Advertisement

Stem Cells and the Future of Heart Transplantation

  • Kenta Nakamura
  • April Stempien-OteroEmail author
Living reference work entry
  • 3 Downloads
Part of the Organ and Tissue Transplantation book series (OTT)

Abstract

Allogenic heart transplantation remains the only curative therapy for heart failure. Several strategies have been proposed including cell replacement therapy, engineered cardiac tissues, and novel transplant grafts derived from decellularized organs or xenotransplantation. Cell replacement therapy is the most mature of these technologies, but despite decades of clinical investigation, cardiac cell therapy has yet to enter cardiovascular practice. The major obstacle to replacing lost or injured myocardium remains a reproducible source of electro-, mechano-, and immuno-compatible cardiomyocytes. Noncontractile cells like bone marrow or adult heart derivatives neither engraft long-term nor induce new muscle formation. Correspondingly, these cells offer little functional benefit to infarct patients. In contrast, transplantation of bona fide cardiomyocytes derived from pluripotent stem cells produces direct remuscularization. This new myocardium beats synchronously with the host heart and induces substantial contractile benefits. This chapter reviews the recent progress made toward novel cardiac transplantation strategies with attention to the underlying mechanisms of benefit to appreciate the barriers to cardiac repair and establish a rational path for optimizing therapeutic benefit.

Keywords

Stem cell Cell therapy Cardiac remuscularization Transplantation 

References

  1. Assmus B, Walter DH, Seeger FH, Leistner DM, Steiner J, Ziegler I, … Zeiher AM (2013) Effect of shock wave-facilitated intracoronary cell therapy on LVEF in patients with chronic heart failure: the CELLWAVE randomized clinical trial. JAMA 309(15):1622–1631. https://doi.org/10.1001/jama.2013.3527PubMedCrossRefPubMedCentralGoogle Scholar
  2. Assmus B, Alakmeh S, De Rosa S, Bonig H, Hermann E, Levy WC, … Zeiher AM (2016) Improved outcome with repeated intracoronary injection of bone marrow-derived cells within a registry: rationale for the randomized outcome trial REPEAT. Eur Heart J 37(21):1659–1666.  https://doi.org/10.1093/eurheartj/ehv559PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bartunek J, Terzic A, Davison BA, Filippatos GS, Radovanovic S, Beleslin B, … CHART Program (2017) Cardiopoietic cell therapy for advanced ischaemic heart failure: results at 39 weeks of the prospective, randomized, double blind, sham-controlled CHART-1 clinical trial. Eur Heart J 38(9):648–660.  https://doi.org/10.1093/eurheartj/ehw543
  4. Bertero A, Murry CE (2018) Hallmarks of cardiac regeneration. Nat Rev Cardiol.  https://doi.org/10.1038/s41569-018-0079-8PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bolli R, Hare JM, March KL, Pepine CJ, Willerson JT, Perin EC, … Cardiovascular Cell Therapy Research Network (CCTRN) (2018) Rationale and design of the CONCERT-HF trial (combination of mesenchymal and c-kit(+) cardiac stem cells as regenerative therapy for heart failure). Circ Res 122(12):1703–1715.  https://doi.org/10.1161/CIRCRESAHA.118.312978PubMedPubMedCentralCrossRefGoogle Scholar
  6. Broughton KM, Sussman MA (2016) Empowering adult stem cells for myocardial regeneration V2.0: success in small steps. Circ Res 118(5):867–880.  https://doi.org/10.1161/CIRCRESAHA.115.305227CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cambria E, Pasqualini FS, Wolint P, Gunter J, Steiger J, Bopp A, … Emmert MY (2017) Translational cardiac stem cell therapy: advancing from first-generation to next-generation cell types. NPJ Regen Med 2:17.  https://doi.org/10.1038/s41536-017-0024-1
  8. Caspi O, Huber I, Kehat I, Habib M, Arbel G, Gepstein A, … Gepstein L (2007) Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J Am Coll Cardiol 50(19):1884–1893.  https://doi.org/10.1016/j.jacc.2007.07.054PubMedCrossRefPubMedCentralGoogle Scholar
  9. Chien KR, Frisén J, Fritsche-Danielson R, Melton DA, Murry CE, Weissman IL (2019) Regenerating the field of cardiovascular cell therapy. Nat Biotechnol.  https://doi.org/10.1038/s41587-019-0042-1PubMedCrossRefPubMedCentralGoogle Scholar
  10. Chong JJ, Yang X, Don CW, Minami E, Liu YW, Weyers JJ, … Murry CE (2014) Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510(7504):273–277.  https://doi.org/10.1038/nature13233PubMedPubMedCentralCrossRefGoogle Scholar
  11. Choudhury T, Mozid A, Hamshere S, Yeo C, Pellaton C, Arnous S, … Mathur A (2017) An exploratory randomized control study of combination cytokine and adult autologous bone marrow progenitor cell administration in patients with ischaemic cardiomyopathy: the REGENERATE-IHD clinical trial. Eur J Heart Fail 19(1):138–147.  https://doi.org/10.1002/ejhf.676PubMedPubMedCentralCrossRefGoogle Scholar
  12. Choudry F, Hamshere S, Saunders N, Veerapen J, Bavnbek K, Knight C, … Mathur A (2016) A randomized double-blind control study of early intra-coronary autologous bone marrow cell infusion in acute myocardial infarction: the REGENERATE-AMI clinical trialdagger. Eur Heart J 37(3):256–263.  https://doi.org/10.1093/eurheartj/ehv493PubMedPubMedCentralCrossRefGoogle Scholar
  13. Dib N, McCarthy P, Campbell A, Yeager M, Pagani FD, Wright S, … Diethrich E (2005) Feasibility and safety of autologous myoblast transplantation in patients with ischemic cardiomyopathy. Cell Transplant 14(1):11–19. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15789658PubMedCrossRefPubMedCentralGoogle Scholar
  14. Eschenhagen T, Fink C, Remmers U, Scholz H, Wattchow J, Weil J, … Elson EL (1997) Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: a new heart muscle model system. FASEB J 11(8):683–694. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/9240969PubMedCrossRefPubMedCentralGoogle Scholar
  15. Eschenhagen T, Bolli R, Braun T, Field LJ, Fleischmann BK, Frisen J, … Hill JA (2017) Cardiomyocyte regeneration: a consensus statement. Circulation, 136(7), 680–686.  https://doi.org/10.1161/CIRCULATIONAHA.117.029343PubMedPubMedCentralCrossRefGoogle Scholar
  16. Fernandes S, Naumova AV, Zhu WZ, Laflamme MA, Gold J, Murry CE (2010) Human embryonic stem cell-derived cardiomyocytes engraft but do not alter cardiac remodeling after chronic infarction in rats. J Mol Cell Cardiol 49(6):941–949.  https://doi.org/10.1016/j.yjmcc.2010.09.008CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fernández-Avilés F, heart …, S-R-R (2017) Global position paper on cardiovascular regenerative medicine. Eur Heart …. Retrieved from https://academic.oup.com/eurheartj/article-abstract/38/33/2532/3858448
  18. Fernández-Avilés F, Sanz-Ruiz R, Bogaert J, Casado Plasencia A, Gilaberte I, Belmans A, … Janssens S (2018) Safety and efficacy of intracoronary infusion of allogeneic human cardiac stem cells in patients with ST-segment elevation myocardial infarction and left ventricular dysfunction: a multicenter randomized, double-blind and placebo-controlled clinical trial. Circ Res.  https://doi.org/10.1161/CIRCRESAHA.118.312823PubMedCrossRefPubMedCentralGoogle Scholar
  19. Fisher SA, Doree C, Mathur A, Martin-Rendon E (2015) Meta-analysis of cell therapy trials for patients with heart failure. Circ Res 116(8):1361–1377.  https://doi.org/10.1161/CIRCRESAHA.116.304386CrossRefPubMedPubMedCentralGoogle Scholar
  20. Fisher SA, Doree C, Mathur A, Taggart DP, Martin-Rendon E (2016) Stem cell therapy for chronic ischaemic heart disease and congestive heart failure. Cochrane Database Syst Rev 12:CD007888.  https://doi.org/10.1002/14651858.CD007888.pub3CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fouts K, Fernandes B, Mal N, Liu J, Laurita KR (2006) Electrophysiological consequence of skeletal myoblast transplantation in normal and infarcted canine myocardium. Heart Rhythm 3(4):452–461.  https://doi.org/10.1016/j.hrthm.2005.12.016CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gao L, Gregorich ZR, Zhu W, Mattapally S, Oduk Y, Lou X, … Zhang J (2017) Large cardiac-muscle patches engineered from human induced-pluripotent stem-cell-derived cardiac cells improve recovery from myocardial infarction in swine. Circulation.  https://doi.org/10.1161/CIRCULATIONAHA.117.030785PubMedCrossRefPubMedCentralGoogle Scholar
  23. Gao L, Gregorich ZR, Zhu W, Mattapally S, Oduk Y, Lou X, … Zhang J (2018) Large cardiac muscle patches engineered from human induced-pluripotent stem cell-derived cardiac cells improve recovery from myocardial infarction in swine. Circulation 137(16):1712–1730.  https://doi.org/10.1161/CIRCULATIONAHA.117.030785PubMedCrossRefPubMedCentralGoogle Scholar
  24. Gerbin KA, Murry CE (2015) The winding road to regenerating the human heart. Cardiovasc Pathol 24(3):133–140.  https://doi.org/10.1016/j.carpath.2015.02.004CrossRefPubMedPubMedCentralGoogle Scholar
  25. Gerbin KA, Yang X, Murry CE, Coulombe KL (2015) Enhanced electrical integration of engineered human myocardium via intramyocardial versus epicardial delivery in infarcted rat hearts. PLoS One 10(7):e0131446.  https://doi.org/10.1371/journal.pone.0131446CrossRefPubMedPubMedCentralGoogle Scholar
  26. Guyette JP, Gilpin SE, Charest JM, Tapias LF, Ren X, Ott HC (2014) Perfusion decellularization of whole organs. Nat Protoc 9(6):1451–1468.  https://doi.org/10.1038/nprot.2014.097CrossRefPubMedPubMedCentralGoogle Scholar
  27. Guyette JP, Charest JM, Mills RW, Jank BJ, Moser PT, Gilpin SE, … Ott HC (2016) Bioengineering human myocardium on native extracellular matrix. Circ Res 118(1):56–72.  https://doi.org/10.1161/CIRCRESAHA.115.306874PubMedCrossRefPubMedCentralGoogle Scholar
  28. Gyongyosi M, Wojakowski W, Navarese EP, Moye LA, ACCRUE Investigators (2016) Meta-analyses of human cell-based cardiac regeneration therapies: controversies in meta-analyses results on cardiac cell-based regenerative studies. Circ Res 118(8):1254–1263.  https://doi.org/10.1161/CIRCRESAHA.115.307347CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hare JM, Fishman JE, Gerstenblith G, DiFede Velazquez DL, Zambrano JP, Suncion VY, … Lardo A (2012) Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA 308(22):2369–2379.  https://doi.org/10.1001/jama.2012.25321PubMedPubMedCentralCrossRefGoogle Scholar
  30. Hare JM, DiFede DL, Rieger AC, Florea V, Landin AM, El-Khorazaty J, … Heldman AW (2017) Randomized comparison of allogeneic versus autologous mesenchymal stem cells for nonischemic dilated cardiomyopathy: POSEIDON-DCM trial. J Am Coll Cardiol 69(5):526–537.  https://doi.org/10.1016/j.jacc.2016.11.009PubMedCrossRefPubMedCentralGoogle Scholar
  31. Heldman AW, DiFede DL, Fishman JE, Zambrano JP, Trachtenberg BH, Karantalis V, … Hare JM (2014) Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: the TAC-HFT randomized trial. JAMA 311(1):62–73.  https://doi.org/10.1001/jama.2013.282909PubMedPubMedCentralCrossRefGoogle Scholar
  32. Hirsch A, Nijveldt R, van der Vleuten PA, Tijssen JG, van der Giessen WJ, Tio RA, … HEBE Investigators (2011) Intracoronary infusion of mononuclear cells from bone marrow or peripheral blood compared with standard therapy in patients after acute myocardial infarction treated by primary percutaneous coronary intervention: results of the randomized controlled HEBE trial. Eur Heart J 32(14):1736–1747.  https://doi.org/10.1093/eurheartj/ehq449PubMedCrossRefPubMedCentralGoogle Scholar
  33. Hodgson MJ, Knutson CC, Momtahan N, Cook AD (2018) Extracellular matrix from whole porcine heart decellularization for cardiac tissue engineering. Methods Mol Biol 1577:95–102.  https://doi.org/10.1007/7651_2017_31CrossRefPubMedPubMedCentralGoogle Scholar
  34. Huikuri HV, Kervinen K, Niemela M, Ylitalo K, Saily M, Koistinen P, … FINCELL Investigators (2008) Effects of intracoronary injection of mononuclear bone marrow cells on left ventricular function, arrhythmia risk profile, and restenosis after thrombolytic therapy of acute myocardial infarction. Eur Heart J 29(22):2723–2732.  https://doi.org/10.1093/eurheartj/ehn436PubMedCrossRefPubMedCentralGoogle Scholar
  35. Jackman CP, Ganapathi AM, Asfour H, Qian Y, Allen BW, Li Y, Bursac N (2018) Engineered cardiac tissue patch maintains structural and electrical properties after epicardial implantation. Biomaterials 159:48–58.  https://doi.org/10.1016/j.biomaterials.2018.01.002CrossRefPubMedPubMedCentralGoogle Scholar
  36. Janssens S, Dubois C, Bogaert J, Theunissen K, Deroose C, Desmet W, … Van de Werf F (2006) Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet 367(9505):113–121.  https://doi.org/10.1016/S0140-6736(05)67861-0CrossRefGoogle Scholar
  37. Kawamura M, Miyagawa S, Fukushima S, Saito A, Miki K, Funakoshi S, … Sawa Y (2017) Enhanced therapeutic effects of human iPS cell derived-cardiomyocyte by combined cell-sheets with omental flap technique in porcine ischemic cardiomyopathy model. Sci Rep 7(1):8824.  https://doi.org/10.1038/s41598-017-08869-z
  38. Kehat I, Khimovich L, Caspi O, Gepstein A, Shofti R, Arbel G, … Gepstein L (2004) Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat Biotechnol 22(10):1282–1289.  https://doi.org/10.1038/nbt1014PubMedCrossRefPubMedCentralGoogle Scholar
  39. Khush KK, Cherikh WS, Chambers DC, Goldfarb S, Hayes D Jr, Kucheryavaya AY, … Lung T (2018) The international thoracic organ transplant registry of the International Society for Heart and Lung Transplantation: thirty-fifth adult heart transplantation report-2018; focus theme: multiorgan transplantation. J Heart Lung Transplant 37(10):1155–1168.  https://doi.org/10.1016/j.healun.2018.07.022PubMedCrossRefPubMedCentralGoogle Scholar
  40. Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, … Daley GQ (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467(7313):285–290.  https://doi.org/10.1038/nature09342PubMedPubMedCentralCrossRefGoogle Scholar
  41. Kitahara H, Yagi H, Tajima K, Okamoto K, Yoshitake A, Aeba R, … Shimizu H (2016) Heterotopic transplantation of a decellularized and recellularized whole porcine heart. Interact Cardiovasc Thorac Surg 22(5):571–579.  https://doi.org/10.1093/icvts/ivw022PubMedPubMedCentralCrossRefGoogle Scholar
  42. Laflamme MA, Gold J, Xu C, Hassanipour M, Rosler E, Police S, … Murry CE (2005) Formation of human myocardium in the rat heart from human embryonic stem cells. Am J Pathol 167(3):663–671.  https://doi.org/10.1016/S0002-9440(10)62041-XPubMedPubMedCentralCrossRefGoogle Scholar
  43. Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, … Murry CE (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25(9):1015–1024.  https://doi.org/10.1038/nbt1327PubMedCrossRefPubMedCentralGoogle Scholar
  44. Langin M, Mayr T, Reichart B, Michel S, Buchholz S, Guethoff S, … Abicht JM (2018) Consistent success in life-supporting porcine cardiac xenotransplantation. Nature 564(7736):430–433.  https://doi.org/10.1038/s41586-018-0765-zPubMedCrossRefPubMedCentralGoogle Scholar
  45. Li RA, Keung W, Cashman TJ, Backeris PC, Johnson BV, Bardot ES, … Costa KD (2018) Bioengineering an electro-mechanically functional miniature ventricular heart chamber from human pluripotent stem cells. Biomaterials 163:116–127.  https://doi.org/10.1016/j.biomaterials.2018.02.024PubMedPubMedCentralCrossRefGoogle Scholar
  46. Liu YW, Chen B, Yang X, Fugate JA, Kalucki FA, Futakuchi-Tsuchida A, … Murry CE (2018) Human embryonic stem cell-derived cardiomyocytes restore function in infarcted hearts of non-human primates. Nat Biotechnol 36(7):597–605.  https://doi.org/10.1038/nbt.4162PubMedPubMedCentralCrossRefGoogle Scholar
  47. Losordo DW, Kibbe MR, Mendelsohn F, Marston W, Driver VR, Sharafuddin M, … Autologous CD34+ Cell Therapy for Critical Limb Ischemia Investigators (2012). A randomized, controlled pilot study of autologous CD34+ cell therapy for critical limb ischemia. Circ Cardiovasc Interv 5(6):821–830.  https://doi.org/10.1161/CIRCINTERVENTIONS.112.968321Google Scholar
  48. Lu TY, Lin B, Kim J, Sullivan M, Tobita K, Salama G, Yang L (2013) Repopulation of decellularized mouse heart with human induced pluripotent stem cell-derived cardiovascular progenitor cells. Nat Commun 4:2307.  https://doi.org/10.1038/ncomms3307CrossRefPubMedPubMedCentralGoogle Scholar
  49. MacQueen LA, Sheehy SP, Chantre CO, Zimmerman JF, Pasqualini FS, Liu X, … Parker KK (2018) A tissue-engineered scale model of the heart ventricle. Nat Biomed Eng 2(12):930–941.  https://doi.org/10.1038/s41551-018-0271-5PubMedPubMedCentralCrossRefGoogle Scholar
  50. Madonna R, Van Laake LW, Davidson SM, Engel FB, Hausenloy DJ, Lecour S, … Sluijter JP (2016) Position paper of the European Society of Cardiology Working Group Cellular Biology of the heart: cell-based therapies for myocardial repair and regeneration in ischemic heart disease and heart failure. Eur Heart J 37(23):1789–1798.  https://doi.org/10.1093/eurheartj/ehw113PubMedPubMedCentralCrossRefGoogle Scholar
  51. Mathiasen AB, Qayyum AA, Jorgensen E, Helqvist S, Fischer-Nielsen A, Kofoed KF, … Kastrup J (2015) Bone marrow-derived mesenchymal stromal cell treatment in patients with severe ischaemic heart failure: a randomized placebo-controlled trial (MSC-HF trial). Eur Heart J 36(27):1744–1753.  https://doi.org/10.1093/eurheartj/ehv136PubMedCrossRefPubMedCentralGoogle Scholar
  52. Mathur A, Arnold R, Assmus B, Bartunek J, Belmans A, Bonig H, … Zeiher A (2017) The effect of intracoronary infusion of bone marrow-derived mononuclear cells on all-cause mortality in acute myocardial infarction: rationale and design of the BAMI trial. Eur J Heart Fail19(11):1545–1550.  https://doi.org/10.1002/ejhf.829PubMedPubMedCentralCrossRefGoogle Scholar
  53. Menasche P (2018) Cell therapy trials for heart regeneration - lessons learned and future directions. Nat Rev Cardiol.  https://doi.org/10.1038/s41569-018-0013-0PubMedCrossRefPubMedCentralGoogle Scholar
  54. Menasche P, Alfieri O, Janssens S, McKenna W, Reichenspurner H, Trinquart L, … Hagege AA (2008) The myoblast Autologous grafting in ischemic cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation 117(9):1189–1200.  https://doi.org/10.1161/CIRCULATIONAHA.107.734103PubMedCrossRefPubMedCentralGoogle Scholar
  55. Menasche P, Vanneaux V, Hagege A, Bel A, Cholley B, Cacciapuoti I, … Larghero J (2015) Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report. Eur Heart J 36(30):2011–2017.  https://doi.org/10.1093/eurheartj/ehv189PubMedCrossRefPubMedCentralGoogle Scholar
  56. Menasche P, Vanneaux V, Hagege A, Bel A, Cholley B, Parouchev A, … Larghero J (2018) Transplantation of human embryonic stem cell-derived cardiovascular progenitors for severe ischemic left ventricular dysfunction. J Am Coll Cardiol 71(4):429–438.  https://doi.org/10.1016/j.jacc.2017.11.047PubMedCrossRefPubMedCentralGoogle Scholar
  57. Milani-Nejad N, Janssen PM (2014) Small and large animal models in cardiac contraction research: advantages and disadvantages. Pharmacol Ther 141(3):235–249.  https://doi.org/10.1016/j.pharmthera.2013.10.007CrossRefPubMedPubMedCentralGoogle Scholar
  58. Misra V, Ritchie MM, Stone LL, Low WC, Janardhan V (2012) Stem cell therapy in ischemic stroke: role of IV and intra-arterial therapy. Neurology 79(13 Suppl 1):S207–S212.  https://doi.org/10.1212/WNL.0b013e31826959d2CrossRefPubMedPubMedCentralGoogle Scholar
  59. Mohiuddin MM, Reichart B, Byrne GW, McGregor CGA (2015) Current status of pig heart xenotransplantation. Int J Surg 23(Pt B):234–239.  https://doi.org/10.1016/j.ijsu.2015.08.038CrossRefPubMedPubMedCentralGoogle Scholar
  60. Mohiuddin MM, Singh AK, Corcoran PC, Thomas ML 3rd, Clark T, Lewis BG, … Horvath KA (2016) Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft. Nat Commun 7:11138.  https://doi.org/10.1038/ncomms11138
  61. Mummery C, Ward-van Oostwaard D, Doevendans P, Spijker R, van den Brink S, Hassink R, … Tertoolen L (2003) Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 107(21):2733–2740.  https://doi.org/10.1161/01.CIR.0000068356.38592.68PubMedCrossRefPubMedCentralGoogle Scholar
  62. Murry CE, Wiseman RW, Schwartz SM, Hauschka SD (1996) Skeletal myoblast transplantation for repair of myocardial necrosis. J Clin Invest 98(11):2512–2523.  https://doi.org/10.1172/JCI119070CrossRefPubMedPubMedCentralGoogle Scholar
  63. Nunes SS, Miklas JW, Liu J, Aschar-Sobbi R, Xiao Y, Zhang B, … Radisic M (2013) Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nat Methods 10(8):781–787.  https://doi.org/10.1038/nmeth.2524PubMedPubMedCentralCrossRefGoogle Scholar
  64. Nussbaum J, Minami E, Laflamme MA, Virag JA, Ware CB, Masino A, … Murry CE (2007) Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J 21(7): 1345–1357.  https://doi.org/10.1096/fj.06-6769comPubMedCrossRefPubMedCentralGoogle Scholar
  65. Oikonomopoulos A, Kitani T, Wu JC (2018) Pluripotent stem cell-derived cardiomyocytes as a platform for cell therapy applications: progress and hurdles for clinical translation. Mol Ther 26(7):1624–1634.  https://doi.org/10.1016/j.ymthe.2018.02.026CrossRefPubMedPubMedCentralGoogle Scholar
  66. Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, Taylor DA (2008) Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 14(2):213–221.  https://doi.org/10.1038/nm1684CrossRefPubMedPubMedCentralGoogle Scholar
  67. Patel AN, Henry TD, Quyyumi AA, Schaer GL, Anderson RD, Toma C, … ixCELL-DCM Investigators (2016). Ixmyelocel-T for patients with ischaemic heart failure: a prospective randomised double-blind trial. Lancet 387(10036):2412–2421.  https://doi.org/10.1016/S0140-6736(16)30137-4CrossRefGoogle Scholar
  68. Perin EC, Silva GV, Henry TD, Cabreira-Hansen MG, Moore WH, Coulter SA, … Willerson JT (2011) A randomized study of transendocardial injection of autologous bone marrow mononuclear cells and cell function analysis in ischemic heart failure (FOCUS-HF). Am Heart J 161(6):1078–1087.e1073.  https://doi.org/10.1016/j.ahj.2011.01.028CrossRefGoogle Scholar
  69. Perin EC, Willerson JT, Pepine CJ, Henry TD, Ellis SG, Zhao DX, … Cardiovascular Cell Therapy Research Network (CCTRN) (2012) Effect of transendocardial delivery of autologous bone marrow mononuclear cells on functional capacity, left ventricular function, and perfusion in chronic heart failure: the FOCUS-CCTRN trial. JAMA 307(16):1717–1726.  https://doi.org/10.1001/jama.2012.418
  70. Pomeroy JE, Helfer A, Bursac N (2019) Biomaterializing the promise of cardiac tissue engineering. Biotechnol Adv.  https://doi.org/10.1016/j.biotechadv.2019.02.009
  71. Povsic TJ, O’Connor CM, Henry T, Taussig A, Kereiakes DJ, Fortuin FD, … Sherman W (2011) A double-blind, randomized, controlled, multicenter study to assess the safety and cardiovascular effects of skeletal myoblast implantation by catheter delivery in patients with chronic heart failure after myocardial infarction. Am Heart J 162(4):654–662.e651.  https://doi.org/10.1016/j.ahj.2011.07.020PubMedCrossRefPubMedCentralGoogle Scholar
  72. Qiao H, Zhang H, Yamanaka S, Patel VV, Petrenko NB, Huang B, … Zhou R (2011) Long-term improvement in postinfarct left ventricular global and regional contractile function is mediated by embryonic stem cell-derived cardiomyocytes. Circ Cardiovasc Imaging 4(1):33–41.  https://doi.org/10.1161/CIRCIMAGING.110.957431Google Scholar
  73. Quyyumi AA, Vasquez A, Kereiakes DJ, Klapholz M, Schaer GL, Abdel-Latif A, … Losordo DW (2017) PreSERVE-AMI: a randomized, double-blind, placebo-controlled clinical trial of intracoronary Administration of Autologous CD34+ cells in patients with left ventricular dysfunction post STEMI. Circ Res 120(2):324–331.  https://doi.org/10.1161/CIRCRESAHA.115.308165PubMedCrossRefPubMedCentralGoogle Scholar
  74. Raval AN, Cook TD, Duckers HJ, Johnston PV, Traverse JH, Abraham WT, … Pepine CJ (2018) The CardiAMP heart failure trial: a randomized controlled pivotal trial of high-dose autologous bone marrow mononuclear cells using the CardiAMP cell therapy system in patients with post-myocardial infarction heart failure: trial rationale and study design. Am Heart J 201:141–148.  https://doi.org/10.1016/j.ahj.2018.03.016PubMedCrossRefPubMedCentralGoogle Scholar
  75. Reinecke H, MacDonald GH, Hauschka SD, Murry CE (2000) Electromechanical coupling between skeletal and cardiac muscle. Implications for infarct repair. J Cell Biol 149(3):731–740. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/10791985PubMedPubMedCentralCrossRefGoogle Scholar
  76. Reinecke H, Poppa V, Murry CE (2002) Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting. J Mol Cell Cardiol 34(2):241–249.  https://doi.org/10.1006/jmcc.2001.1507CrossRefPubMedPubMedCentralGoogle Scholar
  77. Riegler J, Tiburcy M, Ebert A, Tzatzalos E, Raaz U, Abilez OJ, … Wu JC (2015) Human engineered heart muscles engraft and survive long term in a rodent myocardial infarction model. Circ Res 117(8):720–730.  https://doi.org/10.1161/CIRCRESAHA.115.306985PubMedPubMedCentralCrossRefGoogle Scholar
  78. Rienks M, Papageorgiou AP, Frangogiannis NG, Heymans S (2014) Myocardial extracellular matrix: an ever-changing and diverse entity. Circ Res 114(5):872–888.  https://doi.org/10.1161/CIRCRESAHA.114.302533CrossRefPubMedPubMedCentralGoogle Scholar
  79. Ronaldson-Bouchard K, Ma SP, Yeager K, Chen T, Song L, Sirabella D, … Vunjak-Novakovic G (2018) Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature 556(7700):239–243.  https://doi.org/10.1038/s41586-018-0016-3PubMedPubMedCentralCrossRefGoogle Scholar
  80. Roncalli J, Mouquet F, Piot C, Trochu JN, Le Corvoisier P, Neuder Y, … Lemarchand P (2011) Intracoronary autologous mononucleated bone marrow cell infusion for acute myocardial infarction: results of the randomized multicenter BONAMI trial. Eur Heart J 32(14):1748–1757.  https://doi.org/10.1093/eurheartj/ehq455PubMedPubMedCentralCrossRefGoogle Scholar
  81. Sanchez PL, Fernandez-Santos ME, Costanza S, Climent AM, Moscoso I, Gonzalez-Nicolas MA, … Fernandez-Aviles F (2015) Acellular human heart matrix: a critical step toward whole heart grafts. Biomaterials 61:279–289.  https://doi.org/10.1016/j.biomaterials.2015.04.056PubMedCrossRefPubMedCentralGoogle Scholar
  82. Schachinger V, Erbs S, Elsasser A, Haberbosch W, Hambrecht R, Holschermann H, … REPAIR-AMI Investigators (2006) Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 355(12):1210–1221.  https://doi.org/10.1056/NEJMoa060186PubMedCrossRefPubMedCentralGoogle Scholar
  83. Schenke-Layland K, Rhodes KE, Angelis E, Butylkova Y, Heydarkhan-Hagvall S, Gekas C, … MacLellan WR (2008) Reprogrammed mouse fibroblasts differentiate into cells of the cardiovascular and hematopoietic lineages. Stem Cells 26(6):1537–1546.  https://doi.org/10.1634/stemcells.2008-0033PubMedPubMedCentralCrossRefGoogle Scholar
  84. Shadrin IY, Allen BW, Qian Y, Jackman CP, Carlson AL, Juhas ME, Bursac N (2017) Cardiopatch platform enables maturation and scale-up of human pluripotent stem cell-derived engineered heart tissues. Nat Commun 8(1):1825.  https://doi.org/10.1038/s41467-017-01946-xCrossRefPubMedPubMedCentralGoogle Scholar
  85. Shiba Y, Fernandes S, Zhu WZ, Filice D, Muskheli V, Kim J, … Laflamme MA (2012) Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature 489(7415):322–325.  https://doi.org/10.1038/nature11317PubMedPubMedCentralCrossRefGoogle Scholar
  86. Shiba Y, Filice D, Fernandes S, Minami E, Dupras SK, Biber BV, … Laflamme MA (2014) Electrical integration of human embryonic stem cell-derived cardiomyocytes in a Guinea pig chronic infarct model. J Cardiovasc Pharmacol Ther 19(4):368–381.  https://doi.org/10.1177/1074248413520344PubMedPubMedCentralCrossRefGoogle Scholar
  87. Shiba Y, Gomibuchi T, Seto T, Wada Y, Ichimura H, Tanaka Y, … Ikeda U (2016) Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature 538(7625):388–391.  https://doi.org/10.1038/nature19815PubMedCrossRefPubMedCentralGoogle Scholar
  88. Shimizu T, Sekine H, Yamato M, Okano T (2009) Cell sheet-based myocardial tissue engineering: new hope for damaged heart rescue. Curr Pharm Des 15(24):2807–2814. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/19689351PubMedCrossRefPubMedCentralGoogle Scholar
  89. Stevens KR, Murry CE (2018) Human pluripotent stem cell-derived engineered tissues: clinical considerations. Cell Stem Cell 22(3):294–297.  https://doi.org/10.1016/j.stem.2018.01.015CrossRefPubMedPubMedCentralGoogle Scholar
  90. Sürder D, Manka R, Moccetti T, Lo Cicero V, Emmert MY, Klersy C, … Corti R (2016) Effect of bone marrow-derived mononuclear cell treatment, early or late after acute myocardial infarction: twelve months CMR and long-term clinical results. Circ Res 119(3):481–490.  https://doi.org/10.1161/CIRCRESAHA.116.308639PubMedCrossRefPubMedCentralGoogle Scholar
  91. Swijnenburg RJ, Tanaka M, Vogel H, Baker J, Kofidis T, Gunawan F, … Robbins RC (2005) Embryonic stem cell immunogenicity increases upon differentiation after transplantation into ischemic myocardium. Circulation 112(9 Suppl):I166–172.  https://doi.org/10.1161/CIRCULATIONAHA.104.525824
  92. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872.  https://doi.org/10.1016/j.cell.2007.11.019CrossRefPubMedPubMedCentralGoogle Scholar
  93. Taylor DA, Silvestry SC, Bishop SP, Annex BH, Lilly RE, Glower DD, Kraus WE (1997) Delivery of primary autologous skeletal myoblasts into rabbit heart by coronary infusion: a potential approach to myocardial repair. Proc Assoc Am Physicians 109(3):245–253. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9154641PubMedPubMedCentralGoogle Scholar
  94. Taylor DA, Atkins BZ, Hungspreugs P, Jones TR, Reedy MC, Hutcheson KA, … Kraus WE (1998) Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat Med 4(8): 929–933. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/9701245PubMedCrossRefPubMedCentralGoogle Scholar
  95. Tendera M, Wojakowski W, Ruzyllo W, Chojnowska L, Kepka C, Tracz W, … REGENT Investigators (2009) Intracoronary infusion of bone marrow-derived selected CD34+CXCR4+ cells and non-selected mononuclear cells in patients with acute STEMI and reduced left ventricular ejection fraction: results of randomized, multicentre Myocardial Regeneration by Intracoronary Infusion of Selected Population of Stem Cells in Acute Myocardial Infarction (REGENT) Trial. Eur Heart J 30(11):1313–1321.  https://doi.org/10.1093/eurheartj/ehp073PubMedCrossRefPubMedCentralGoogle Scholar
  96. Thies RS, Murry CE (2015) The advancement of human pluripotent stem cell-derived therapies into the clinic. Development 142(18):3077–3084.  https://doi.org/10.1242/dev.126482CrossRefPubMedPubMedCentralGoogle Scholar
  97. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9804556PubMedCrossRefPubMedCentralGoogle Scholar
  98. Traverse JH, Henry TD, Ellis SG, Pepine CJ, Willerson JT, Zhao DX, … Cardiovascular Cell Therapy Research Network (CCTRN) (2011) Effect of intracoronary delivery of autologous bone marrow mononuclear cells 2 to 3 weeks following acute myocardial infarction on left ventricular function: the LateTIME randomized trial. JAMA 306(19):2110–2119.  https://doi.org/10.1001/jama.2011.1670PubMedPubMedCentralCrossRefGoogle Scholar
  99. Traverse JH, Henry TD, Pepine CJ, Willerson JT, Zhao DX, Ellis SG, … Cardiovascular Cell Therapy Research Network (CCTRN) (2012) Effect of the use and timing of bone marrow mononuclear cell delivery on left ventricular function after acute myocardial infarction: the TIME randomized trial. JAMA 308(22):2380–2389.  https://doi.org/10.1001/jama.2012.28726
  100. Traverse JH, Henry TD, Pepine CJ, Willerson JT, Chugh A, Yang PC, … Simari RD (2018) TIME trial: effect of timing of stem cell delivery following ST-elevation myocardial infarction on the recovery of global and regional left ventricular function: final 2-year analysis. Circ Res 122(3):479–488.  https://doi.org/10.1161/CIRCRESAHA.117.311466PubMedCrossRefPubMedCentralGoogle Scholar
  101. Vagnozzi R, Maillet M, Sargent M, Khalil H, Johansen AK, Schwanekamp J, … Molkentin JD (2018) An acute immune response underlies the benefit of cardiac adult stem cell therapy. bioRxiv. https://www.ncbi.nlm.nih.gov/pubmed/31775156
  102. van der Spoel TI, Jansen of Lorkeers SJ, Agostoni P, van Belle E, Gyongyosi M, Sluijter JP, … Chamuleau SA (2011) Human relevance of pre-clinical studies in stem cell therapy: systematic review and meta-analysis of large animal models of ischaemic heart disease. Cardiovasc Res 91(4):649–658.  https://doi.org/10.1093/cvr/cvr113PubMedCrossRefPubMedCentralGoogle Scholar
  103. Weinberger F, Breckwoldt K, Pecha S, Kelly A, Geertz B, Starbatty J, … Eschenhagen T (2016) Cardiac repair in Guinea pigs with human engineered heart tissue from induced pluripotent stem cells. Sci Transl Med 8(363):363ra148.  https://doi.org/10.1126/scitranslmed.aaf8781PubMedCrossRefPubMedCentralGoogle Scholar
  104. Wendel JS, Ye L, Tao R, Zhang J, Zhang J, Kamp TJ, Tranquillo RT (2015) Functional effects of a tissue-engineered cardiac patch from human induced pluripotent stem cell-derived cardiomyocytes in a rat infarct model. Stem Cells Transl Med 4(11):1324–1332.  https://doi.org/10.5966/sctm.2015-0044CrossRefPubMedPubMedCentralGoogle Scholar
  105. Wollert et al. (2004). Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15246726
  106. Wollert et al. (2017). Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28431003
  107. Yildirim Y, Naito H, Didie M, Karikkineth BC, Biermann D, Eschenhagen T, Zimmermann WH (2007) Development of a biological ventricular assist device: preliminary data from a small animal model. Circulation 116(11 Suppl):I16–I23.  https://doi.org/10.1161/CIRCULATIONAHA.106.679688CrossRefPubMedPubMedCentralGoogle Scholar
  108. Zhang J, Wilson GF, Soerens AG, Koonce CH, Yu J, Palecek SP, … Kamp TJ (2009) Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res 104(4):e30–e41.  https://doi.org/10.1161/CIRCRESAHA.108.192237
  109. Zhang D, Shadrin IY, Lam J, Xian HQ, Snodgrass HR, Bursac N (2013) Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes. Biomaterials 34(23):5813–5820.  https://doi.org/10.1016/j.biomaterials.2013.04.026CrossRefPubMedPubMedCentralGoogle Scholar
  110. Zhu K, Wu Q, Ni C, Zhang P, Zhong Z, Wu Y, … Wang J (2018) Lack of remuscularization following transplantation of human embryonic stem cell-derived cardiovascular progenitor cells in infarcted nonhuman primates. Circ Res.  https://doi.org/10.1161/CIRCRESAHA.117.311578PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute for Stem Cell and Regenerative MedicineUniversity of WashingtonSeattleUSA
  2. 2.Center for Cardiovascular BiologyUniversity of WashingtonSeattleUSA
  3. 3.Department of Medicine/CardiologyUniversity of WashingtonSeattleUSA

Personalised recommendations