Encyclopedia of Wireless Networks

Living Edition
| Editors: Xuemin (Sherman) Shen, Xiaodong Lin, Kuan Zhang

Lattice Reduction and Its Applications in Wireless Sensors Network

  • Jinming WenEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-32903-1_264-1



A unimodular matrixU is a square integer matrix whose determinant is 1 or − 1.

A lattice is a set of all integer linear combinations of a group of linearly independent vectors. More formally, for a given full column rank matrix A ∈Rm×n, the lattice \(\mathscr {L}(A)\)

This is a preview of subscription content, log in to check access.


  1. Afflerbach L, Grothe H (1985) Calculation of Minkowski-reduced lattice bases. Computing 35:269–276MathSciNetCrossRefGoogle Scholar
  2. Agrell E, Eriksson T, Vardy A, Zeger K (2002) Closest point search in lattices. IEEE Trans Inf Theory 48:2201–2214MathSciNetCrossRefGoogle Scholar
  3. Brun V (1919) En generalisation av kjedebrøken I. Skr Vid ensk Selsk Kristiana. Mat Nat Klasse 6:1–29Google Scholar
  4. Brun V (1920) En generalisation av kjedebrøken II. Skr Vid ensk Selsk Kristiana. Mat Nat Klasse 6:1–24Google Scholar
  5. Chen J, Hu K, Wang Q, Sun Y, Shi Z, He S (2017) Narrowband internet of things: implementations and applications. IEEE Internet Things J 4(6):2309–2314CrossRefGoogle Scholar
  6. Deng R, He S, Cheng P, Sun Y (2017) Towards balanced energy charging and transmission collision in wireless rechargeable sensor networks. J Commun Netw 19(4):341–350CrossRefGoogle Scholar
  7. Gauss CF (1801) Disquisitiones arithmeticae. Springer, BerlinzbMATHGoogle Scholar
  8. Hassibi A, Boyd S (1998) Integer parameter estimation in linear models with applications to GPS. IEEE Trans Signal Process 46:2938–2952MathSciNetCrossRefGoogle Scholar
  9. Helfrich B (1985) Algorithms to construct Minkowski reduced and Hermite reduced lattice bases. Theory Comput Sci 41:125–139MathSciNetCrossRefGoogle Scholar
  10. Hermite C (1850) Extraits de lettres de M. Hermite à M. Jacobi sur différents objets de la théorie des nombres, deuxiéme lettre. Journal für die reine und angewandte Mathematik 40:279–290MathSciNetCrossRefGoogle Scholar
  11. Jayaweera SK (2007) V-BLAST-Based virtual MIMO for distributed wireless sensor networks. IEEE Trans Commun 55:1867–1872MathSciNetCrossRefGoogle Scholar
  12. Kannan R (1983) Improved algorithms for integer programming and related problems. In: 15th ACM symposium on theory of computing, pp 193–206Google Scholar
  13. Korkine A, Zolotareff G (1873) Sur les formes quadratiques. Mathematische Annalen 6:366–389MathSciNetCrossRefGoogle Scholar
  14. Lagrange JL (1773) Recherches d’arithmétique. Nouveaux Mémoires de l’Académie de BerlinGoogle Scholar
  15. Lenstra AK, Lenstra HW, Lovász L (1982) Factoring polynomials with rational coefficients. Mathematische Annalen 261:515–534MathSciNetCrossRefGoogle Scholar
  16. Minkowski H (1896) Geometrie der Zahlen. Teubner-VerlagzbMATHGoogle Scholar
  17. Nguyen PQ, Stehlé D (2009) Low-dimensional lattice basis reduction revisited. ACM Trans Algorithms, Article 46 5(4):1–48MathSciNetCrossRefGoogle Scholar
  18. Nguyen PQ, Vallée B (2010) The LLL algorithm. Springer, Berlin/HeidelbergCrossRefGoogle Scholar
  19. Semaev I (2001) A 3-dimensional lattice reduction algorithm. In: Cryptography and lattices conference, pp 181–193zbMATHGoogle Scholar
  20. Seysen M (1993) Simultaneous reduction of a lattice basis and its reciprocal basis. Combinatorica 13:363–376MathSciNetCrossRefGoogle Scholar
  21. Teunissen PG, Jonge PD, Tiberius C (1997) The least-squares ambiguity decorrelation adjustment: its performance on short GPS baselines and short observation spans. J Geod 71:589–602CrossRefGoogle Scholar
  22. Wen J, Chang XW (2015) A modified KZ reduction algorithm. In: 2015 IEEE international symposium on information theory (ISIT), pp 451–455Google Scholar
  23. Wen J, Chang XW (2017) GfcLLL: a Greedy selection based approach for fixed-complexity LLL reduction. IEEE Commun Lett 21:1965–1968CrossRefGoogle Scholar
  24. Wübben D, Seethaler D, Jaldén J, Matz G (2011) Lattice reduction: a survey with applications in wireless communications. IEEE Signal Process Mag 28:70–91CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.College of Information Science and Technology, and College of Cyber SecurityJinan UniversityGuangzhouChina

Section editors and affiliations

  • Jiming Chen
  • Ruilong Deng
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of AlbertaEdmontonCanada