Advertisement

Evo-Devo Lessons Learned from Honeybees

Living reference work entry

Abstract

Honeybees (Apis mellifera) are hymenopteran insects of importance both economically and scientifically. Honeybees share much of the basic biology of well-studied insect models, such as Drosophila and Tribolium, but their sex determination and embryogenesis differ in important ways, which provide some understanding of the way early-acting developmental pathways evolve. Honeybees also display remarkable polyphenisms, critical to their biology. Understanding how these environmentally induced shifts in developmental trajectory occur is critical to our understanding of the evolution of environmental influences on developmental processes.

Keywords

Evolution and development Honeybee Caste development Polyphenisms 

References

  1. Amdam GV, Norberg K, Hagen A, Omholt SW (2003a) Social exploitation of vitellogenin. Proc Natl Acad Sci U S A 100(4):1799–1802CrossRefGoogle Scholar
  2. Amdam GV, Simões ZL, Guidugli KR, Norberg K, Omholt SW (2003b) Disruption of vitellogenin gene function in adult honeybees by intra-abdominal injection of double-stranded RNA. BMC Biotechnol 3(1):1CrossRefGoogle Scholar
  3. Beye M, Hartel S, Hagen A, Hasselmann M, Omholt SW (2002) Specific developmental gene silencing in the honey bee using a homeobox motif. Insect Mol Biol 11(6):527–532CrossRefGoogle Scholar
  4. Beye M, Hasselmann M, Fondrk MK, Page RE, Omholt SW (2003) The gene csd is the primary signal for sexual development in the honeybee and encodes an SR-type protein. Cell 114(4):419–429CrossRefGoogle Scholar
  5. Buttstedt A, Ihling CH, Pietzsch M, Moritz RF (2016) Royalactin is not a royal making of a queen. Nature 537(7621):E10–E12CrossRefGoogle Scholar
  6. Cameron R, Duncan E, Dearden P (2013) Biased gene expression in early honeybee larval development. BMC Genomics 14(1):903CrossRefGoogle Scholar
  7. Cridge A, Lovegrove M, Skelly J, Taylor S, Petersen G, Cameron R, Dearden P (2017) The honeybee as a model insect for developmental genetics. Genesis 55(5):e23019CrossRefGoogle Scholar
  8. de Azevedo SV, Hartfelder K (2008) The insulin signaling pathway in honey bee (Apis mellifera) caste development—differential expression of insulin-like peptides and insulin receptors in queen and worker larvae. J Insect Physiol 54(6):1064–1071CrossRefGoogle Scholar
  9. Dearden PK (2006) Germ cell development in the honeybee; vasa and nanos expression. BMC Dev Biol 6(6):1–14Google Scholar
  10. Dearden PK, Wilson MJ, Sablan L, Osborne PW, Havler M, McNaughton E, Kimura K, Milshina NV, Hasselmann M, Gemp T, Schioett M, Brown SJ, Elsik CG, Holland PW, Kadowaki T, Beye M (2006) Patterns of conservation and change in honey bee developmental genes. Genome Res 16:1376–1384CrossRefGoogle Scholar
  11. Duncan EJ, Benton MA, Dearden PK (2013) Canonical terminal patterning is an evolutionary novelty. Dev Biol.  https://doi.org/10.1016/j.ydbio.2013.02.010
  12. Duncan EJ, Johnson TK, Whisstock JC, Warr CG, Dearden PK (2014) Capturing embryonic development from metamorphosis: how did the terminal patterning signalling pathway of Drosophila evolve? Curr Opin Insect Sci 1:45–51CrossRefGoogle Scholar
  13. Duncan EJ, Hyink O, Dearden PK (2016) Notch signalling mediates reproductive constraint in the adult worker honeybee. Nat Commun 7:12427CrossRefGoogle Scholar
  14. Elsik CG, Worley KC, Bennett AK, Beye M, Camara F, Childers CP, de Graaf DC, Debyser G, Deng J, Devreese B (2014) Finding the missing honey bee genes: lessons learned from a genome upgrade. BMC Genomics 15(1):86CrossRefGoogle Scholar
  15. Fleig R (1990) Engrailed expression and body segmentation in the honeybee, Apis mellifera. Rouxs Arch Dev Biol 198:467–473CrossRefGoogle Scholar
  16. Fleig R, Sander K (1986) Embryogenesis of the honeybee Apis mellifera L. (Hymenoptera: Apidae): an SEM study. Int J Insect Morphol Embryol 15(5):449–462CrossRefGoogle Scholar
  17. Gallai N, Salles JM, Settele J, Vaissiere BE (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econ 68(3):810–821CrossRefGoogle Scholar
  18. Gempe T, Beye M (2011) Function and evolution of sex determination mechanisms, genes and pathways in insects. BioEssays 33(1):52–60.  https://doi.org/10.1002/bies.201000043CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gempe T, Hasselmann M, Schiøtt M, Hause G, Otte M, Beye M (2009) Sex determination in honeybees: two separate mechanisms induce and maintain the female pathway. PLoS Biol 7(10):e1000222CrossRefGoogle Scholar
  20. Guo X, Su S, Skogerboe G, Dai S, Li W, Li Z, Liu F, Ni R, Guo Y, Chen S (2013) Recipe for a busy bee: microRNAs in honey bee caste determination. PLoS One 8(12):e81661CrossRefGoogle Scholar
  21. Hasselmann M, Gempe T, Schiott M, Nunes-Silva CG, Otte M, Beye M (2008) Evidence for the evolutionary nascence of a novel sex determination pathway in honeybees. Nature 454(7203):519–522.  https://doi.org/10.1038/nature07052CrossRefPubMedGoogle Scholar
  22. Hedges SB, Marin J, Suleski M, Paymer M, Kumar S (2015) Tree of life reveals clock-like speciation and diversification. Mol Biol Evol 32(4):835–845.  https://doi.org/10.1093/molbev/msv037CrossRefPubMedPubMedCentralGoogle Scholar
  23. Heimpel GE, de Boer JG (2008) Sex determination in the Hymenoptera. Annu Rev Entomol 53:209–230CrossRefGoogle Scholar
  24. Kamakura M (2011) Royalactin induces queen differentiation in honeybees. Nature 473(7348):478–483CrossRefGoogle Scholar
  25. Kamakura M (2016) Royalactin is not a royal making of a queen Reply. Nature 537(7621):E13–E13CrossRefGoogle Scholar
  26. Kohno H, Suenami S, Takeuchi H, Sasaki T, Kubo T (2016) Production of knockout mutants by CRISPR/Cas9 in the European honeybee, Apis mellifera L. Zool Sci 33(5):505–512CrossRefGoogle Scholar
  27. Kritsky G (2017) Beekeeping from antiquity through the middle ages. Annu Rev Entomol 62:249–264CrossRefGoogle Scholar
  28. Kucharski R, Maleszka J, Foret S, Maleszka R (2008) Nutritional control of reproductive status in honeybees via DNA methylation. Science 319(5871):1827–1830CrossRefGoogle Scholar
  29. Kucharski R, Foret S, Maleszka R (2015) EGFR gene methylation is not involved in Royalactin controlled phenotypic polymorphism in honey bees. Sci Rep 5:14070CrossRefGoogle Scholar
  30. Lynch JA, Brent AE, Leaf DS, Pultz MA, Desplan C (2006) Localized maternal orthodenticle patterns anterior and posterior in the long germ wasp Nasonia. Nature 439(7077):728–732CrossRefGoogle Scholar
  31. Meixner MD, Le Conte Y (2016) A current perspective on honey bee health. Apidologie 47(3):273–275CrossRefGoogle Scholar
  32. Munoz-Torres MC, Reese JT, Childers CP, Bennett AK, Sundaram JP, Childs KL, Anzola JM, Milshina N, Elsik CG (2010) Hymenoptera genome database: integrated community resources for insect species of the order Hymenoptera. Nucleic Acids Res 39(suppl_1):D658–D662PubMedPubMedCentralGoogle Scholar
  33. Mutti NS, Dolezal AG, Wolschin F, Mutti JS, Gill KS, Amdam GV (2011) IRS and TOR nutrient-signaling pathways act via juvenile hormone to influence honey bee caste fate. J Exp Biol 214(23):3977–3984CrossRefGoogle Scholar
  34. Nelson CM, Ihle KE, Fondrk MK, Page RE, Amdam GV (2007) The gene vitellogenin has multiple coordinating effects on social organization. PLoS Biol 5(3):e62CrossRefGoogle Scholar
  35. Nissen I, Müller M, Beye M (2012) The Am-tra2 gene is an essential regulator of female splice regulation at two levels of the sex determination hierarchy of the honeybee. Genetics 192(3):1015–1026CrossRefGoogle Scholar
  36. Olesnicky EC, Desplan C (2007) Distinct mechanisms for mRNA localization during embryonic axis specification in the wasp Nasonia. Dev Biol 306(1):134–142CrossRefGoogle Scholar
  37. Oxley PR, Thompson GJ, Oldroyd BP (2008) Four quantitative trait loci that influence worker sterility in the honeybee (Apis mellifera). Genetics 179(3):1337–1343CrossRefGoogle Scholar
  38. Ronai I, Barton DA, Oldroyd BP, Vergoz V (2015) Regulation of oogenesis in honey bee workers via programed cell death. J Insect Physiol 81:36–41CrossRefGoogle Scholar
  39. Sander K (1976) Specification of the basic body pattern in insect embryogenesis. Adv Insect Physiol 12:125–238CrossRefGoogle Scholar
  40. Schulte C, Theilenberg E, Müller-Borg M, Gempe T, Beye M (2014) Highly efficient integration and expression of piggyBac-derived cassettes in the honeybee (Apis mellifera). Proc Natl Acad Sci 111(24):9003–9008CrossRefGoogle Scholar
  41. Spannhoff A, Kim YK, Raynal NJM, Gharibyan V, Su MB, Zhou YY, Li J, Castellano S, Sbardella G, Issa JPJ (2011) Histone deacetylase inhibitor activity in royal jelly might facilitate caste switching in bees. EMBO Rep 12(3):238–243CrossRefGoogle Scholar
  42. Tautz J (2008) The buzz about bees: biology of a superorganism. Springer Science & Business Media. Berlin, HeidelbergGoogle Scholar
  43. The Honey Bee Genome Sequencing Consortium (2006) Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443:931–949CrossRefGoogle Scholar
  44. Walldorf U, Fleig R, Gehring WJ (1989) Comparison of homeobox-containing genes of the honeybee and Drosophila. Proc Natl Acad Sci U S A 86(24):9971–9975CrossRefGoogle Scholar
  45. Wang Y, Jorda M, Jones L, Maleszka R, Ling X, Robertson HM, Mizzen CA, Peinado MA, Robinson GE (2006) Functional CpG methlyation system in a social insect. Science 314:645–647CrossRefGoogle Scholar
  46. Wilson MJ, Dearden PK (2009) Tailless patterning functions are conserved in the honeybee even in the absence of Torso signaling. Dev Biol 335(1):276–287.  https://doi.org/10.1016/j.ydbio.2009.09.002. S0012-1606(09)01174-9 [pii]CrossRefPubMedGoogle Scholar
  47. Wilson MJ, Dearden PK (2011) Diversity in insect axis formation: two orthodenticle genes and hunchback act in anterior patterning and influence dorsoventral organization in the honeybee (Apis mellifera). Development 138(16):3497–3507CrossRefGoogle Scholar
  48. Wilson MJ, Dearden PK (2012) Pair-rule gene orthologues have unexpected maternal roles in the honeybee (Apis mellifera). PLoS One 7(9):e46490CrossRefGoogle Scholar
  49. Wilson MJ, Havler M, Dearden PK (2009) Giant, Kruppel, and caudal act as gap genes with extensive roles in patterning the honeybee embryo. Dev Biol 339(1):200–211CrossRefGoogle Scholar
  50. Zhu K, Liu M, Fu Z, Zhou Z, Kong Y, Liang H, Lin Z, Luo J, Zheng H, Wan P (2017) Plant microRNAs in larval food regulate honeybee caste development. PLoS Genet 13(8):e1006946CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Genomics Aotearoa and Biochemistry DepartmentUniversity of OtagoDunedinNew Zealand

Section editors and affiliations

  • Ehab Abouheif
    • 1
  1. 1.Mc Gill UniversityMontrealCanada

Personalised recommendations