Advertisement

Pathology of Pediatric Hydrocephalus

  • Gurjit Nagra
  • Marc R. Del Bigio
Living reference work entry

Abstract

This chapter focuses on the pathology of hydrocephalus in children. With respect to causes of hydrocephalus, an anatomical approach is used highlighting abnormalities that can impede cerebrospinal fluid movements at the interventricular foramina, the cerebral aqueduct, the fourth ventricular apertures, and the subarachnoid space. Inflammatory processes, some very subtle, secondary to infections or hemorrhage can damage the ependymal layer and allow fusion of adjacent brain surfaces or cause collagenous scarring in the subarachnoid space. Neoplasms and other lesions that can compress the cerebrospinal fluid pathways are briefly summarized. Several complex malformations of the posterior fossa (including Chiari type 2, Meckel-Gruber, Dandy-Walker) are also associated with hydrocephalus. Ventricular enlargement, when sufficiently severe or rapid, can cause secondary damage in the brain. Early-onset hydrocephalus (e.g., in fetuses or premature infants) might alter subsequent brain development. Periventricular axon damage, which is caused by a combination of mechanical distortion and blood flow alterations, is preventable by shunting but is not reversible. Most changes in the neuron cell body are secondary to the axonal damage. The histopathology of shunt obstruction is briefly reviewed. In conjunction with in vivo imaging and animal experimentation, there remains much to be learned from autopsies, explanted cerebrospinal fluid shunts, and possibly brain biopsies from hydrocephalic children.

Keywords

Autopsy Axon Ependyma Human Hydrocephalus Myelin 

References

  1. Abderrahmen K, Aouidj ML, Kallel J, Zammel I, Khaldi MM (2008) Hydrocephalus due to non tumoral stenosis of foramens of Monro: report of four cases. Neurochirurgie 54:72–78PubMedCrossRefGoogle Scholar
  2. Adeeb N, Deep A, Griessenauer CJ et al (2013) The intracranial arachnoid mater: a comprehensive review of its history, anatomy, imaging, and pathology. Childs Nerv Syst 29:17–33PubMedCrossRefGoogle Scholar
  3. Adle-Biassette H, Saugier-Veber P, Fallet-Bianco C et al (2013) Neuropathological review of 138 cases genetically tested for X-linked hydrocephalus: evidence for closely related clinical entities of unknown molecular bases. Acta Neuropathol 126:427–442PubMedCrossRefGoogle Scholar
  4. Ahdab-Barmada M, Claassen D (1990) A distinctive triad of malformations of the central nervous system in the Meckel-Gruber syndrome. J Neuropathol Exp Neurol 49:610–620PubMedCrossRefGoogle Scholar
  5. Alcolado R, Weller RO, Parrish EP, Garrod D (1988) The cranial arachnoid and pia mater in man: anatomical and ultrastructural observations. Neuropathol Appl Neurobiol 14:1–17PubMedCrossRefGoogle Scholar
  6. Alvarez LA, Kato T, Llena JF, Hirano A (1987) Ependymal foldings and other related ependymal structures in the cerebral aqueduct and fourth ventricle of man. Acta Anat (Basel) 129:305–309CrossRefGoogle Scholar
  7. Ang BT, Steinbok P, Cochrane DD (2006) Etiological differences between the isolated lateral ventricle and the isolated fourth ventricle. Childs Nerv Syst 22:1080–1085PubMedCrossRefGoogle Scholar
  8. Arshad A, Vose LR, Vinukonda G et al (2016) Extended production of cortical interneurons into the third trimester of human gestation. Cereb Cortex 26:2242–2256PubMedCrossRefGoogle Scholar
  9. Bakker EN, Bacskai BJ, Arbel-Ornath M et al (2016) Lymphatic clearance of the brain: perivascular, paravascular and significance for neurodegenerative diseases. Cell Mol Neurobiol 36:181–194PubMedPubMedCentralCrossRefGoogle Scholar
  10. Barr ML (1948) Observations on the foramen of Magendie in a series of human brains. Brain 71:281–289PubMedCrossRefGoogle Scholar
  11. Barry A, Patten BM, Stewart BH (1957) Possible factors in the development of the Arnold-Chiari malformation. J Neurosurg 14:285–301PubMedCrossRefGoogle Scholar
  12. Beaumont TL, Limbrick DD Jr, Rich KM, Wippold FJ 2nd, Dacey RG Jr (2016) Natural history of colloid cysts of the third ventricle. J Neurosurg 125:1–11CrossRefGoogle Scholar
  13. Beckett RS, Netsky MG, Zimmerman HM (1950) Developmental stenosis of the aqueduct of Sylvius. Am J Pathol 26:755–787PubMedPubMedCentralGoogle Scholar
  14. Bell JE, Gordon A, Maloney AFJ (1980) The association of hydrocephalus and Arnold-Chiari malformation with spina bifida in the fetus. Neuropathol Appl Neurobiol 6:29–39PubMedCrossRefGoogle Scholar
  15. Bruni JE, Del Bigio MR, Clattenburg RE (1985) Ependyma: normal and pathological. A review of the literature. Brain Res 356:1–19PubMedCrossRefGoogle Scholar
  16. Bucchieri F, Farina F, Zummo G, Cappello F (2015) Lymphatic vessels of the dura mater: a new discovery? J Anat 227:702–703PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cardoso ER, Del Bigio MR, Schroeder G (1989) Age-dependent changes of cerebral ventricular size. Part I: review of intracranial fluid collections. Acta Neurochir 97:40–46PubMedCrossRefGoogle Scholar
  18. Castejon OJ (2004) Ultrastructural pathology of neuronal membranes in the oedematous human cerebral cortex. J Submicrosc Cytol Pathol 36:167–179PubMedGoogle Scholar
  19. Castejon OJ (2015) Ultrastructural pathology of oligodendroglial cells in traumatic and hydrocephalic human brain edema: a review. Ultrastruct Pathol 39:359–368PubMedCrossRefGoogle Scholar
  20. Castejon OJ, Arismendi GJ (2003) Morphological changes of dendrites in the human edematous cerebral cortex. A transmission electron microscopic study. J Submicrosc Cytol Pathol 35:395–413PubMedGoogle Scholar
  21. Castejon OJ, Castejon HV, Castellao A (2001) Oligodendroglial cell damage and demyelination in infant hydrocephalus. An electron microscopic study. J Submicrosc Cytol Pathol 33:33–40PubMedGoogle Scholar
  22. Cavallo C, Farago G, Broggi M, Ferroli P, Acerbi F (2015) Developmental venous anomaly as a rare cause of obstructive hydrocephalus: literature review and a case report. J Neurosurg Sci online 2015 Oct 06Google Scholar
  23. Caviness VS (1976) The Chiari malformations of the posterior fossa and their relation to hydrocephalus. Dev Med Child Neurol 18:103–116PubMedCrossRefGoogle Scholar
  24. Caviness VS, Evrard P (1975) Occipital encephalocele: a pathologic and anatomic analysis. Acta Neuropathol 32:245–255PubMedCrossRefGoogle Scholar
  25. Cesmebasi A, Loukas M, Hogan E, Kralovic S, Tubbs RS, Cohen-Gadol AA (2015) The Chiari malformations: a review with emphasis on anatomical traits. Clin Anat 28:184–194PubMedCrossRefGoogle Scholar
  26. Chatterjee S, Chatterjee U (2011) Overview of post-infective hydrocephalus. Childs Nerv Syst 27:1693–1698PubMedCrossRefGoogle Scholar
  27. Christian EA, Jin DL, Attenello F et al (2015) Trends in hospitalization of preterm infants with intraventricular hemorrhage and hydrocephalus in the United States, 2000–2010. J Neurosurg Pediatr 17:1–10Google Scholar
  28. Cinalli G, Spennato P, Nastro A et al (2011) Hydrocephalus in aqueductal stenosis. Childs Nerv Syst 27:1621–1642PubMedCrossRefGoogle Scholar
  29. Cincinnati P, Neri ME, Valentini A (2000) Dandy-Walker anomaly in Meckel-Gruber syndrome. Clin Dysmorphol 9:35–38PubMedCrossRefGoogle Scholar
  30. Dandy WE (1918) Extirpation of the choroid plexus of the lateral ventricles in communicating hydrocephalus. Ann Surg 68:569–579PubMedPubMedCentralCrossRefGoogle Scholar
  31. Dandy WE, Blackfan KD (1914) Internal hydrocephalus. An experimental, clinical and pathological study. Part 1. Experimental studies. Am J Dis Child 8:406–482CrossRefGoogle Scholar
  32. Dandy WE, Blackfan KD (1917) Internal hydrocephalus: second paper. Am J Dis Child 14:424–443CrossRefGoogle Scholar
  33. Davison AN, Dobbing J (1966) Myelination as a vulnerable period in brain development. Br Med Bull 22:40–44PubMedCrossRefGoogle Scholar
  34. de Graaf-Peters VB, Hadders-Algra M (2006) Ontogeny of the human central nervous system: what is happening when? Early Hum Dev 82:257–266PubMedCrossRefGoogle Scholar
  35. Del Bigio MR (1993) Neuropathological changes caused by hydrocephalus. Acta Neuropathol (Berl) 85:573–585CrossRefGoogle Scholar
  36. Del Bigio MR (1995a) The ependyma: a protective barrier between brain and cerebrospinal fluid. Glia 14:1–13PubMedCrossRefGoogle Scholar
  37. Del Bigio MR (1995b) Ependymal reactions to injury. A review. J Neuropathol Exp Neurol 54:405–406PubMedCrossRefGoogle Scholar
  38. Del Bigio MR (1998) Biological reactions to cerebrospinal fluid shunt devices: a review of the cellular pathology. Neurosurgery 42:319–325PubMedCrossRefGoogle Scholar
  39. Del Bigio MR (2001a) Future directions for therapy of childhood hydrocephalus: a view from the laboratory. Pediatr Neurosurg 34:172–181PubMedCrossRefGoogle Scholar
  40. Del Bigio MR (2001b) Pathophysiologic consequences of hydrocephalus. Neurosurg Clin N Am 12:639–649PubMedCrossRefGoogle Scholar
  41. Del Bigio MR (2002) Neuropathological findings in a child with slit ventricle syndrome. Pediatr Neurosurg 37:148–151PubMedCrossRefGoogle Scholar
  42. Del Bigio MR (2004) Cellular damage and prevention in childhood hydrocephalus. Brain Pathol 14:317–324PubMedCrossRefGoogle Scholar
  43. Del Bigio MR (2010a) Ependymal cells: biology and pathology. Acta Neuropathol 119:55–73PubMedCrossRefGoogle Scholar
  44. Del Bigio MR (2010b) Neuropathology and structural changes in hydrocephalus. Dev Disabil Res Rev 16:16–22PubMedCrossRefGoogle Scholar
  45. Del Bigio MR (2011) Cell proliferation in human ganglionic eminence and suppression after prematurity-associated haemorrhage. Brain 134:1344–1361PubMedCrossRefGoogle Scholar
  46. Del Bigio MR (2014) Neuropathology of human hydrocephalus. In: Rigamonti D (ed) Adult hydrocephalus. Cambridge University Press, Cambridge, UK, pp 14–27CrossRefGoogle Scholar
  47. Del Bigio MR, Di Curzio DL (2016) Nonsurgical therapy for hydrocephalus: a comprehensive and critical review. Fluids Barriers CNS 13:3PubMedPubMedCentralCrossRefGoogle Scholar
  48. Del Bigio MR, Bruni JE, Fewer HD (1985) Human neonatal hydrocephalus. An electron microscopic study of the periventricular tissue. J Neurosurg 63:56–63PubMedCrossRefGoogle Scholar
  49. Del Bigio MR, Wilson MJ, Enno T (2003) Chronic hydrocephalus in rats and humans: white matter loss and behavior changes. Ann Neurol 53:337–346PubMedCrossRefGoogle Scholar
  50. Del Bigio MR, Khan OH, da Silva Lopes L, Juliet PA (2012) Cerebral white matter oxidation and nitrosylation in young rodents with kaolin-induced hydrocephalus. J Neuropathol Exp Neurol 71:274–288PubMedCrossRefGoogle Scholar
  51. Di Curzio DL, Buist RJ, Del Bigio MR (2013) Reduced subventricular zone proliferation and white matter damage in juvenile ferrets with kaolin-induced hydrocephalus. Exp Neurol 248:112–128PubMedCrossRefGoogle Scholar
  52. Docherty JG, Daly JC, Carachi R (1991) Encephaloceles – a review 1971–1990. Eur J Pediatr Surg 1:11–13PubMedCrossRefGoogle Scholar
  53. Dolecek TA, Propp JM, Stroup NE, Kruchko C (2012) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro-Oncology 14(Suppl 5):1–49CrossRefGoogle Scholar
  54. Dott NM (1927) A case of left unilateral hydrocephalus in an infant. Operation – cure. Brain 50:548–561CrossRefGoogle Scholar
  55. Drachman DA, Richardson EP (1961) Aqueductal narrowing, congenital and acquired: a critical review of the histologic criteria. Arch Neurol 5:552–559CrossRefGoogle Scholar
  56. Durfee SM, Kim FM, Benson CB (2001) Postnatal outcome of fetuses with the prenatal diagnosis of asymmetric hydrocephalus. J Ultrasound Med 20:263–268PubMedCrossRefGoogle Scholar
  57. Elgamal EA (2012) Natural history of hydrocephalus in children with spinal open neural tube defect. Surg Neurol Int 3:112PubMedPubMedCentralCrossRefGoogle Scholar
  58. Ellis MJ, Kazina CJ, Del Bigio MR, McDonald PJ (2008) Treatment of recurrent ventriculoperitoneal shunt failure associated with persistent cerebrospinal fluid eosinophilia and latex allergy by use of an “extracted” shunt. J Neurosurg Pediatr 1:237–239PubMedCrossRefGoogle Scholar
  59. Emery JL (1964) Effect of continual decompression using Holter valve on weights of cerebral hemispheres in children with hydrocephalus and spina bifida cystica. Arch Dis Child 39:379–383PubMedPubMedCentralCrossRefGoogle Scholar
  60. Emery JL (1965) Intracranial effects of long-standing decompression of the brain in children with hydrocephalus and meningomyelocele. Dev Med Child Neurol 7:302–309PubMedCrossRefGoogle Scholar
  61. Emery JL (1968) Intra-hemispherical distances in congenital hydrocephalus associated with meningomyelocele. Dev Med Child Neurol 10(Suppl 15):21–29Google Scholar
  62. Emery JL (1974) Deformity of the aqueduct of Sylvius in children with hydrocephalus and myelomeningocele. Dev Med Child Neurol 16(Suppl 32):40–48PubMedGoogle Scholar
  63. Emery JL, MacKenzie N (1973) Medullo-cervical dislocation deformity (Chiari II deformity) related to neurospinal dysraphism (meningomyelocele). Brain 96:155–162PubMedCrossRefGoogle Scholar
  64. Emery JL, Staschak MC (1972) The size and form of the cerebral aqueduct in children. Brain 95:591–598PubMedCrossRefGoogle Scholar
  65. Evans JA, Stranc LC, Kaplan P, Hunter AG (1989) VACTERL with hydrocephalus: further delineation of the syndrome(s). Am J Med Genet 34:177–182PubMedCrossRefGoogle Scholar
  66. Faubel R, Westendorf C, Bodenschatz E, Eichele G (2016) Cilia-based flow network in the brain ventricles. Science 353:176–178PubMedCrossRefGoogle Scholar
  67. Federative Committee on Anatomical Terminology, International Federation of Associations of Anatomists (1998) Terminologia anatomica. http://www.unifr.ch/ifaa/. accessed on 2018 June
  68. Fox RJ, Walji AH, Mielke B, Petruk KC, Aronyk KE (1996) Anatomic details of intradural channels in the parasagittal dura: a possible pathway for flow of cerebrospinal fluid. Neurosurgery 39:84–90PubMedCrossRefGoogle Scholar
  69. Friede RL (1961) Surface structures of the aqueduct and the ventricular walls: a morphologic, comparative and histochemical study. J Comp Neurol 116:229–247PubMedCrossRefGoogle Scholar
  70. Friede RL (1962) A quantitative study of myelination in hydrocephalus. J Neuropathol Exp Neurol 21:645–648PubMedCrossRefGoogle Scholar
  71. Friede RL (1989) Developmental neuropathology, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  72. Fujimoto Y, Matsushita H, Plese JP, Marino R Jr (2004) Hydrocephalus due to diffuse villous hyperplasia of the choroid plexus. Case report and review of the literature. Pediatr Neurosurg 40:32–36PubMedCrossRefGoogle Scholar
  73. Gadsdon DR, Variend S, Emery JL (1978) The effect of hydrocephalus upon the myelination of the corpus callosum. Z Kinderchir 25:311–319Google Scholar
  74. Gadsdon DR, Variend S, Emery JL (1979) Myelination of the corpus callosum. II. The effect of relief of hydrocephalus upon the processes of myelination. Z Kinderchir Grenzgeb 28:314–321PubMedGoogle Scholar
  75. Gilbert JN, Jones KL, Rorke LB, Chernoff GF, James HE (1986) Central nervous system anomalies associated with meningomyelocele, hydrocephalus, and the Arnold-Chiari malformation: reappraisal of theories regarding the pathogenesis of posterior neural tube closure defects. Neurosurgery 18:559–564PubMedCrossRefGoogle Scholar
  76. Gilles FH, Davidson RI (1971) Communicating hydrocephalus associated with deficient dysplastic parasagittal arachnoidal granulations. J Neurosurg 35:421–426PubMedCrossRefGoogle Scholar
  77. Glees P, Hasan M (1990) Ultrastructure of human cerebral macroglia and microglia: maturing and hydrocephalic frontal cortex. Neurosurg Rev 13:231–242PubMedCrossRefGoogle Scholar
  78. Glees P, Voth D (1988) Clinical and ultrastructural observations of maturing human frontal cortex. Part I (biopsy material of hydrocephalic infants). Neurosurg Rev 11:273–278PubMedCrossRefGoogle Scholar
  79. Glees P, Hasan M, Voth D, Schwarz M (1989) Fine structural features of the cerebral microvasculature in hydrocephalic human infants: correlated clinical observations. Neurosurg Rev 12:315–321PubMedCrossRefGoogle Scholar
  80. Gomez DG, DiBenedetto AT, Pavese AM, Firpo A, Hershan DB, Potts DG (1982) Development of arachnoid villi and granulations in man. Acta Anat (Basel) 111:247–258Google Scholar
  81. Greenstone MA, Jones RWA, Dewar A, Neville BGR, Cole PJ (1984) Hydrocephalus and primary ciliary dyskinesia. Arch Dis Child 59:481–482PubMedPubMedCentralCrossRefGoogle Scholar
  82. Guerra MM, Henzi R, Ortloff A et al (2015) Cell junction pathology of neural stem cells is associated with ventricular zone disruption, hydrocephalus, and abnormal neurogenesis. J Neuropathol Exp Neurol 74:653–671PubMedCrossRefGoogle Scholar
  83. Gunn TR, Mora JD, Becroft DM (1988) Congenital hydrocephalus secondary to prenatal intracranial haemorrhage. Aust N Z J Obstet Gynaecol 28:197–200PubMedCrossRefGoogle Scholar
  84. Gutierrez Y, Friede RL, Kaliney WJ (1975) Agenesis of arachnoid granulations and its relationship to communicating hydrocephalus. J Neurosurg 43:553–558PubMedCrossRefGoogle Scholar
  85. Hanlo PW, Gooskens RJHM, Vanschooneveld M, Tulleken CAF, Vanderknaap MS, Faber JAJ, Willemse J (1997) The effect of intracranial pressure on myelination and the relationship with neurodevelopment in infantile hydrocephalus. Dev Med Child Neurol 39:286–291PubMedCrossRefGoogle Scholar
  86. Harris CA, McAllister JP 2nd (2012) What we should know about the cellular and tissue response causing catheter obstruction in the treatment of hydrocephalus. Neurosurgery 70:1589–1601PubMedCrossRefGoogle Scholar
  87. Hart MN, Malamud N, Ellis WG (1972) The Dandy-Walker syndrome. A clinicopathological study based on 28 cases. Neurology 22:771–780PubMedCrossRefGoogle Scholar
  88. Hasan M, Glees P (1990a) The fine structure of human cerebral perivascular pericytes and juxtavascular phagocytes: their possible role in hydrocephalic edema resolution. J Hirnforsch 31:237–249PubMedGoogle Scholar
  89. Hasan M, Glees P (1990b) Ultrastructural features of the human frontal cortex neurons of maturing and hydrocephalic cerebrum. Arch Ital Anat Embriol 95:17–26PubMedGoogle Scholar
  90. He X, Raichle ME, Yablonskiy DA (2012) Transmembrane dynamics of water exchange in human brain. Magn Reson Med 67(2):562–571PubMedCrossRefGoogle Scholar
  91. Holden ST, Cox JJ, Kesterton I, Thomas NS, Carr C, Woods CG (2006) Fanconi anaemia complementation group B presenting as X linked VACTERL with hydrocephalus syndrome. J Med Genet 43:750–754PubMedPubMedCentralCrossRefGoogle Scholar
  92. Humphreys P, Muzumdar DP, Sly LE, Michaud J (2007) Focal cerebral mantle disruption in fetal hydrocephalus. Pediatr Neurol 36:236–243PubMedCrossRefGoogle Scholar
  93. Ishak GE, Dempsey JC, Shaw DW et al (2012) Rhombencephalosynapsis: a hindbrain malformation associated with incomplete separation of midbrain and forebrain, hydrocephalus and a broad spectrum of severity. Brain 135:1370–1386PubMedPubMedCentralCrossRefGoogle Scholar
  94. Ivashchuk G, Loukas M, Blount JP, Tubbs RS, Oakes WJ (2015) Chiari III malformation: a comprehensive review of this enigmatic anomaly. Childs Nerv Syst 31:2035–2040PubMedCrossRefGoogle Scholar
  95. Jellinger G (1986) Anatomopathology of non-tumoral aqueductal stenosis. J Neurosurg Sci 30:1–16PubMedGoogle Scholar
  96. Jellinger K, Schwingshackl A (1973) Birth injury of the spinal cord. Report of two necropsy cases with several weeks survival. Neuropaediatrie 4:111–123CrossRefGoogle Scholar
  97. Johnson RT, Johnson KP (1969) Hydrocephalus as a sequela of experimental myxovirus infections. Exp Mol Pathol 10:68–80PubMedCrossRefGoogle Scholar
  98. Johnson KJ, Cullen J, Barnholtz-Sloan JS et al (2014) Childhood brain tumor epidemiology: a brain tumor epidemiology consortium review. Cancer Epidemiol Biomark Prev 23:2716–2736CrossRefGoogle Scholar
  99. Johnston M, Zakharov A, Papaiconomou C, Salmasi G, Armstrong D (2004) Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cerebrospinal Fluid Res 1:2PubMedPubMedCentralCrossRefGoogle Scholar
  100. Kalyvas AV, Kalamatianos T, Pantazi M, Lianos GD, Stranjalis G, Alexiou GA (2016) Maternal environmental risk factors for congenital hydrocephalus: a systematic review. Neurosurg Focus 41:E3PubMedCrossRefGoogle Scholar
  101. Karachi C, Le Guerinel C, Brugieres P, Melon E, Decq P (2003) Hydrocephalus due to idiopathic stenosis of the foramina of Magendie and Luschka. Report of three cases. J Neurosurg 98:897–902PubMedCrossRefGoogle Scholar
  102. Karch SB, Urich H (1972) Occipital encephalocele – morphological study. J Neurol Sci 15:89–112PubMedCrossRefGoogle Scholar
  103. Karimy JK, Duran D, Hu JK et al (2016) Cerebrospinal fluid hypersecretion in pediatric hydrocephalus. Neurosurg Focus 41:E10PubMedCrossRefGoogle Scholar
  104. Kida S, Yamashima T, Kubota T, Ito H, Yamamoto S (1988) A light and electron microscopic and immunohistochemical study of human arachnoid villi. J Neurosurg 69:429–435PubMedCrossRefGoogle Scholar
  105. Kondziolka D, Bilbao JM (1989) An immunohistochemical study of neuroepithelial (colloid) cysts. J Neurosurg 71:91–97PubMedCrossRefGoogle Scholar
  106. Kosaki K, Ikeda K, Miyakoshi K et al (2004) Absent inner dynein arms in a fetus with familial hydrocephalus-situs abnormality. Am J Med Genet 129A:308–311PubMedCrossRefGoogle Scholar
  107. Lach B, Scheithauer BW (1992) Colloid cyst of the third ventricle: a comparative ultrastructural study of neuraxis cysts and choroid plexus epithelium. Ultrastruct Pathol 16:331–349PubMedCrossRefGoogle Scholar
  108. Lategan B, Chodirker BN, Del Bigio MR (2010) Fetal hydrocephalus caused by cryptic intraventricular hemorrhage. Brain Pathol 20:391–398PubMedCrossRefGoogle Scholar
  109. Laurence KM (1964) The natural history of spina bifida cystica. Detailed analysis of 407 cases. Arch Dis Child 39:41–57PubMedPubMedCentralCrossRefGoogle Scholar
  110. Lazareff JA, Sadowinski S (1992) The probable role of hydrocephalus in the development of intraventricular septa. An observation of one case. Childs Nerv Syst 8:139–141PubMedCrossRefGoogle Scholar
  111. Lee L (2013) Riding the wave of ependymal cilia: genetic susceptibility to hydrocephalus in primary ciliary dyskinesia. J Neurosci Res 91:1117–1132PubMedCrossRefGoogle Scholar
  112. Lichtenstein BW (1942) Distant neuroanatomic complications of spina bifida (spinal dysraphism): hydrocephalus, Arnold-Chiari deformity, stenosis of the aqueduct of Sylvius, etc.; pathogenesis and pathology. Arch Neurol Psychiatr 47:195–214CrossRefGoogle Scholar
  113. Logan CV, Abdel-Hamed Z, Johnson CA (2011) Molecular genetics and pathogenic mechanisms for the severe ciliopathies: insights into neurodevelopment and pathogenesis of neural tube defects. Mol Neurobiol 43:12–26PubMedCrossRefGoogle Scholar
  114. Lomas FE, Dahlstrom JE, Ford JH (1998) VACTERL with hydrocephalus: family with X-linked VACTERL-H. Am J Med Genet 76:74–78PubMedCrossRefGoogle Scholar
  115. Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820PubMedCrossRefGoogle Scholar
  116. Ma X, Bao J, Adelstein RS (2007) Loss of cell adhesion causes hydrocephalus in nonmuscle myosin II-B-ablated and mutated mice. Mol Biol Cell 18:2305–2312PubMedPubMedCentralCrossRefGoogle Scholar
  117. MacFarlane A, Maloney AF (1957) The appearance of the aqueduct and its relationship to hydrocephalus in the Arnold-Chiari malformation. Brain 80:479–491PubMedCrossRefGoogle Scholar
  118. Malik S, Vinukonda G, Vose LR et al (2013) Neurogenesis continues in the third trimester of pregnancy and is suppressed by premature birth. J Neurosci 33:411–423PubMedPubMedCentralCrossRefGoogle Scholar
  119. Masters CL (1978) Pathogenesis of the Arnold-Chiari malformation: the significance of hydrocephalus and aqueduct stenosis. J Neuropathol Exp Neurol 37:56–74PubMedCrossRefGoogle Scholar
  120. Matsushima T, Rhoton AL, Lenkey C (1982) Microsurgery of the fourth ventricle: Part. 1. Microsurgical anatomy. Neurosurgery 11:631–667PubMedCrossRefGoogle Scholar
  121. McLaughlin JF, Loeser JD, Roberts TS (1997) Acquired hydrocephalus associated with superior vena cava syndrome in infants. Childs Nerv Syst 13:59–63PubMedCrossRefGoogle Scholar
  122. Milhorat TH, Kotzen RM, Anzil AP (1994) Stenosis of central canal of spinal cord in man: incidence and pathological findings in 232 autopsy cases. J Neurosurg 80:716–722PubMedCrossRefGoogle Scholar
  123. Miyan JA, Nabiyouni M, Zendah M (2003) Development of the brain: a vital role for cerebrospinal fluid. Can J Physiol Pharmacol 81:317–328PubMedCrossRefGoogle Scholar
  124. Mottolese C, Szathmari A, Beuriat PA (2015) Incidence of pineal tumours. A review of the literature. Neurochirurgie 61:65–69PubMedCrossRefGoogle Scholar
  125. Nauta HJW, Dolan E, Yasargil MG (1983) Microsurgical anatomy of spinal subarachnoid space. Surg Neurol 19:431–437PubMedCrossRefGoogle Scholar
  126. Nigri F, Gobbi GN, da Costa Ferreira Pinto PH, Simoes EL, Caparelli-Daquer EM (2016) Hydrocephalus caused by unilateral foramen of Monro obstruction: a review on terminology. Surg Neurol Int 7:S307–S313PubMedPubMedCentralCrossRefGoogle Scholar
  127. Nishio S, Morioka T, Suzuki S, Fukui M (2002) Tumours around the foramen of Monro: clinical and neuroimaging features and their differential diagnosis. J Clin Neurosci 9:137–141PubMedCrossRefGoogle Scholar
  128. O’Hayon BB, Drake JM, Ossip MG, Tuli S, Clarke M (1998) Frontal and occipital horn ratio: a linear estimate of ventricular size for multiple imaging modalities in pediatric hydrocephalus. Pediatr Neurosurg 29:245–249PubMedCrossRefGoogle Scholar
  129. Ogata H, Oka K, Mitsudome A (1992) Hydrocephalus due to acute aqueductal stenosis following mumps infection: report of a case and review of the literature. Brain Dev 14:417–419PubMedCrossRefGoogle Scholar
  130. Oi S, Matsumoto S (1985) Pathophysiology of nonneoplastic obstruction of the foramen of Monro and progressive unilateral hydrocephalus. Neurosurgery 17:891–896PubMedCrossRefGoogle Scholar
  131. Oi S, Ijichi A, Matsumoto S (1989) Immunohistochemical evaluation of neuronal maturation in untreated fetal hydrocephalus. Neurol Med Chir (Tokyo) 29:989–994CrossRefGoogle Scholar
  132. Olbrich H, Schmidts M, Werner C et al (2012) Recessive HYDIN mutations cause primary ciliary dyskinesia without randomization of left-right body asymmetry. Am J Hum Genet 91:672–684PubMedPubMedCentralCrossRefGoogle Scholar
  133. Paez P, Batiz LF, Roales-Bujan R et al (2007) Patterned neuropathologic events occurring in hyh congenital hydrocephalic mutant mice. J Neuropathol Exp Neurol 66:1082–1092PubMedCrossRefGoogle Scholar
  134. Papaiconomou C, Bozanovic-Sosic R, Zakharov A, Johnston M (2002) Does neonatal cerebrospinal fluid absorption occur via arachnoid projections or extracranial lymphatics? Am J Phys Regul Integr Comp Phys 283:R869–R876Google Scholar
  135. Parker HL, Kernohan JW (1933) Stenosis of the aqueduct of Sylvius. Arch Neurol Psychiatr 29:538–560CrossRefGoogle Scholar
  136. Pasquier L, Marcorelles P, Loget P et al (2009) Rhombencephalosynapsis and related anomalies: a neuropathological study of 40 fetal cases. Acta Neuropathol 117:185–200PubMedCrossRefGoogle Scholar
  137. Paus T (2010) Growth of white matter in the adolescent brain: myelin or axon? Brain Cogn 72:26–35PubMedCrossRefGoogle Scholar
  138. Pennybacker J, Russell DS (1943) Spontaneous ventricular rupture in hydrocephalus, with subtentorial cyst formation. J Neurol Psychiatry 6:38–45PubMedPubMedCentralCrossRefGoogle Scholar
  139. Pfeiffer G, Friede RL (1984) Unilateral hydrocephalus from early developmental occlusion of one foramen of Monro. Acta Neuropathol 64:75–77PubMedCrossRefGoogle Scholar
  140. Portnoy HD, Branch C, Castro ME (1994) The relationship of intracranial venous pressure to hydrocephalus. Childs Nerv Syst 10:29–35PubMedCrossRefGoogle Scholar
  141. Raimondi AJ, Clark SJ, McLone DG (1976) Pathogenesis of aqueductal occlusion in congenital murine hydrocephalus. J Neurosurg 45:66–77PubMedCrossRefGoogle Scholar
  142. Rakic P, Sidman RL (1969) Telencephalic origin of pulvinar neurons in the fetal human brain. Z Anat Entwicklungsgesch 129:53–82PubMedCrossRefGoogle Scholar
  143. Rekate HL (2009) A contemporary definition and classification of hydrocephalus. Semin Pediatr Neurol 16:9–15PubMedCrossRefGoogle Scholar
  144. Rekate HL (2011) A consensus on the classification of hydrocephalus: its utility in the assessment of abnormalities of cerebrospinal fluid dynamics. Childs Nerv Syst 27:1535–1541PubMedPubMedCentralCrossRefGoogle Scholar
  145. Rorke LB (1982) Pathology of perinatal brain injury. Raven Press, New YorkGoogle Scholar
  146. Rosman NP, Shands KN (1978) Hydrocephalus caused by increased intracranial venous pressure: a clinicopathological study. Ann Neurol 3:445–450PubMedCrossRefGoogle Scholar
  147. Russell DS (1949) Observations on the pathology of hydrocephalus. Med Res Counc Spec Rep Ser 265:1–138Google Scholar
  148. Russell DS, Donald C (1935) The mechanism of internal hydrocephalus in spina bifida. Brain 58:203–215CrossRefGoogle Scholar
  149. Sainte-Rose C, LaCombe J, Pierre-Kahn A, Reiner D, Hirsch JF (1984) Intracranial venous sinus hypertension: cause or consequence of hydrocephalus in infants? J Neurosurg 60:727–736PubMedCrossRefGoogle Scholar
  150. Salmon JH (1970) Isolated unilateral hydrocephalus following ventriculoatrial shunt. J Neurosurg 32:219–226PubMedCrossRefGoogle Scholar
  151. Schellinger D, Grant EG, Manz HJ, Patronas NJ, Uscinski RH (1986) Ventricular septa in the neonatal age group: diagnosis and considerations of etiology. Am J Neuroradiol 7:1065–1071PubMedGoogle Scholar
  152. Schultz P, Leeds NE (1973) Intraventricular septations complicating neonatal meningitis. J Neurosurg 38:620–626PubMedCrossRefGoogle Scholar
  153. Sival DA, Guerra M, den Dunnen WF, Batiz LF, Alvial G, Castaneyra-Perdomo A, Rodriguez EM (2011) Neuroependymal denudation is in progress in full-term human foetal spina bifida aperta. Brain Pathol 21:163–179PubMedCrossRefGoogle Scholar
  154. Siyahhan B, Knobloch V, de Zelicourt D, Asgari M, Schmid Daners M, Poulikakos D, Kurtcuoglu V (2014) Flow induced by ependymal cilia dominates near-wall cerebrospinal fluid dynamics in the lateral ventricles. J R Soc Interface 11:20131189PubMedPubMedCentralCrossRefGoogle Scholar
  155. Solomon DA, Wood MD, Tihan T, Bollen AW, Gupta N, Phillips JJ, Perry A (2016) Diffuse midline gliomas with histone H3-K27M mutation: a series of 47 cases assessing the spectrum of morphologic variation and associated genetic alterations. Brain Pathol 26:569–580PubMedCrossRefGoogle Scholar
  156. Spennato P, Mirone G, Nastro A et al (2011) Hydrocephalus in Dandy-Walker malformation. Childs Nerv Syst 27:1665–1681PubMedCrossRefGoogle Scholar
  157. Squier W, Lindberg E, Mack J, Darby S (2009) Demonstration of fluid channels in human dura and their relationship to age and intradural bleeding. Childs Nerv Syst 25:925–931PubMedCrossRefGoogle Scholar
  158. St. Lawrence KS, Owen D, Wang DJ (2012) A two-stage approach for measuring vascular water exchange and arterial transit time by diffusion-weighted perfusion MRI. Magn Reson Med 67:1275–1284PubMedCrossRefGoogle Scholar
  159. Starke RM, Cappuzzo JM, Erickson NJ, Sherman JH (2016) Pineal cysts and other pineal region malignancies: determining factors predictive of hydrocephalus and malignancy. J Neurosurg 127:1–6Google Scholar
  160. Steinbok P, Hall J, Flodmark O (1989) Hydrocephalus in achondroplasia: the possible role of intracranial venous hypertension. J Neurosurg 71:42–48PubMedCrossRefGoogle Scholar
  161. Symss NP, Oi S (2013) Theories of cerebrospinal fluid dynamics and hydrocephalus: historical trend. J Neurosurg Pediatr 11:170–177PubMedCrossRefGoogle Scholar
  162. Taggart JK, Walker AE (1942) Congenital atresia of the foramens of Luschka and Magendie. Arch Neurol Psychiatr 48:583–612CrossRefGoogle Scholar
  163. Taylor WJ, Hayward RD, Lasjaunias P, Britto JA, Thompson DN, Jones BM, Evans RD (2001) Enigma of raised intracranial pressure in patients with complex craniosynostosis: the role of abnormal intracranial venous drainage. J Neurosurg 94:377–385PubMedCrossRefGoogle Scholar
  164. Torkildsen A (1948) Spontaneous rupture of the cerebral ventricles. J Neurosurg 5:327–339PubMedCrossRefGoogle Scholar
  165. Tubbs RS, Hansasuta A, Stetler W et al (2007) Human spinal arachnoid villi revisited: immunohistological study and review of the literature. J Neurosurg Spine 7:328–331PubMedCrossRefGoogle Scholar
  166. Tulipan N, Sutton LN, Bruner JP, Cohen BM, Johnson M, Adzick NS (2003) The effect of intrauterine myelomeningocele repair on the incidence of shunt-dependent hydrocephalus. Pediatr Neurosurg 38:27–33PubMedCrossRefGoogle Scholar
  167. Tulipan N, Wellons JC, Thom EA et al (2015) Prenatal surgery for myelomeningocele and the need for cerebrospinal fluid shunt placement. J Neurosurg Pediatr 16:613–620PubMedPubMedCentralCrossRefGoogle Scholar
  168. Turnbull IM, Drake CG (1966) Membranous occlusion of the aqueduct of Sylvius. J Neurosurg 24:24–34CrossRefGoogle Scholar
  169. Uematsu Y, Komai N, Hirano A et al (1993) Cytokeratin immunohistochemical study of epithelial cysts in the central nervous system: with special reference to origins of colloid cyst of the third ventricle and Rathke’s cleft cyst in the sella. Noshuyo Byori 10:43–52PubMedGoogle Scholar
  170. Vetsika EK, Bannister CM, Buckle AM, Miyan JA (1999) The effects of CSF blockage in early-onset hydrocephalus on the activity of the germinal epithelium. Eur J Pediatr Surg 1:43–44Google Scholar
  171. Vieira JP, Lopes P, Silva R (2012) Primary ciliary dyskinesia and hydrocephalus with aqueductal stenosis. J Child Neurol 27:938–941PubMedCrossRefGoogle Scholar
  172. Wagner C, Batiz LF, Rodriguez S et al (2003) Cellular mechanisms involved in the stenosis and obliteration of the cerebral aqueduct of hyh mutant mice developing congenital hydrocephalus. J Neuropathol Exp Neurol 62:1019–1040PubMedCrossRefGoogle Scholar
  173. Webb SJ, Monk CS, Nelson CA (2001) Mechanisms of postnatal neurobiological development: implications for human development. Dev Neuropsychol 19:147–171PubMedCrossRefGoogle Scholar
  174. Weller RO (2005) Microscopic morphology and histology of the human meninges. Morphologie 89:22–34PubMedCrossRefGoogle Scholar
  175. Weller RO, Shulman K (1972) Infantile hydrocephalus: clinical, histological, and ultrastructural study of brain damage. J Neurosurg 36:255–265PubMedCrossRefGoogle Scholar
  176. Wilberger JE Jr, Vertosick FT Jr, Vries JK (1983) Unilateral hydrocephalus secondary to congenital atresia of the foramen of Monro. Case report. J Neurosurg 59:899–901PubMedCrossRefGoogle Scholar
  177. Wilkins RH, Odom GL (1974) Ependymal-choroidal cells in cerebrospinal fluid. Increased incidence in hydrocephalic infants. J Neurosurg 41:555–560PubMedCrossRefGoogle Scholar
  178. Williams VJ, Juranek J, Stuebing KK et al (2015) Postshunt lateral ventricular volume, white matter integrity, and intellectual outcomes in spina bifida and hydrocephalus. J Neurosurg Pediatr 15:1–10CrossRefGoogle Scholar
  179. Yakovlev PI, Lecours AR (1967) The myelogenetic cycles of regional maturation of the brain. In: Minkowski A (ed) Regional development of the brain in early life. Blackwell Scientific Publications, Oxford, pp 3–70Google Scholar
  180. Yamamoto H, Maruo T, Majima T et al (2013) Genetic deletion of afadin causes hydrocephalus by destruction of adherens junctions in radial glial and ependymal cells in the midbrain. PLoS One 8:e80356PubMedPubMedCentralCrossRefGoogle Scholar
  181. Yashon D, Jane JA, Sugar O (1965) The course of severe untreated infantile hydrocephalus. Prognostic significance of the cerebral mantle. J Neurosurg 23:509–516PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PathologyUniversity of ManitobaWinnipegCanada
  2. 2.Shared Services ManitobaWinnipegCanada
  3. 3.Children’s Hospital Research Institute of ManitobaWinnipegCanada
  4. 4.Department of Pathology, College of Medicine, Faculty of Health SciencesUniversity of ManitobaWinnipegCanada

Personalised recommendations