Encyclopedia of Wireless Networks

Living Edition
| Editors: Xuemin (Sherman) Shen, Xiaodong Lin, Kuan Zhang

Space-Time Block Codes

  • Weifeng SuEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-32903-1_142-1



Space-time block codes are coding and modulation schemes for multi-input multi-output wireless communication systems which map information bits into multidimensional signals to be transmitted by multiple transmit antennas.

Historical Background

In the 1990s, a revolutionary theoretical work revealed that multi-input multi-output (MIMO) wireless communications can provide substantial capacity increase in rich scattering and reflection environments compared to conventional single-input single-output (SISO) systems (Telatar, 1995; Foschini and Gans, 1998). Then, performance analysis for MIMO systems with practical signal transmissions and receiver detection/decoding was carried out in Guey et al. (1999), Tarokh et al. (1998) in which two design criteria (one related to coding gain and one related to diversity order or degree of redundancy) were proposed for space-time (ST) signal/code designs in order to...

This is a preview of subscription content, log in to check access.


  1. Alamouti S (1998) A simple transmit diversity technique for wireless communications. IEEE JSAC 16(8): 1451–1458Google Scholar
  2. Belfiore J-C, Rekaya G, Viterbo E (2005) The golden code: a 2 × 2 full-rate space-time code with nonvanishing determinants. IEEE Trans Inf Theory 51(4): 1432–1436Google Scholar
  3. Blum R, Li Y, Winters J, Yan Q (2001) Improved space-time coding for MIMO-OFDM wireless communications. IEEE Trans Commun 49(11):1873–1878CrossRefGoogle Scholar
  4. Bölcskei H, Paulraj AJ (2000) Space-frequency coded broadband OFDM systems. In: Proceedings of IEEE WCNC, Chicago, IL, pp 1–6Google Scholar
  5. Damen M, Beaulieu NC (2003) On two high-rate algebraic space-time codes. IEEE Trans Inf Theory 49(4):1059–1063MathSciNetCrossRefGoogle Scholar
  6. Damen MO, Abed-Meraim K, Belfiore J-C (2002) Diagonal algebraic space-time block codes. IEEE Trans Inf Theory 48(3):628–636MathSciNetCrossRefGoogle Scholar
  7. Foschini GJ, Gans MJ (1998) On limits of wireless communications in a fading environment when using multiple antennas. Wirel Pers Commun 6:311–335CrossRefGoogle Scholar
  8. Ganesan G, Stoica P (2001) Space-time block codes: a maximum SNR approach. IEEE Trans Inf Theory 47:1650–1656MathSciNetCrossRefGoogle Scholar
  9. Geramita AV, Seberry J (1979) Orthogonal designs, quadratic forms and Hadamard matrices. Lecture notes in pure and applied mathematics, vol 43. Marcel Dekker, New York/BaselzbMATHGoogle Scholar
  10. Guey J-C, Fitz MP, Bell MR, Kuo W-Y (1999) Signal design for transmitter diversity wireless communication systems over Rayleigh fading channels. In: Proceedings of IEEE VTC’96, pp 136–140. Also in IEEE Trans Commun 47:527–537Google Scholar
  11. Hassibi B, Hochwald BM (2002) Cayley differential unitary space-time Codes. IEEE Trans Inf Theory 48(6):1485–1503MathSciNetCrossRefGoogle Scholar
  12. Hochwald BM, Marzetta TL (2000) Unitary space-time modulation for multiple-antenna communication in Rayleigh flat fading. IEEE Trans Inf Theory 46(2): 543–564MathSciNetCrossRefGoogle Scholar
  13. Hochwald BM, Sweldens W (2000) Differential unitary space-time modulation. IEEE Trans Commun 48:2041–2052CrossRefGoogle Scholar
  14. Hochwald BM, Marzetta TL, Richardson TJ, Swelden W, Urbanke R (2000) Systematic design of unitary space-time constellations. IEEE Trans Inf Theory 46(6):1962–1973CrossRefGoogle Scholar
  15. Hughes BL (2000) Differential space-time modulation. IEEE Trans Inf Theory 46:2567–2578CrossRefGoogle Scholar
  16. Jafarkhani H (2001) A quasi-orthogonal space-time block code. IEEE Trans Commun 49(1):1–4CrossRefGoogle Scholar
  17. Larsson EG, Stoica P (2003) Space-time block coding for wireless communications. Cambridge University Press, New YorkCrossRefGoogle Scholar
  18. Liu Z, Xin Y, Giannakis G (2002) Space-time-frequency coded OFDM over frequency selective fading channels. IEEE Trans Signal Process 50(10):2465–2476CrossRefGoogle Scholar
  19. Liu KJR, Sadek A, Su W, Kwasinski A (2009) Cooperative communications and networking, 1st edn. Cambridge University Press, New YorkzbMATHGoogle Scholar
  20. Oggier F, Rekaya G, Belfiore J-C, Viterbo E (2006) Perfect space-time block codes. IEEE Trans Inf Theory 52(9):3885–3902MathSciNetCrossRefGoogle Scholar
  21. Sharma N, Papadias CB (2003) Improved quasi-orthogonal codes through constellation rotation. IEEE Trans Commun 51(3):332–335CrossRefGoogle Scholar
  22. Shokrollahi A, Hassibi B, Hochwald BM, Sweldens W (2001) Representation theory for high-rate multiple-antenna code design. IEEE Trans Inf Theory 47:2335–2367MathSciNetCrossRefGoogle Scholar
  23. Su W, Xia X-G (2002) Quasi-orthogonal space-time block codes with full diversity. Proc IEEE GLOBECOM’02 2:1098–1102Google Scholar
  24. Su W, Xia X-G (2003) On space-time block codes from complex orthogonal designs. Wirel Pers Commun 25(1):1–26. Kluwer Academic PublishersGoogle Scholar
  25. Su W, Xia X-G (2004) Signal constellations for quasi-orthogonal space-time block codes with full diversity. IEEE Trans Inf Theory 50(10):2331–2347MathSciNetCrossRefGoogle Scholar
  26. Su W, Safar Z, Olfat M, Liu KJR (2003) Obtaining full-diversity space-frequency codes from space-time codes via mapping. IEEE Trans Signal Process (Special Issue MIMO Wirel Commun) 51(11):2905–2916MathSciNetzbMATHGoogle Scholar
  27. Su W, Xia X-G, Liu KJR (2004) A systematic design of high-rate complex orthogonal space-time block codes. IEEE Commun Lett 8(6):380–382CrossRefGoogle Scholar
  28. Su W, Safar Z, Liu KJR (2005) Full-rate full-diversity space-frequency codes with optimum coding advantage. IEEE Trans Inf Theory 51(1):229–249MathSciNetCrossRefGoogle Scholar
  29. Su W, Safar Z, Liu KJR (2005) Towards maximum achievable diversity in space, time and frequency: performance analysis and code design. IEEE Trans Wirel Commun 4(4):1847–1857CrossRefGoogle Scholar
  30. Tarokh V, Seshadri N, Calderbank AR (1998) Space-time codes for high data rate wireless communication: performance criterion and code construction. IEEE Trans Inf Theory 44(2):744–765MathSciNetCrossRefGoogle Scholar
  31. Tarokh V, Jafarkhani H, Calderbank AR (1999) Space-time block codes from orthogonal designs. IEEE Trans on Inf Theory 45(50):1456–1467MathSciNetCrossRefGoogle Scholar
  32. Telatar IE (1995) Capacity of multi-antenna Gaussian channels. AT&T Bell Labs, Technical ReportGoogle Scholar
  33. Tirkkonen O, Hottinen A (2002) Square-matrix embeddable space-time block codes for complex signal constellations. IEEE Trans Inf Theory 48(2):384–395MathSciNetCrossRefGoogle Scholar
  34. Xin Y, Wang Z, Giannakis G (2003) Space-time diversity systems based on linear constellation precoding. IEEE Trans Wirel Commun 2(2):294–309CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical EngineeringState University of New York (SUNY) at BuffaloBuffaloUSA

Section editors and affiliations

  • Wei Zhang
    • 1
  1. 1.School of Electrical Engineering and TelecommunicationsThe University of New South WalesSydneyAustralia