History and Current Theories of the Vertebrate Head Segmentation

  • Shigeru KurataniEmail author
Living reference work entry


Investigation of vertebrate head segmentation provided the origin of the fields of comparative morphology and embryology and has offered basic concepts that remain important for evolutionary developmental biology, or “evo-devo.” This line of inquiry started as the vertebral theory of the skull, followed by the comparative embryological search for somite-like segments in the head mesoderm. Vertebrate-specific neuromeres were also investigated in pursuit of an integrated segmented body plan scheme, but to date no satisfactory scheme has been obtained. More recently, experimental embryological and molecular developmental biology techniques have been applied but the question of head segmentation has not been fully resolved. In a wider evolutionary context, questions on the origin and organization of the vertebrate head should be treated as part of the evolution of the coelomic mesoderm. Current evo-devo studies suggest that enterocoels have their origin in the gut pouch, which could explain the origin of the mesodermal compartments in bilaterians, including vertebrates.


Vertebrates Head segmentation Development Mesoderm 


  1. Adachi N, Kuratani S (2012) Development of head and trunk mesoderm in a dogfish, Scyliorhinus torazame. I. Embryology and morphology of the head cavities and related structures. Evol Dev 14:234–256CrossRefGoogle Scholar
  2. Adachi N, Takechi M, Hirai T, Kuratani S (2012) Development of the head and trunk mesoderm in the dogfish, Scyliorhinus torazame. II. Comparison of gene expressions between the head mesoderm and somites with reference to the origin of the vertebrate head. Evol Dev 14:257–276CrossRefGoogle Scholar
  3. Arendt D (2018) Hox genes and body segmentation. Science 361:1310–1311CrossRefGoogle Scholar
  4. Balfour FM (1878) The development of the elasmobranchial fishes. J Anat Physiol 11:405–706Google Scholar
  5. Bergquist HB, Källen B (1954) Notes on the early histogenesis and morphogenesis of the central nervous system in vertebrates. J Comp Neurol 100:627–660CrossRefGoogle Scholar
  6. Carus CG (1828) Von den Ur-Theilen des Knochen- und Schalengerrüstes. G. Fleischer, LeipzigGoogle Scholar
  7. Couly GF, Colty PM, Le Douarin NM (1992) The developmental fate of the cephalic mesoderm in quail-chick chimeras. Development 114:1–15PubMedGoogle Scholar
  8. Couly GF, Coltey PM, Le Douarin NM (1993) The triple origin of the skull in higher vertebrates: a study in quail-chick chimeras. Development 117:409–429PubMedGoogle Scholar
  9. Couso JP (2009) Segmentation, metamerism and the Cambrian explosion. Int J Dev Biol 53:8–10CrossRefGoogle Scholar
  10. Darwin C (1959) The Origin of Species by Means of Natural Selection. John Murray, LondonGoogle Scholar
  11. De Beer GR (1937) The Development of the Vertebrate Skull. Oxford Univ. PressGoogle Scholar
  12. Evans DJ, Noden DM (2006) Spatial relations between avian craniofacial neural crest and paraxial mesoderm cells. Dev Dyn 235:1310–1325CrossRefGoogle Scholar
  13. Figdor MC, Stern CD (1993) Segmental organization of embryonic diencephalon. Nature 363:630–634CrossRefGoogle Scholar
  14. Fraser S, Keynes R, Lumsden A (1990) Segmentation in the chick embryo hindbrain is defined by cell lineage restriction. Nature 344:431–435CrossRefGoogle Scholar
  15. Gegenbaur C (1887) Die Metamerie des Kopfes und die Wirbeltheorie des Kopfskelets. Morphol Jb 13:1–114Google Scholar
  16. Goodrich ES (1930) Studies on the structure and development of vertebrates. McMillan, LondonCrossRefGoogle Scholar
  17. Hejnol A, Martindale MQ (2008) Acoel development indicates the independent evolution of the bilaterian mouth and anus. Nature 456:382–386CrossRefGoogle Scholar
  18. Hill C (1900) Developmental history of primary segments of the vertebrate head. Zool Jahrb Abt Anat Ontog Tiere 13:393–446Google Scholar
  19. Holland LZ, Holland ND, Gilland E (2008) Amphioxus and the evolution of head segmentation. Integr Comp Biol 48:630–646CrossRefGoogle Scholar
  20. Horder TJ, Presley R, Slipka J (2010) The head problem. The organizational significance of segmentation in head development. Acta Univ Carol Med Monogr 158:1–165PubMedGoogle Scholar
  21. Hunt P, Krumlauf R (1991) Deciphering the Hox code: clues to patterning branchial regions of the head. Cell 66:1075–1078CrossRefGoogle Scholar
  22. Huxley TH (1858) The Croonian lecture: on the theory of the vertebrate skull. Proc Zool Soc London 9:381–457Google Scholar
  23. Jacobson AG (1988) Somitomeres: mesodermal segments of vertebrate embryos. Development 104(suppl):209–220PubMedGoogle Scholar
  24. Johnston JB (1905) The morphology of the vertebrate head from the viewpoint of the functional division of the nervous system. J Comp Neurol 15:175–275Google Scholar
  25. Kuratani S (2008) Is the vertebrate head segmented? – evolutionary and developmental considerations. Integr Comp Biol 48:647–657CrossRefGoogle Scholar
  26. Kuratani S, Adachi N (2016) What are head cavities? – history of studies on the vertebrate head segmentation. Zool Sci 33:213–228CrossRefGoogle Scholar
  27. Lim TM, Jaques KF, Stern CD, Keynes RJ (1991) An evaluation of myelomeres and segmentation of the chick embryo spinal cord. Development 113:227–238PubMedGoogle Scholar
  28. Locy WA (1895) Contributions to the structure and development of the vertebrate head. J Morphol 11:497–594CrossRefGoogle Scholar
  29. Lumsden A, Keynes R (1989) Segmental patterns of neuronal development in the chick hindbrain. Nature 337:424–428CrossRefGoogle Scholar
  30. Murakami Y, Pasqualetti M, Takio Y, Hirano S, Rijli F, Kuratani S (2004) Segmental development of reticulospinal and branchiomotor neurons in the lamprey: insights into evolution of the vertebrate hindbrain. Development 131:983–995CrossRefGoogle Scholar
  31. Neal HV, Rand HW (1946) Comparative anatomy. Blakiston, PhiladelphiaGoogle Scholar
  32. Noden DM (1988) Interactions and fates of avian craniofacial mesenchyme. Development 103(Suppl):121–140PubMedGoogle Scholar
  33. Noden DM, Schneider RA (2006) Neural crest cells and the community of plan for craniofacial development: historical debates and current perspectives. In: Saint-Jeannet J-P (ed) Neural crest induction and differentiation. Landes Bioscience, Georgetown, pp 1–23Google Scholar
  34. Northcutt RG, Gans C (1983) The genesis of neural crest and epidermal placodes: a reinterpretation of vertebrate origins. Q Rev Biol 58:1–28CrossRefGoogle Scholar
  35. Owen R (1866) On the anatomy of vertebrates, vol 1. Longmans, Green & Co, LondonCrossRefGoogle Scholar
  36. Platt JB (1891) A contribution to the morphology of the vertebrate head, based on a study of Acanthias vulgaris. J. Morphol 5:79–106CrossRefGoogle Scholar
  37. Puelles L, Rubenstein JLR (1993) Expression patterns of homeobox and other putative regulatory genes in the embryonic mouse forebrain suggest a neuromeric organization. Trends Neurosci 16:472–479CrossRefGoogle Scholar
  38. Sewertzoff AN (1895) Die Entwicklung der occipital Region der niederen Vertebraten im Zusammenhang mit der Frage über die Metamerie des Kopfes. Bull Soc imp Nat Moscou, Annee 1895:186–284Google Scholar
  39. Starck D (1979) Vergleichende Anatomie der Wirbeltiere auf evolutionsbiologischer Grundlage. 2. Das Skeletsystem; Allgemeines, Skeletsubstanzen, Skelet der Wirbeltiere einschliesslich Locomotionstypen. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  40. Tosches MA, Arendt D (2013) The bilaterian forebrain: an evolutionary chimaera. Curr Opin Neurobiol 23:1080–1089CrossRefGoogle Scholar
  41. Trainor P, Krumlauf R (2000) Plasticity in mouse neural crest cells reveals a new patterning role for cranial mesoderm. Nat Cell Biol 2:96–102CrossRefGoogle Scholar
  42. van Wijhe JW (1882) Über die Mesodermsegmente und die Entwicklung der Nerven des Selachierkopfes. Ver Akad Wiss Amsterdam, Groningen, pp 1–50Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratory for Evolutionary MorphologyRIKEN Center for Biosystems Dynamics Research (BDR)KobeJapan
  2. 2.Evolutionary Morphology LaboratoryRIKEN Cluster for Pioneering Research (CPR)KobeJapan

Section editors and affiliations

  • Shigeru Kuratani
    • 1
  1. 1.Evolutionary Morphology LaboratoryRIKENKobeJapan

Personalised recommendations