The Developmental Hourglass in the Evolution of Embryogenesis

  • Andrew G. CridgeEmail author
  • Peter K. Dearden
  • Lynette R. Brownfield
Living reference work entry


Embryogenesis is the process of transformation of a single fertilized egg into a differentiated, complex organism. This requires coordinated cleavage of the fertilized egg, followed by patterning and cell-fate specification, to establish the adult body plan. Based on morphological studies and, more recently, comparative gene expression analyses, the evolution of embryogenesis in animals, and to some degree in plants, has been proposed to follow a developmental hourglass model. In this model, less conserved early events are followed by a highly conserved phylotypic stage at the narrow waist of the hourglass where species within a phylum have similar morphologies and gene expression patterns. Variation in later stages of embryogenesis then follows, providing the diversity of morphologies found in adult forms. As the phylotypic stage is the most conserved, it implies there may be greater evolutionary constrains during mid-embryogenesis compared with the less conserved early and late stages. These constraints may relate to morphological events, and/or the underlying gene regulatory networks, at the different stages of embryogenesis, as well as the requirement for embryogenesis to produce viable offspring adapted to environmental variation.


Embryogenesis Developmental hourglass Phylotypic stage Comparative gene expression Evolutionary constrains Regulatory networks 


  1. von Baer KE. (1828) Über Entwickelungsgeschichte der Thiere: Beobachtung und Reflexion. Gebrüdern Bornträger, KönigsbergGoogle Scholar
  2. Bininda-Emonds ORP, Jeffery JE, Richardson MK (2003) Inverting the hourglass: quantitative evidence against the phylotypic stage in vertebrate development. Proc R Soc Lond Ser B Biol Sci 270(1513):341–346CrossRefGoogle Scholar
  3. Comte A, Roux J, Robinson-Rechavi M (2010) Molecular signaling in zebrafish development and the vertebrate phylotypic period. Evol Dev 12(2):144–156CrossRefGoogle Scholar
  4. Dearden PK, Wilson MJ, Sablan L, Osborne PW, Havler M, McNaughton E, Kimura K, Milshina NV, Hasselmann M, Gempe T, Schioett M, Brown SJ, Elsik CG, Holland PWH, Kadowaki T, Beye M (2006) Patterns of conservation and change in honey bee developmental genes. Genome Res 16(11):1376–1384CrossRefGoogle Scholar
  5. Domazet-Loso T, Tautz D (2010) A phylogenetically based transcriptome age index mirrors ontogenetic divergence patterns. Nature 468(7325):815–818CrossRefGoogle Scholar
  6. Drost H-G, Gabel A, Grosse I, Quint M (2015) Evidence for active maintenance of phylotranscriptomic hourglass patterns in animal and plant embryogenesis. Mol Biol Evol 32(5):1221–1231CrossRefGoogle Scholar
  7. Duboule D (1994) Temporal colinearity and the phylotypic progression: a basis for the stability of a vertebrate Bauplan and the evolution of morphologies through heterochrony. Development 1994(Suppl):135–142Google Scholar
  8. Elinson RP (1987) Change in developmental patterns: embryos of amphibians with large eggs. In: Raff RA, Raff EC (eds) Development as an evolutionary process. Alan R. Liss, New York, pp 1–21Google Scholar
  9. Emerald BS, Roy JK (1997) Homeotic transformation in Drosophila. Nature 389:684CrossRefGoogle Scholar
  10. Finklstein R, Perrimon N (1990) The orthodenticle gene is regulated by bicoid and torso and specifies Drosophila head development. Nature 346:485–488CrossRefGoogle Scholar
  11. Galis F, Metz JA (2001) Testing the vulnerability of the phylotypic stage: on modularity and evolutionary conservation. J Exp Zool 291(2):195–204CrossRefGoogle Scholar
  12. Garcia-Fernàndez J (2004) Hox, ParaHox, ProtoHox: facts and guesses. Heredity 94:145–152CrossRefGoogle Scholar
  13. Gilbert SF (2006) Developmental biology, 8th edn. Sinauer Associates, SunderlandGoogle Scholar
  14. Hall BK (1997) Phylotypic stage or phantom: is there a highly conserved embryonic stage in vertebrates? Trends Ecol Evol 12(12):461–463CrossRefGoogle Scholar
  15. Holland PWH (2012) Evolution of homeobox genes. Wiley Interdiscip Rev Dev Biol 2(1):31–45CrossRefGoogle Scholar
  16. Irie N, Kuratani S (2011) Comparative transcriptome analysis reveals vertebrate phylotypic period during organogenesis. Nat Commun 2:248CrossRefGoogle Scholar
  17. Irie N, Sehara-Fujisawa A (2007) The vertebrate phylotypic stage and an early bilaterian-related stage in mouse embryogenesis defined by genomic information. BMC Biol 5(1):1CrossRefGoogle Scholar
  18. Kalinka AT, Varga KM, Gerrard DT, Preibisch S, Corcoran DL, Jarrells J, Ohler U, Bergman CM, Tomancak P (2010) Gene expression divergence recapitulates the developmental hourglass model. Nature 468:811–814CrossRefGoogle Scholar
  19. Levin M, Hashimshony T, Wagner F, Yanai I (2012) Developmental milestones punctuate gene expression in the Caenorhabditis embryo. Dev Cell 22(5):1101–1108CrossRefGoogle Scholar
  20. Lewis EB (1978) A gene complex controlling segmentation in Drosophila. Nature 276(5688):565–570CrossRefGoogle Scholar
  21. Meckel JF (1811) Beyträge zur vergleichenden Anatomie. Carl Heinrich Reclam, LeipzigGoogle Scholar
  22. Peter IS, Davidson EH (2011) Evolution of gene regulatory networks controlling body plan development. Cell 144(6):970–985CrossRefGoogle Scholar
  23. Quint M, Drost H-G, Gabel A, Ullrich KK, Bönn M, Grosse I (2012) A transcriptomic hourglass in plant embryogenesis. Nature 490:98–101CrossRefGoogle Scholar
  24. Raff RA (1996) The shape of life: genes, development and the evolution of animal form. University of Chicago Press, ChicagoGoogle Scholar
  25. Richardson MK (1995) Heterochrony and the phylotypic period. Dev Biol 172(2):412–421CrossRefGoogle Scholar
  26. Richardson MK, Hanken J, Gooneratne ML, Pieau C, Raynaud A, Selwood L, Wright GM (1997) There is no highly conserved embryonic stage in the vertebrates: implications for current theories of evolution and development. Anat Embryol 196(2):91–106CrossRefGoogle Scholar
  27. Roux J, Robinson-Rechavi M (2008) Developmental constraints on vertebrate genome evolution. PLoS Genet 4(12):e1000311CrossRefGoogle Scholar
  28. Sander K (1983) The evolution of patterning mechanisms: gleanings from insect embryogenesis and spermatogenesis. In: Goodwin BC, Holder N, Wylie CC. (eds) Development and evolution: the sixth symposium of the British Society for Developmental Biology. Cambridge University Press, CambridgeGoogle Scholar
  29. Santos ME, Le Bouquin A, Crumière AJJ, Khila A (2017) Taxon-restricted genes at the origin of a novel trait allowing access to a new environment. Science 358(6361):386–390CrossRefGoogle Scholar
  30. Serres, ERA (1842) Précis d’anatomie transcendante appliquée á la physiologie. Charles Gosselin, ParisGoogle Scholar
  31. Schep AN, Adryan B (2013) A comparative analysis of transcription factor expression during metazoan embryonic development. PLoS One 8(6):e66826CrossRefGoogle Scholar
  32. Seidel F (1960) Körpergrundgestalt und Keimstruktur. Eine Erörterung über die Grundlagen der vergleichenden und experimentellen Embryologie und deren Gültigkeit bei phylogenetischen Berlegungen. Zool Anz 164:245–305Google Scholar
  33. Small KM, Potter SS (1993) Homeotic transformations and limb defects in Hox A11 mutant mice. Genes Dev 7:2318–2328CrossRefGoogle Scholar
  34. Smith JM, Burian R, Kauffman S, Alberch P, Campbell J, Goodwin B, Lande R, Raup D, Wolpert L (1985) Developmental constraints and evolution: a perspective from the Mountain Lake conference on development and evolution. Q Rev Biol 60(3):265–287CrossRefGoogle Scholar
  35. Wilson MJ, Dearden PK (2011) Diversity in insect axis formation: two orthodenticle genes and hunchback act in anterior patterning and influence dorsoventral organization in the honeybee (Apis mellifera). Development 138(16):3497–3507CrossRefGoogle Scholar
  36. Yanai I, Peshkin L, Jorgensen P, Kirschner MW (2011) Mapping gene expression in two Xenopus species: evolutionary constraints and developmental flexibility. Dev Cell 20(4):483–496CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Andrew G. Cridge
    • 1
    Email author
  • Peter K. Dearden
    • 1
  • Lynette R. Brownfield
    • 2
  1. 1.Laboratory for Evolution and Development, Genetics Otago and Department of BiochemistryUniversity of OtagoDunedinNew Zealand
  2. 2.Department of BiochemistryUniversity of OtagoDunedinNew Zealand

Section editors and affiliations

  • Gerd B. Müller
    • 1
    • 2
  1. 1.The KLI InstituteKlosterneuburgAustria
  2. 2.University of ViennaViennaAustria

Personalised recommendations