Encyclopedia of Wireless Networks

Living Edition
| Editors: Xuemin (Sherman) Shen, Xiaodong Lin, Kuan Zhang

Per-Beam Synchronization for Millimeter-Wave Massive MIMO

  • Li You
  • Xiqi Gao
  • Geoffrey Ye Li
  • Xiang-Gen Xia
  • Ni Ma
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-32903-1_116-1

Synonyms

Definitions

Per-beam synchronization refers to a synchronization approach in wireless transmission where signal synchronization in time and frequency between the transmitter and the receiver is performed over each beam individually.

Background

Millimeter-wave massive multiple-input multiple-output (MIMO) is promising for future wireless communications (Swindlehurst et al., 2014; Cui et al., 2018; Huang et al., To appear; Liu et al., 2018; Xiao et al., 2017). One challenge in realizing cellular wireless over millimeter-wave channels is to deal with the mobility issue (Roh et al., 2014; Andrews et al, 2017). For the same mobile speed, the Doppler spread of millimeter-wave channels is orders-of-magnitude larger than that of classical wireless channels, while the delay spread does not change significantly over different frequencies, which may lead to system implementation bottleneck. Consider wideband...

This is a preview of subscription content, log in to check access.

References

  1. Andrews JG, Bai T, Kulkarni MN, Alkhateeb A, Gupta AK, Heath RW Jr (2017) Modeling and analyzing millimeter wave cellular systems. IEEE Trans Commun 65(1):403–430Google Scholar
  2. Chizhik D (2004) Slowing the time-fluctuating MIMO channel by beam forming. IEEE Trans Wireless Commun 3(5):1554–1565CrossRefGoogle Scholar
  3. Cui Y, Fang X, Fang Y, Xiao M (2018) Optimal non-uniform steady mmWave beamforming for high speed railway. IEEE Trans Veh Technol 67(5):4350–4359.  https://doi.org/10.1109/TVT.2018.2796621
  4. Dahlman E, Parkvall S, Sköld J (2014) 4G LTE/LTE-advanced for mobile broadband, 2nd edn. Academic Press, WalthamGoogle Scholar
  5. Huang Y, Zhang J, Xiao M (To appear) Constant envelope hybrid precoding for directional millimeter-wave communications. IEEE J Sel Areas Commun (JSAC) Ser Phys Layer Secur 5G Wirel Netw.  https://doi.org/10.1109/JSAC.2018.2825820
  6. Hwang T, Yang C, Wu G, Li S, Li GY (2009) OFDM and its wireless applications: a survey. IEEE Trans Veh Technol 58(4):1673–1694CrossRefGoogle Scholar
  7. Liu Y, Fang X, Xiao M, Mumtaz S (2018) Decentralized beam pair selection in multi-beam millimeter-wave networks. IEEE Trans Commun.  https://doi.org/10.1109/TCOMM.2018.2800756
  8. Marzetta TL (2010) Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans Wireless Commun 9(11):3590–3600CrossRefGoogle Scholar
  9. Pätzold M, Hogstad BO (2006) A wideband space-time MIMO channel simulator based on the geometrical one-ring model. In: Proceedings of IEEE VTC Fall, Montreal, pp 1–6Google Scholar
  10. Rappaport TS, MacCartney GR Jr, Samimi MK, Sun S (2015) Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design. IEEE Trans Commun 63(9):3029–3056CrossRefGoogle Scholar
  11. Roh W, Seol JY, Park J, Lee B, Lee J, Kim Y, Cho J, Cheun K, Aryanfar F (2014) Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results. IEEE Commun Mag 52(2):106–113CrossRefGoogle Scholar
  12. Shiu DS, Foschini GJ, Gans MJ, Kahn JM (2000) Fading correlation and its effect on the capacity of multielement antenna systems. IEEE Trans Commun 48(3):502–513CrossRefGoogle Scholar
  13. Sun C, Gao XQ, Jin S, Matthaiou M, Ding Z, Xiao C (2015) Beam division multiple access transmission for massive MIMO communications. IEEE Trans Commun 63(6):2170–2184CrossRefGoogle Scholar
  14. Swindlehurst AL, Ayanoglu E, Heydari P, Capolino F (2014) Millimeter-wave massive MIMO: the next wireless revolution? IEEE Commun Mag 52(9):56–62CrossRefGoogle Scholar
  15. Va V, Choi J, Heath RW Jr (2017) The impact of beamwidth on temporal channel variation in vehicular channels and its implications. IEEE Trans Veh Technol 66(6):5014–5029CrossRefGoogle Scholar
  16. Xiao M, Mumtaz S, Huang Y, Dai L, Li Y, Matthaiou M, Karagiannidis G, Bjronson E, Yang K, Chih-lin I, Ghosh A (2017) Millimeter wave communications for future mobile networks. IEEE J Sel Areas Commun (JSAC). 35(9):1909–1935CrossRefGoogle Scholar
  17. You L, Gao XQ, Li GY, Xia XG, Ma N (2017) BDMA for millimeter-wave/Terahertz massive MIMO transmission with per-beam synchronization. IEEE J Sel Areas Commun 35(7):1550–1563CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Mobile Communications Research LaboratorySoutheast UniversityNanjingChina
  2. 2.School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaUSA
  3. 3.Department of Electrical and Computer EngineeringUniversity of DelawareNewarkUSA
  4. 4.Huawei Technologies Co., Ltd.ShenzhenChina

Section editors and affiliations

  • Ming Xiao
    • 1
  1. 1.KTH Royal Institute of TechnologyStockholmSweden