Shunt Hardware

  • Giuseppe MironeEmail author
  • Dario Spina
  • Christian Sainte-Rose
Living reference work entry


A shunt is a device that redirects CSF from the CNS to a body cavity (usually the peritoneum or the right atrium). Nowadays, the various manufactures offer a bewildering multitude of shunt components and configurations and is not possible to label one shunt system better than the others. An ideal shunt doesn’t exist. Describing every possible configuration is impossible and, in this chapter, we will try to summary the concepts about the main shunt components, to describe the “state of art” technology.


Shunt hardware Hydrocephalus Programmable valves CSF flow 


  1. Aesculap Corporation: online catalog at Accessed 10 Jan 2017
  2. Ahn ES, Bookland M, Carson BS, Weingart JD, Jallo GI (2007) The strata programmable valve for shunt-dependent hydrocephalus: the pediatric experience at a single institution. Childs Nerv Syst 23(3):297–303CrossRefPubMedGoogle Scholar
  3. Alkharabsheh AR, Momani L, Al-Zubi N, Al-Nuaimy W (2010) Developments in E-systems Engineering (DESE) 2010. A multi-agent approach for self-diagnosis of a hydrocephalus shunting system, pp 39–43Google Scholar
  4. Ames RH (1967) Ventriculo-peritoneal shunts in the management of hydrocephalus. J Neurosurg 27:525–529CrossRefPubMedGoogle Scholar
  5. Armbruster C, Blauensteiner J, Ammerer HP, Kriwanek S (1993) Laparoscopically assisted implantation of ventriculoperitoneal shunts. J Laparoendosc Surg 3:191–192CrossRefPubMedGoogle Scholar
  6. Attenello FJ, Garces-Ambrossi GL, Zaidi HA, Sciubba DM, Jallo GI (2010) Hospital costs associated with shunt infections in patients receiving antibiotic-impregnated shunt catheters versus standard shunt catheters. Neurosurgery 66(2):284–289; discussion 289CrossRefPubMedGoogle Scholar
  7. Brydon HL, Bayston R, Hayward R, Harkness W (1996) Reduced bacterial adhesion to hydrocephalus shunt catheters mediated by cerebrospinal fluid proteins. J Neurol Neurosurg Psychiatry 60:671–675CrossRefPubMedPubMedCentralGoogle Scholar
  8. Çağavi F, Akalan N, Celik H, Gür D, GüÇiz B (2004) Effect of hydrophilic coating on microorganism colonization in silicone tubing. Acta Neurochir 14:603–610CrossRefGoogle Scholar
  9. Chen HH, Riva-Cambrin J, Brockmeyer DL, Walker ML, Kestle JR (2011) Shunt failure due to intracranial migration of BioGlide ventricular catheters. J Neurosurg Pediatr 7:408–412CrossRefPubMedGoogle Scholar
  10. Chung S, Kim JK, Wang KC, Han DC, Chang JK (2003) Development of MEMS-based cerebrospinal fluid shunt system. Biomed Microdevices 5:311–321CrossRefGoogle Scholar
  11. Clarke MJ, Meyer FB (2007) The history of mathematical modeling in hydrocephalus. Neurosurg Focus 22(44):E3PubMedGoogle Scholar
  12. Codman Johnson and Johnson Corporation: online catalog at Accessed 10 Jan 2017
  13. Czosnyka Z, Czosnyka M, Richards HK, Pickard JD (2002) Laboratory testing of hydrocephalus shunts – conclusion of the U.K. Shunt evaluation programme. Acta Neurochir 144(6):525–538; discussion 538CrossRefPubMedGoogle Scholar
  14. Czosnyka Z, Cieslicki K, Richards HK, Pickard JD, Czosnyka M (2014) Hydrocephalus shunts: principles, hardware, shunt testing, Chapter: 17. In: Rigamonti D (ed) Adult hydrocephalus. Cambridge University Press, Cambridge, pp 186–202Google Scholar
  15. Decq P, Barat JL, Duplessis E, Leguerinel C, Gendrault P, Keravel Y (1995) Shunt failure in adult hydrocephalus: flow-controlled shunt versus differential pressure shunts–a cooperative study in 289 patients. Surg Neurol 43(4):333–339CrossRefPubMedGoogle Scholar
  16. Drake JM, Sainte-Rose C (1995) The shunt book. Blackwell Science, Cambridge, pp 121–193Google Scholar
  17. Drake JM, Kestle JR, Milner R, Cinalli G, Boop F, Piatt J Jr et al (1998a) Randomised trial of cerebrospinal fluid shunt valve design in pediatric hydrocephalus. Neurosurgery 43(2):294–303CrossRefPubMedGoogle Scholar
  18. Drake JM, Kestle JR, Milner R, Cinalli G, Boop F, Piatt J Jr, Haines S, Schiff SJ, Cochrane DD, Steinbok P, MacNeil N (1998b) Randomized trial of cerebrospinal fluid shunt valve design in pediatric hydrocephalus. Neurosurgery 43(2):294–303.2CrossRefPubMedGoogle Scholar
  19. Drake JM, Kestle JR, Tuli S (2000) Cerebrospinal fluid shunt technology. Clin Neurosurg 47:336–345PubMedGoogle Scholar
  20. Edwards NC, Engelhart L, Casamento EM, McGirt MJ (2015) Cost-consequence analysis of antibiotic-impregnated shunts and external ventricular drains in hydrocephalus. J Neurosurg 122(1):139–147CrossRefPubMedGoogle Scholar
  21. Ellis MJ, Kazina CJ, Del Bigio MR, McDonald PJ (2008) Treatment of recurrent ventriculoperitoneal shunt failure associated with persistent cerebrospinal fluid eosinophilia and latex allergy by use of an “extracted” shunt. J Neurosurg Pediatr 1:237–239CrossRefPubMedGoogle Scholar
  22. Galarza M, Giménez Á, Pellicer O, Valero J, Amigó JM (2015) New designs of ventricular catheters for hydrocephalus by 3-D computational fluid dynamics. Childs Nerv Syst 31:37–48CrossRefPubMedGoogle Scholar
  23. Goi KG, Ebels EJ, van Woerden H (1981) Experiences with recurring ventricular catheter obstructions. Clin Neurol Neurosurg 83:47–56CrossRefGoogle Scholar
  24. Haase J, Weeth R (1976) Multiflanged ventricular Portnoy catheter for hydrocephalus shunts. Acta Neurochir 33:213–218CrossRefPubMedGoogle Scholar
  25. Haberl EJ, Messing-Juenger M, Schuhmann M, Eymann R, Cedzich R, Fritsch MJ, Kiefer M, van Lindert EJ, Séller C, Lehner M, Rohde V, Stroux A, von Behrenberg P (2009) Experiences with a gravity-assisted valve in hydrocephalic children. J Neurosurg Pediatr 4:000–000Google Scholar
  26. Hakim S (1969) Observations on the physiopathology of the CSF pulse and prevention of ventricular catheter obstruction in valve shunts. Dev Med Child Neurol Suppl 20:42–48PubMedGoogle Scholar
  27. Hakim S (1971) Biomechanics of hydrocephalus. Acta Neurol Latinoam 1(1 Suppl):169–194Google Scholar
  28. Hanlo PW, Cinalli G, Vandertop WP, Faber JA, Bogeskov L, Borgesen SE, Boschert J, Chumas P, Eder H, Pople IK, Serlo W, Vitzthum E (2003) Treatment of hydrocephalus determined by the European Orbis Sigma Valve II survey: a multicenter prospective 5-year shunt survival study in children and adults in whom a flow-regulating shunt was used. J Neurosurg 99(1):52–57CrossRefPubMedGoogle Scholar
  29. Harris CA, McAllister JP II (2011) Does drainage hole size influence adhesion on ventricular catheters? Childs Nerv Syst 27:1221–1232CrossRefPubMedGoogle Scholar
  30. Harris CA, Resau JH, Hudson EA, West RA, Moon C, McAl- lister JP II (2010) Mechanical contributions to astrocyte adhesion using a novel in vitro model of catheter obstruction. Exp Neurol 222:204–210CrossRefGoogle Scholar
  31. Integra Neurosciences Corporation: online catalog at Accessed 10 Jan 2017
  32. Kehler U, Klöhn A, Heese O, Gliemroth J (2003) Hydrocephalus therapy: reduction of shunt occlusions using a peel-away sheath. Clin Neurol Neurosurg 105(4): 253–255CrossRefGoogle Scholar
  33. Kestle J, Drake J, Milner R, Sainte-Rose C, Cinalli G, Boop F et al (2000) Long-term follow-up data from the shunt design trial. Pediatr Neurosurg 33:230–236CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kondageski C, Thompson D, Reynolds M, Hayward RD (2007) Experience with the strata valve in the management of shunt overdrainage. J Neurosurg 106(2 Suppl): 95–102PubMedPubMedCentralGoogle Scholar
  35. Konstantelias AA, Vardakas KZ, Polyzos KA, Tansarli GS, Falagas ME (2015) Antimicrobial-impregnated and -coated shunt catheters for prevention of infections in patients with hydrocephalus: a systematic review and meta-analysis. J Neurosurg 122(5):1096–1112. Epub 2015 Mar 13CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kurtom KH, Magram G (2007) Siphon regulatory devices: their role in the treatment of hydrocephalus. Neurosurg Focus 22(4):E5PubMedPubMedCentralGoogle Scholar
  37. Lee SA, Lee H, Pinney JR, Khialeeva E, Bergsneider M, Judy JW (2011) Development of microfabricated magnetic actuators for removing cellular occlusion. J Micromech Microeng 21:54006CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lin J, Morris M, Olivero W, Boop F, Sanford RA (2003) Computational and experimental study of proximal flow in ventricular catheters. J Neurosurg 99:426–431CrossRefPubMedPubMedCentralGoogle Scholar
  39. Lutz BR, Venkataraman P, Browd SR (2013) New and improved ways to treat hydrocephalus: pursuit of a smart shunt. Surg Neurol Int 4(Suppl 1):S38–S50CrossRefPubMedPubMedCentralGoogle Scholar
  40. Medtronic Corporation: online catalog at Accessed 10 Jan 2017
  41. Parker SL, Attenello FJ, Sciubba DM, Garces-Ambrossi GL, Ahn E, Weingart J, Carson B, Jallo GI (2009) Comparison of shunt infection incidence in high-risk subgroups receiving antibiotic-impregnated versus standard shunts. Childs Nerv Syst 25:77–83CrossRefPubMedGoogle Scholar
  42. Parker SL, McGirt MJ, Murphy JA, Megerian JT, Stout M, Engelhart L (2015) Comparative effectiveness of antibiotic-impregnated shunt catheters in the treatment of adult and pediatric hydrocephalus: analysis of 12,589 consecutive cases from 287 US hospital systems. J Neurosurg 122(2):443–448CrossRefPubMedGoogle Scholar
  43. Piatt JH Jr, Carlson CV (1993) A search for determinants of cerebrospinal fluid shunt survival: retrospective analysis of a 14 year institutional experience. Pediatr Neurosurg 19:233–242CrossRefPubMedGoogle Scholar
  44. Portnoy HD (1971) New ventricular catheter for hydrocephalic shunts. Technical note. J Neurosurg 34:702–703CrossRefPubMedGoogle Scholar
  45. Pudenz RH, Russell FE, Hurd AH, Shelden CH (1957) Ventriculo- auriculostomy; a technique for shunting cerebrospinal fluid into the right auricle; preliminary report. J Neurosurg 14:171–179CrossRefPubMedGoogle Scholar
  46. Raimondi AJ, Matsumoto S (1967) A simplified technique for performing the ventriculoperitoneal shunt. J Neurosurg 26:357–360CrossRefPubMedGoogle Scholar
  47. Rekate HL (1994) The usefulness of mathematical modeling in hydrocephalus research. Childs Nerv Syst 10:13–18CrossRefPubMedGoogle Scholar
  48. Richards HK, Seeley HM, Pickard JD (2009) Efficacy of antibiotic-impregnated shunt catheters in reducing shunt infection: data from the United Kingdom shunt registry. J Neurosurg Pediatr 4:389–393CrossRefPubMedGoogle Scholar
  49. Rohde V, Haberl EJ, Ludwig H, Thomale UW (2009) First experiences with an adjustable gravitational valve in child hood hydrocephalus. J Neurosurg Pediatr 3(2):90–93CrossRefPubMedGoogle Scholar
  50. Sainte-Rose C, Hooven MD, Hirsh JF (1987) A new approach to the treatment of hydriceohalus. J Neurosurg 66:213–226CrossRefPubMedGoogle Scholar
  51. Sekhar LN, Moossy J, Guthkelch AN (1982) Malfunctioning ventriculoperitoneal shunts. Clinical and pathological features. J Neurosurg 56:411–416CrossRefPubMedGoogle Scholar
  52. Sophysa Corporation: online catalog at Accessed 10 Jan 2017
  53. Surgiwear Corporation: online catalog at Accessed 10 Jan 2017
  54. Tenti G, Drake JM, Sivaloganathan S (2000) Brain biomechanics: mathematical modeling of hydrocephalus. Neurol Res 22:19–24CrossRefPubMedGoogle Scholar
  55. Thomale UW, Knitter T, Schaumann A, Ahmadi SA, Ziegler P, Schulz M, Miethke C (2013) Smartphone-assisted guide for the placement of ventricular catheters. Childs Nerv Syst 29(1):131–139CrossRefPubMedGoogle Scholar
  56. Turner RD, Rosenblatt SM, Chand B, Luciano MG (2007) Laparoscopic peritoneal catheter placement : results of a new method in 111 patients. Neurosurgery 61:167–172; discussion 172–174CrossRefPubMedGoogle Scholar
  57. Weisenberg SH, TerMaath SC, Seaver CE, Killeffer JA (2016) Ventricular catheter development: past, present, and future. J Neurosurg 1–9Google Scholar
  58. Zemack G, Romner B (2000a) Seven years of clinical experience with the programmable Codman Hakim valve: a retrospective study of 583 patients. J Neurosurg 92:941–948CrossRefPubMedGoogle Scholar
  59. Zemack G, Romner B (2000b) Seven years of clinical experience with the programmable Codman Hakim valve: a retrospective study of 583 patients. J Neurosurg 92(6):941–948CrossRefPubMedGoogle Scholar
  60. Zemack G, Romner B (2001) Do adjustable shunt valves pressure our budget? A retrospective analysis of 541 implanted Codman hakim programmable valves. Br J Neurosurg 15(3):221–227CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Giuseppe Mirone
    • 1
    Email author
  • Dario Spina
    • 2
    • 3
  • Christian Sainte-Rose
    • 4
  1. 1.Department of Pediatric NeurosurgerySantobono-Pausilipon Children’s HospitalNaplesItaly
  2. 2.Aalborg UniversitetAlborgDenmark
  3. 3.DanfossNordbergDenmark
  4. 4.Department of Pediatric NeurosurgeryNecker-Enfants Malades HospitalParisFrance

Section editors and affiliations

  • Wirginia Maixner
    • 1
  1. 1.Department of Pediatric NeurosurgeryRoyal Children’s HospitalMelbourneAustralia

Personalised recommendations