of methane in a minerotrophic peatland: enrichment of nitrite-dependent methane-oxidizing bacteria. Appl Environ Microbiol 78(24):8657–8665CrossRefPubMedPubMedCentralGoogle Scholar
  49. Zhu GB, Zhou LL, Wang Y, Wang SY, Guo JH, Long XE, Sun XB, Jiang B, Hou QY, Jetten MSM, Yin CQ (2015) Biogeographical distribution of denitrifying anaerobic methane oxidizing bacteria in Chinese wetland ecosystems. Environ Microbiol Rep 7(1):128–138CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Spormann LaboratoryStanford UniversityStanfordUSA

Personalised recommendations