Lumbar Interbody Fusion Devices and Approaches: When to Use What

  • Laurence McEnteeEmail author
  • Mario G. Zotti
Living reference work entry


Lumbar interbody fusion is an established surgical technique for a variety of conditions affecting the lumbar spine. A large number of interbody fusion devices made of differing materials are now available for use. Approaches for interbody fusion include anterior lumbar interbody fusion, oblique lumbar interbody fusion, lateral lumbar interbody fusion, axial lumbar interbody fusion, transforaminal lumbar interbody fusion, and posterior lumbar interbody fusion. This chapter discusses the biomechanics of lumbar interbody fusion devices and approaches and the clinical rationale and the clinical results of each approach. The advantages and disadvantages of each approach are compared and contrasted. The importance of an appropriate preoperative assessment to determine the best approach for interbody fusion is emphasized, taking into account the condition being treated, sagittal balance, bone quality, and contraindications to a specific approach. The best approach to lumbar interbody fusion by indication and surgical level(s) is discussed.


Lumbar interbody fusion ALIF OLIF LLIF AxiaLIF TLIF PLIF Sagittal balance 


  1. Ahmadian A, Verma S, Mundis G et al (2013) Minimally invasive lateral retroperitoneal transpsoas interbody fusion for L4-5 spondylolisthesis: clinical outcomes. J Neurosurg Spine 19:314–320CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ahmadian A, Bach K, Bolinger B et al (2015) Stand-alone minimally invasive lateral lumbar interbody fusion: multicenter clinical outcomes. J Clin Neurosci 22: 740–746CrossRefPubMedPubMedCentralGoogle Scholar
  3. Akesen B, Wu C, Mehbod A, Transfeldt E (2008) Biomechanical evaluation of paracoccygeal transsacral fixation. J Spinal Disord Tech 21:39–44CrossRefPubMedPubMedCentralGoogle Scholar
  4. Allain J, Delecrin J, Beaurain J et al (2014) Stand-alone ALIF with integrated intracorporeal anchoring plates in the treatment of degenerative lumbar disc disease: a prospective study of 65 cases. Eur Spine J 23: 2136–2143CrossRefPubMedPubMedCentralGoogle Scholar
  5. Ames C, Acosta F, Chi J et al (2005) Biomechanical comparison of posterior lumbar interbody fusion and transforaminal lumbar interbody fusion performed at 1 and 2 levels. Spine 30:E562–E566CrossRefPubMedPubMedCentralGoogle Scholar
  6. Anand N, Baron E, Khandehroo B, Kahwaty S (2013) Long-term 2- to 5-year clinical and functional outcomes of minimally invasive surgery for adult scoliosis. Spine 38:1566–1575CrossRefPubMedPubMedCentralGoogle Scholar
  7. Anderson D, Sayadipour A, Shelby K et al (2011) Anterior interbody arthrodesis with percutaneous posteror pedicle fixation for degenerative conditions of the lumbar spine. Eur Spine J 20:1323–1330CrossRefPubMedPubMedCentralGoogle Scholar
  8. Arnold P, Anderson K, McGuire R (2012) The lateral transpsoas approach to the lumbar and thoracic spine: a review. Surg Neurol Int 3:S198–S215CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bagby G (1988) Arthrodesis by the distraction-compression method using a stainless steel implant. Orthopaedics 11:931–934Google Scholar
  10. Barnes B, Rodts G, Mclaughlin M, Haid R (2001) Threaded cortical bone dowels for lumbar interbody fusion: over 1-year mean follow-up in 28 patients. J Neurosurg Spine 95:1–4CrossRefGoogle Scholar
  11. Barnes B, Rodts G, Haid R et al (2002) Allograft implants for posterior lumbar interbody fusion: results comparing cylindrical dowels and impacted wedges. Neurosurgery 51:1191–1198CrossRefPubMedPubMedCentralGoogle Scholar
  12. Beaubien B, Derincek A, Lew W et al (2005) In vitro, biomechanical comparison of an anterior lumbar interbody fusion with an anteriorly placed, low-profile lumbar plate and posteriorly placed pedicle screws or translaminar screws. Spine 30:1846–1851CrossRefPubMedPubMedCentralGoogle Scholar
  13. Berjano P, Cecchinato R, Sinigaglia A et al (2015) Anterior column realignment from a lateral approach for the treatment of severe sagittal imbalance: a retrospective radiographic study. Eur Spine J 24(3):433–438CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bevevino A, Kang D, Lehman R et al (2014) Systematic review and meta-analysis of minimally invasive transforaminal lumbar interbody fusion rates performed without posterolateral fusion. J Clin Neurosci 21: 1686–1690CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bohinski R, Jain V, Tobler W (2010) Presacral retroperitoneal approach to axial lumbar interbody fusion: a new, minimally invasive technique at L5-S1: clinical outcomes, complications, and fusion rates in 50 patients at 1-year follow-up. SAS J 4:54–62CrossRefPubMedPubMedCentralGoogle Scholar
  16. Bradley D, Hisey M, Verma-Kurvari S, Ohnmeiss D (2012) Minimally invasive trans-sacral approach to L5-S1 interbody fusion: preliminary results from 1 center and review of the literature. Int J Spine Surg 6:110–114CrossRefPubMedPubMedCentralGoogle Scholar
  17. Brodke D, Dick J, Kunz D et al (1997) Posterior lumbar interbody fusion. A biomechanical comparison, including a new threaded cage. Spine 22:26–31CrossRefPubMedPubMedCentralGoogle Scholar
  18. Burkus J, Heim S, Gornet M, Zdeblick T (2003) Is INFUSE bone graft superior to autograft bone? An integrated analysis of clinical trials using the LT-CAGE lumbar tapered fusion device. J Spinal Disord Tech 16:113–122CrossRefPubMedPubMedCentralGoogle Scholar
  19. Burkus J, Gornet M, Schuler T et al (2009) Six-year outcomes of anterior lumbar interbody arthrodesis with use of interbody fusion cages and recombinant human bone morphogenetic protein-2. J Bone Joint Surg 91:1181–1189CrossRefPubMedPubMedCentralGoogle Scholar
  20. Chen S, Lin S, Tsai W et al (2012) Biomechanical comparison of unilateral and bilateral pedicle screws fixation for transforaminal lumbar interbody fusion after decompressive surgery – a finite element analysis. BMC Musculoskelet Disord 13:72CrossRefPubMedPubMedCentralGoogle Scholar
  21. Chen S, Chiang M, Lin J et al (2013) Biomechanical comparison of three stand-alone lumbar cages – a three-dimensional finite element analysis. BMC Musculoskelet Disord 14:281CrossRefPubMedPubMedCentralGoogle Scholar
  22. Chitnavis B, Barbagallo G, Selway R et al (2001) Posterior lumbar interbody fusion for revision disc surgery: review of 50 cases in which carbon fibre cages were implanted. J Neurosurg Spine 95:190–195CrossRefGoogle Scholar
  23. Cloward R (1953) The treatment of ruptured lumbar intervertebral discs by vertebral body fusion. J Neurosurg 10:154–168CrossRefPubMedPubMedCentralGoogle Scholar
  24. Costanzo G, Zoccali C, Maykowski P et al (2014) The role of minimally invasive lateral lumbar interbody fusion in sagittal balance correction and spinal deformity. Eur Spine J 23:S699–S704CrossRefGoogle Scholar
  25. Cunningham BW, Polly DW Jr (2002) The use of interbody cage devices for spinal deformity: a biomechanical perspective. Clin Orthop Relat Res 394:73–83CrossRefGoogle Scholar
  26. Derby R, Howard M, Grant J et al (1999) The ability of pressure-controlled discography to predict surgical and nonsurgical outcomes. Spine 24:364–371CrossRefPubMedPubMedCentralGoogle Scholar
  27. Dorward I, Lenke L, Bridwell K et al (2013) Transforaminal versus anterior lumbar interbody fusion in long deformity constructs. Spine 38:E755–E762CrossRefPubMedPubMedCentralGoogle Scholar
  28. Erkan S, Wu C, Mehbod A et al (2009) Biomechanical evaluation of a new AxiaLIF technique for two-level lumbar fusion. Eur Spine J 18:807–814CrossRefPubMedPubMedCentralGoogle Scholar
  29. Fan S, Hu Z, Fang X et al (2010) Comparison of paraspinal muscle injury in one-level lumbar posterior inter-body fusion: modified minimally invasive and traditional open approaches. Orthop Surg 2:194–200CrossRefPubMedPubMedCentralGoogle Scholar
  30. Farcy J, Rawlins B, Glassman S (1992) Technique and results of fixation to the sacrum with iliosacral screws. Spine 17:S190–S195CrossRefPubMedPubMedCentralGoogle Scholar
  31. Fogel G, Parikh R, Ryu S, Turner A (2014) Biomechanics of lateral lumbar interbody fusion constructs with lateral and posterior plate fixation. J Neurosurg Spine 20:291–297CrossRefPubMedPubMedCentralGoogle Scholar
  32. Freudenberger C, Lindley E, Beard D et al (2009) Posterior versus anterior lumbar interbody fusion with anterior tension band plating: retrospective analysis. Orthopaedics 32:492–496CrossRefGoogle Scholar
  33. Fritzell P, Hagg O, Wessberg P et al (2002) Chronic low back pain and fusion: a comparison of three surgical techniques. Spine 27:1131–1141CrossRefPubMedPubMedCentralGoogle Scholar
  34. Gerber M, Crawford N, Chamberlain R et al (2006) Biomechanical assessment of anterior lumbar interbody fusion with an anterior lumbosacral fixation screw-plate: comparison to stand-along anterior lumbar interbody fusion and anterior lumbar interbody fusion with pedicle screws in an unstable human cadaver model. Spine 31:762–768CrossRefPubMedPubMedCentralGoogle Scholar
  35. Giang G, Mobbs R, Phan S et al (2017) Evaluating outcomes of stand-alone anterior lumbar interbody fusion: a systematic review. World Neurosurg 104:259–271CrossRefPubMedPubMedCentralGoogle Scholar
  36. Glassman S, Gornet M, Branch C et al (2006) MOS short form 36 and Oswestry Disability Index outcomes in lumbar fusion: a multicenter experience. Spine J 6:21–26CrossRefPubMedPubMedCentralGoogle Scholar
  37. Goldstein C, Macwan K, Sundarajan K, Rampersaud R (2016) Perioperative outcomes and adverse events of minimally invasive versus open posterior lumbar fusion: meta-analysis and systematic review. J Neurosurg Spine 24:416–427CrossRefPubMedPubMedCentralGoogle Scholar
  38. Gonzalez-Blohm S, Doulgeris J, Aghayev K et al (2014) In vitro evaluation of a lateral expandable cage and its comparison with a static device for lumbar interbody fusion: a biomechanical investigation. J Neurosurg Spine 20:387–395CrossRefPubMedPubMedCentralGoogle Scholar
  39. Gornet M, Burkus J, Dryer R, Peloza J (2011) Lumbar disc arthroplasty with Maverick disc versus stand-alone interbody fusion. Spine 36:E1600–E1611CrossRefPubMedPubMedCentralGoogle Scholar
  40. Grant J, Oxland T, Dvorak M, Fisher C (2002) The effects of bone density and disc degeneration on the structural property distributions in the lower lumbar vertebral endplates. J Orthop Res 20:1115–1120CrossRefPubMedPubMedCentralGoogle Scholar
  41. Hackenberg L, Halm H, Bullmann V et al (2005) Transforaminal lumbar interbody fusion: a safe technique with satisfactory three to five year results. Eur Spine J 14:551–558CrossRefPubMedPubMedCentralGoogle Scholar
  42. Haid R, Branch C, Alexander J, Burkus J (2004) Posterior lumbar interbody fusion using recombinant human bone morphogenetic protein type 2 with cylindrical interbody cages. Spine J 4:527–539CrossRefPubMedPubMedCentralGoogle Scholar
  43. Hioki A, Miyamoto K, Kodama H et al (2005) Two-level posterior lumbar interbody fusion for degenerative disc disease: improved clinical outcome with restoration of lumbar lordosis. Spine J 5:600–607CrossRefPubMedPubMedCentralGoogle Scholar
  44. Hoff E, Strube P, Pumberger M et al (2016) ALIF and total disc replacement versus 2-level circumferential fusion with TLIF: a prospective, randomized, clinical and radiological trial. Eur Spine J 25:1558–1566CrossRefPubMedPubMedCentralGoogle Scholar
  45. Hsieh P, Koski T, O’Shaughnessy B et al (2007) Anterior lumbar interbody fusion in comparison with transforaminal lumbar interbody fusion: implications for the restoration of foraminal height, local disc angle, lumbar lordosis, and sagittal balance. J Neurosurg Spine 7:379–386CrossRefPubMedPubMedCentralGoogle Scholar
  46. Hsieh C, Lee H, Oh H et al (2017) Anterior lumbar interbody fusion with percutaneous pedicle screw fixation for multiple-level isthmic spondylolisthesis. Clin Neurol Neurosurg 158:49–52CrossRefPubMedPubMedCentralGoogle Scholar
  47. Humphreys C, Hodges S, Patwardhan A et al (2001) Comparison of posterior and transforaminal approaches to lumbar interbody fusion. Spine 26: 567–571CrossRefPubMedPubMedCentralGoogle Scholar
  48. Jiang S, Chen J, Jiang L (2012) Which procedure is better for lumbar interbody fusion: anterior lumbar interbody fusion or transforaminal lumbar interbody fusion. Arch Orthop Trauma Surg 132:1259–1266CrossRefPubMedPubMedCentralGoogle Scholar
  49. Joseph J, Smith B, La Marca F, Park P et al (2015) Comparison of complication rates of minimally invasive transforaminal lumbar interbody fusion and lateral lumbar interbody fusion: a systematic review of the literature. Neurosurg Focus 39:E4CrossRefPubMedPubMedCentralGoogle Scholar
  50. Kaleli N, Sarac D, Külünk S et al (2018) Effect of different restorative crown and customized abutment materials on stress distribution in single implants and peripheral bone: a three-dimensional finite element analysis study. J Prosthet Dent 119(3):437–445. Scholar
  51. Kanayama M, Cunningham B, Haggerty C et al (2000) In vitro biomechanical investigation of the stability and stress-shielding effect of lumbar interned fusion devices. J Neurosurg Spine 93:259–265CrossRefGoogle Scholar
  52. Kettler A, Wilke H, Diets R et al (2000) Stabilizing effect of posterior lumbar interbody fusion cages before and after cyclic loading. J Neurosurg 92:87–92PubMedPubMedCentralGoogle Scholar
  53. Khan N, Clark A, Lee S et al (2015) Surgical outcomes for minimally invasive vs open transforaminal lumbar interbody fusion: an updated systematic review and meta-analysis. Neurosurgery 77:847–874CrossRefPubMedPubMedCentralGoogle Scholar
  54. Kim J, Kim D, Lee S et al (2010) Comparison study of the instrumented circumferential fusion with instrumented anterior lumbar interbody fusion as a surgical procedure for adult low-grade isthmic spondylolisthesis. World Neurosurg 73:565–571CrossRefPubMedPubMedCentralGoogle Scholar
  55. Kim C, Harris J, Muzumdar A et al (2017) The effect of anterior longitudinal ligament resection on lordosis correction during minimally invasive lateral lumbar interbody fusion: biomechanical and radiographic feasibility of an integrated spacer/plate interbody reconstruction device. Clin Biomech 43:102–108CrossRefGoogle Scholar
  56. Kornblum M, Turner A, Cornwall G et al (2013) Biomechanical evaluation of stand-alone lumbar polyether-ether-ketone interbody cage with integrated screws. Spine J 13:77–84CrossRefPubMedPubMedCentralGoogle Scholar
  57. Kostuik J, Hall B (1983) Spinal fusions to the sacrum in adults with scoliosis. Spine 8:489–500CrossRefPubMedPubMedCentralGoogle Scholar
  58. Kuslich S, Ulstrom C, Griffith S, Ahern J, Dowdle J (1998) The Baby and Kuslich method of lumbar interbody fusion. History, techniques, and 2-year follow-up results of a United States prospective, multicentre trial. Spine 23:1267–1279CrossRefPubMedPubMedCentralGoogle Scholar
  59. Lammli J, Whitaker C, Moskowitz A et al (2014) Stand-alone anterior lumbar interbody fusion for degenerative disc disease of the lumbar spine. Spine 15:E894–E901CrossRefGoogle Scholar
  60. Lauber S, Schulte T, Liljenqvist U et al (2006) Clinical and radiologic 2–4 year results of transforaminal lumbar interbody fusion in degenerative and isthmic spondylolisthesis grades 1 and 2. Spine 15:1693–1698CrossRefGoogle Scholar
  61. Laws C, Coughlin D, Lotz J et al (2012) Direct lateral approach to lumbar fusion is a biomechanically equivalent alternative to the anterior approach. Spine 37:819–825CrossRefPubMedPubMedCentralGoogle Scholar
  62. Ledet E, Tymson M, Salerno S et al (2005) A biomechanical evaluation of a novel lumbosacral axial fixation device. J Biomech Eng 127:929–933CrossRefPubMedPubMedCentralGoogle Scholar
  63. Lee YC, Zotti MGT, Osti OL (2016) Operative management of lumbar degenerative disc disease. Asian Spine J 10(4):801–819CrossRefPubMedPubMedCentralGoogle Scholar
  64. Lee C, Yoon K, Ha S (2017a) Which approach is advantageous to preventing development of adjacent segment disease? Comparative analysis of 3 different lumbar interbody fusion techniques (ALIF, LLIF, PLIF) in L4-5 spondylolisthesis. World Neurosurg 105:612–622CrossRefPubMedPubMedCentralGoogle Scholar
  65. Lee N, Kim K, Yi S et al (2017b) Comparison of outcomes of anterior, posterior, and transforaminal lumbar interbody fusion surgery at a single level with degenerative spinal disease. World Neurosurg 101:216–226CrossRefPubMedPubMedCentralGoogle Scholar
  66. Lestini W, Fulghum F, Whitehurst L (1994) Lumbar spinal fusion: advantages of posterior lumbar interbody fusion. Surg Technol Int 3:577–590PubMedPubMedCentralGoogle Scholar
  67. Li J, Phan K, Mobbs R (2017) Oblique lumbar interbody fusion: technical aspects, operative outcomes, and complications. World Neurosurg 98:113–123CrossRefPubMedPubMedCentralGoogle Scholar
  68. Lin J, Iundusi R, Tarantino U, Moon M (2010) Intravertebral plate and cage system via lateral trajectory for lumbar interbody fusion – a novel fixation device. Spine J 10:86SCrossRefGoogle Scholar
  69. Lowe T, Tahernia D (2002) Unilateral transforaminal posterior lumbar interbody fusion. Clin Orthop Relat Res 394:64–72CrossRefGoogle Scholar
  70. Lykissas M, Aichmair A, Hughes A et al (2014) Nerve injury after lateral lumbar interbody fusion: a review of 919 treated levels with identification of risk factors. Spine J 14:749–758CrossRefPubMedPubMedCentralGoogle Scholar
  71. Madan S, Boeree N (2003) Comparison of instrumented anterior interbody fusion with instrumented circumferential fusion. Eur Spine J 12:567–575CrossRefPubMedPubMedCentralGoogle Scholar
  72. Malham G, Parker R, Goss B et al (2015) Clinical results and limitations of indirect decompression in spinal stenosis with laterally implanted interbody cages: results from a prospective cohort study. Eur Spine J 24(Suppl 3):339–345CrossRefPubMedPubMedCentralGoogle Scholar
  73. Marotta N, Cosar M, Pimenta L, Khoo LT (2006) A novel minimally invasive presacral approach and instrumentation technique for anterior L5-S1 intervertebral discectomy and fusion: technical description and case presentations. Neurosurg Focus 20:E9CrossRefPubMedPubMedCentralGoogle Scholar
  74. Mayer M (1997) A new microsurgical technique for minimally invasive anterior lumbar interbody fusion. Spine 22:691–700CrossRefPubMedPubMedCentralGoogle Scholar
  75. McAfee P, DeVine J, Chaput C et al (2005) The indications for interbody fusion cages in the treatment of spondylolisthesis: analysis of 120 cases. Spine 30:S60–S65CrossRefPubMedPubMedCentralGoogle Scholar
  76. Mehren C, Mayer M, Zandanell C et al (2016) The oblique anterolateral approach to the lumbar spine provides access to the lumbar spine with few early complications. Clin Orthop Relat Res 474:2020–2027CrossRefPubMedPubMedCentralGoogle Scholar
  77. Melgar M, Tobler W, Ernst R et al (2014) Segmental and global lordosis changes with two-level axial lumbar interbody fusion and posterior instrumentation. Int J Spine Surg 8:10CrossRefGoogle Scholar
  78. Melikian R, Yoon S, Kim J et al (2016) Sagittal plane correction using the lateral transpsoas approach: a biomechanical study on the effect of cage angle and surgical technique on segmental lordosis. Spine 41:E1016–E1021CrossRefPubMedPubMedCentralGoogle Scholar
  79. Mobbs R, Maharaj M, Rao P (2014) Clinical outcomes and fusion rates following anterior lumbar interbody fusion with bone graft substitute i-FACTOR, an anorganic bone matrix/P-15 composite. J Neurosurg Spine 21:867–876CrossRefPubMedPubMedCentralGoogle Scholar
  80. Molinari R, Gerlinger T (2001) Functional outcomes of instrumented posterior lumbar interbody fusion in active-duty US servicemen: a comparison with nonoperative management. Spine J 1:215–224CrossRefPubMedPubMedCentralGoogle Scholar
  81. Molloy S, Butler J, Benton A et al (2016) A new extensile anterolateral retroperitoneal approach for lumbar interbody fusion from L1 to S1: a prospective series with clinical outcomes. Spine J 16:786–791CrossRefPubMedPubMedCentralGoogle Scholar
  82. Ohtori S, Koshi T, Yamashita M et al (2011) Surgical versus nonsurgical treatment of selected patients with discogenic low back pain: a small-sized randomized trial. Spine (Phila Pa 1976) 36(5):347–354CrossRefGoogle Scholar
  83. Oxland T, Hoffer Z, Nydegger T et al (2000) A comparative biomechanical investigation of anterior lumbar interbody cages: central and bilateral approaches. J Bone Joint Surg Am 82A:383–393CrossRefGoogle Scholar
  84. Ozgur B, Aryan H, Pimenta L et al (2006) Extreme lateral interbody fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J 6:435–443CrossRefPubMedPubMedCentralGoogle Scholar
  85. Park J, Kim Y, Hong H et al (2005) Comparison between posterior and transforaminal approaches for lumbar interbody fusion. J Korean Neurosurg Soc 37:340–344Google Scholar
  86. Phan K, Rao P, Kam A, Mobbs R (2015a) Minimally invasive versus open transforaminal lumbar interbody fusion for treatment of degenerative lumbar disease: a systematic review and meta-analysis. Eur Spine J 24:1017–1030CrossRefPubMedPubMedCentralGoogle Scholar
  87. Phan K, Rao P, Scherman D et al (2015b) Lateral lumbar interbody fusion for sagittal balance correction and spinal deformity. J Clin Neurosci 22:1714–1721CrossRefPubMedPubMedCentralGoogle Scholar
  88. Phan K, Thayaparan G, Mobbs R (2015c) Anterior lumbar interbody fusion versus transforaminal lumbar interbody fusion – a systematic review and meta-analysis. Br J Neurosurg 29:705–711CrossRefPubMedPubMedCentralGoogle Scholar
  89. Phillips F, Cunningham B, Carandang G et al (2004) Effect of supplemental translaminar facet screw fiction on the stability of stand-along anterior lumbar interned fusion cages under physiologic compressive preloads. Spine 29:1731–1736CrossRefPubMedPubMedCentralGoogle Scholar
  90. Phillips F, Isaacs R, Rodgers W et al (2013) Adult degenerative scoliosis treated with XLIF. Spine 38:1853–1861CrossRefPubMedPubMedCentralGoogle Scholar
  91. Rao P, Loganathan A, Yeung V, Mobbs R (2015) Outcomes of anterior lumbar interbody fusion surgery based on indication: a prospective study. Neurosurgery 76:7–24CrossRefPubMedPubMedCentralGoogle Scholar
  92. Rathonyi G, Oxland T, Jost B et al (1998) The role of supplementary translaminar screws in anterior lumbar interbody fixation: a biomechanical study. Eur Spine J 7:400–407CrossRefPubMedPubMedCentralGoogle Scholar
  93. Reis M, Reyes P, Altun I et al (2016) Biomechanical evaluation of lateral lumbar interbody fusion with secondary augmentation. J Neurosurg Spine 25:720–726CrossRefPubMedPubMedCentralGoogle Scholar
  94. Rodgers B, Gerber E, Patterson J (2010) Intraoperative and early postoperative complications in extreme lateral interbody fusion. Spine 36:26–33CrossRefGoogle Scholar
  95. Rosenberg W, Mummaneni P (2001) Transforaminal lumbar interbody fusion: technique, complications, and early results. Neurosurgery 48:569–574CrossRefPubMedPubMedCentralGoogle Scholar
  96. Rothenfluh D, Mueller DA, Rothenfluh E, Min K (2015) Pelvic incidence-lumbar lordosis mismatch predisposes to adjacent segment disease after lumbar spinal fusion. Eur Spine J 24(6):1251–1258CrossRefPubMedPubMedCentralGoogle Scholar
  97. Saigal R, Mundis G, Eastlack R et al (2016) Anterior column realignment (ACR) in adult sagittal deformity correction. Spine 41:S66–S73PubMedPubMedCentralGoogle Scholar
  98. Sakeb N, Ahsan K (2013) Comparison of the early results of transforaminal lumbar interbody fusion and posterior lumbar interbody fusion in symptomatic lumbar instability. Indian J Orthop 47:255–263CrossRefPubMedPubMedCentralGoogle Scholar
  99. Sasso R, Kitchel S, Dawson E (2004) A prospective, randomized controlled clinical trial of anterior lumbar interbody fusion using a titanium cylindrical threaded fusion device. Spine 29:113–122CrossRefPubMedPubMedCentralGoogle Scholar
  100. Saville P, Kadam A, Smith H, Arlet V (2016) Anterior hyperlordotic cages: early experience and radiographic results. J Neurosurg Spine 25:713–719CrossRefPubMedPubMedCentralGoogle Scholar
  101. Schroeder G, Kepler C, Vaccaro A (2015) Axial interbody arthrodesis of the L5-S1 segment: a systematic review of the literature. J Neurosurg Spine 23:314–319CrossRefPubMedPubMedCentralGoogle Scholar
  102. Sears W (2005a) Posterior lumbar interbody fusion for lytic spondylolisthesis: restoration of sagittal balance using insert-and-rotate interbody spacers. Spine J 5:161–169CrossRefPubMedPubMedCentralGoogle Scholar
  103. Sears W (2005b) Posterior lumbar interbody fusion for degenerative spondylolisthesis: restoration of sagittal balance using insert-and-rotate interbody spacers. Spine J 5:170–179CrossRefPubMedPubMedCentralGoogle Scholar
  104. Siepe C, Stosch-Wiechert K, Heider F et al (2015) Anterior stand-alone fusion revisited: a prospective clinical, X-ray and CT investigation. Eur Spine J 24:838–851CrossRefPubMedPubMedCentralGoogle Scholar
  105. Slucky A, Brodke D, Bachus K et al (2006) Less invasive posterior fixation method following transforaminal lumbar interbody fusion: a biomechanical analysis. Spine J 6:78–85CrossRefPubMedPubMedCentralGoogle Scholar
  106. Sorian-Baron H, Newcomb A, Crawford N et al (2017) Biomechanical effects of an oblique lumbar PEEK cage and posterior augmentation. Spine J 17(10):S185–S186CrossRefGoogle Scholar
  107. Stauffer R, Coventry M (1972) Anterior interbody lumbar spine fusion. J Bone Joint Surg 54-A:756–768CrossRefGoogle Scholar
  108. Steffee A, Sitkowski D (1988) Posterior lumbar interbody fusion and plates. Clin Orthop Relat Res 227:99–102PubMedPubMedCentralGoogle Scholar
  109. Tempel Z, Gandhoke G, Bonfield C et al (2014) Radiographic and clinical outcomes following combined lateral lumbar interbody fusion and posterior segmental stabilization in patients with adult degenerative scoliosis. Neurosurg Focus 36:E11CrossRefPubMedPubMedCentralGoogle Scholar
  110. Tsantrizos A, Andreou A, Aebi M, Steffen T (2000) Biomechanical stability of five standalone anterior lumbar interbody fusion constructs. Eur Spine J 9:14–22CrossRefPubMedPubMedCentralGoogle Scholar
  111. Vadapalli S, Sairyo K, Goel V et al (2006) Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion – a finite element study. Spine 31:E992–E998CrossRefPubMedPubMedCentralGoogle Scholar
  112. Wang G, Han D, Cao Z et al (2017) Outcomes of autograft alone versus PEEK+ autograft interbody fusion in the treatment of adult lumbar isthmic spondylolisthesis. Clin Neurol Neurosurg 155:1–6CrossRefPubMedPubMedCentralGoogle Scholar
  113. Weatherley C, Pricket C, O’Brien J (1986) Discogenic pain persisting despite solid posterior fusion. J Bone Joint Surg Br 68:142–143CrossRefPubMedPubMedCentralGoogle Scholar
  114. Xiao Z, Wang L, Gong H, Zhu D (2012) Biomechanical evaluation of three surgical scenarios of posterior lumbar interbody fusion by finite element analysis. Biomech Eng Online 11:31CrossRefGoogle Scholar
  115. Yeager M, Dupre D, Cook D et al (2015) Anterior lumbar interbody fusion with integrated fixation and adjunctive posterior stabilization: a comparative biomechanical analysis. Clin Biomech 30:769–774CrossRefGoogle Scholar
  116. Youssef J, McAfee P, Patty C et al (2010) Minimally invasive surgery: lateral approach interbody fusion. Spine 35:S302–S311CrossRefPubMedPubMedCentralGoogle Scholar
  117. Zeilstra D, Staartjes V, Schroder M et al (2017) Minimally invasive transaxial lumbosacral interbody fusion: a ten year single-centre experience. Int Orthop 41:113–119CrossRefPubMedPubMedCentralGoogle Scholar
  118. Zhang Q, Yuan Z, Zhou M et al (2014) A comparison of posterior lumbar interbody fusion and transforaminal lumbar interbody fusion: a literature review and meta-analysis. BMC Musculoskelet Disord 15:367CrossRefPubMedPubMedCentralGoogle Scholar
  119. Zigler J, Delamarter R (2013) Does 360deg lumbar spinal fusion improve long-term clinical outcomes after failure of conservative treatment in patients with functionally disabling single-level degenerative lumbar disc disease? Results of 5-year follow-up in 75 postoperative patients. Int J Spine Surg 7:E1–E7CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Gold Coast SpineGold CoastAustralia

Section editors and affiliations

  • Matthew N. Scott-Young
    • 1
    • 2
  1. 1.Gold Coast SpineSouthportAustralia
  2. 2.Faculty of Health Sciences & MedicineBond UniversityVarsity LakesAustralia

Personalised recommendations