Choroid Plexus: Source of Cerebrospinal Fluid and Regulator of Brain Development and Function

  • Robert SnodgrassEmail author
  • Conrad E. Johanson
Living reference work entry


Thomas Willis in 1664 suggested that the cerebral ventricles contain fluid produced by the choroid plexus, but this was not established until the 19th century. Dandy and Blackfan produced experimental hydrocephalus and reported that choroid plexus (CP) ablation decreased its severity; this strongly implicated CP in generating CSF and ventricular pressure. Choroid plexuses produce most cerebrospinal fluid (CSF), proteins, and small molecules, regulate the entry of ions and vitamins into the central nervous system, and have immunological and endocrine regulatory functions. CP is the single most important brain-immune interface; the CSF is its channel of communication with the brain. Substantial loss of CP may harm CSF-brain biochemical interactions. Early attempts to control human hydrocephalus by CP ablation produced poor outcomes. Currently, however, combined choroid plexus coagulation (CPC) and endoscopic third ventriculostomy (ETV) are used for resolving infant hydrocephalus and protecting brain against elevated ICP. Still, does addition of CPC to ETV significantly improve long-term outcomes? How does the brain compensate, if it does, for loss of CP homeostatic mechanisms involving endocrine and immunologic phenomena? Clinical studies of CPC should examine possible effects on synaptic plasticity, neurogenesis, and cognition.


Choroid plexus Ion transport Cerebrospinal fluid secretion Blood-CSF Barrier Hydrocephalus Ependyma Homeostasis Neurogenesis Intracranial pulsation Brain development 


  1. Abbott NJ (2004) Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int 45:545–552PubMedCrossRefGoogle Scholar
  2. Abbott NJ, Patabendige AA, Dolman DE et al (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37:13–25PubMedCrossRefGoogle Scholar
  3. Abraham CR, Mullen PC, Tucker-Zhou T et al (2016) Klotho is a neuroprotective and cognition-enhancing protein. Vitam Horm 101:215–238PubMedCrossRefGoogle Scholar
  4. Akimoto T, Shiizaki K, Sugase T et al (2012) The relationship between the soluble Klotho protein and the residual renal function among peritoneal dialysis patients. Clin Exp Nephrol 16:442–447PubMedCrossRefGoogle Scholar
  5. Alvarez-Erviti L, Seow Y, Fang HY et al (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29:341–347PubMedCrossRefGoogle Scholar
  6. Ariens Kappers J (1958) Structural and functional changes in the telencephalic choroid plexus during human ontogenesis. In: Wolstenholme GEW, O’Connor CM (eds) Ciba foundation symposium – the cerebrospinal fluid: production, circulation and absorption. Little Brown, Boston, pp 3–31Google Scholar
  7. Baruch K, Schwartz M (2013) CNS-specific T cells shape brain function via the choroid plexus. Brain Behav Immun 34:11. pii: S0889-1591 (13) 00142-6PubMedCrossRefGoogle Scholar
  8. Beby F, Lamonerie T (2013) The homeobox gene Otx2 in development and disease. Exp Eye Res 111:9–16PubMedCrossRefGoogle Scholar
  9. Becker NH, Sutton CH (1963) Pathologic features of the choroid plexus. 1. Cytochemical effects of hypervitaminosis A. Am J Pathol 43:1017–1030PubMedPubMedCentralGoogle Scholar
  10. Begcevic I, Brinc D, Drabovich AP et al (2016) Identification of brain-enriched proteins in the cerebrospinal fluid proteome by LC-MS/MS profiling and mining of the human protein atlas. Clin Proteomics 13:11PubMedPubMedCentralCrossRefGoogle Scholar
  11. Benarroch EE (2015) Brain-derived neurotrophic factor: regulation, effects, and potential clinical relevance. Neurology 84:1693–1704PubMedCrossRefGoogle Scholar
  12. Benoit J, Ayoubb AE, Rakic P (2015) Transcriptomics of critical period of visual cortical plasticity in mice. Proc Natl Acad Sci U S A 112:8094–8099PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bentivoglio M, Kristensson K (2014) Tryps and trips: cell trafficking across the 100-year-old blood-brain barrier. Trends Neurosci 37:325–333PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bering EA Jr (1955) Choroid plexus and arterial pulsation of cerebrospinal fluid; demonstration of the choroid plexuses as a cerebrospinal fluid pump. AMA Arch Neurol Psychiatry 73:165–172PubMedCrossRefGoogle Scholar
  15. Bering EA Jr (1962) Circulation of the cerebrospinal fluid. Demonstration of the choroid plexuses as the generator of the force for flow of fluid and ventricular enlargement. J Neurosurg 19:405–413PubMedCrossRefGoogle Scholar
  16. Bernard C, Vincent C, Testa D et al (2016) A mouse model for conditional secretion of specific single-chain antibodies provides genetic evidence for regulation of cortical plasticity by a non-cell autonomous homeoprotein transcription factor. PLoS Genet 12:e1006035. Scholar
  17. Bjorefeldt A, Wasling P, Zetterberg H et al (2016) Neuromodulation of fast-spiking and non-fast-spiking hippocampal CA1 interneurons by human cerebrospinal fluid. J Physiol 594:937–952. Scholar
  18. Bogomyakova O, Stankevich Y, Mesropyan N et al (2016) Evaluation of the flow of cerebrospinal fluid as well as gender and age characteristics in patients with communicating hydrocephalus, using phase-contrast magnetic resonance imaging. Acta Neurol Belg 116(4):495–501PubMedCrossRefGoogle Scholar
  19. Bradbury MW, Cole DF (1980) The role of the lymphatic system in drainage of cerebrospinal fluid and aqueous humour. J Physiol 299:353–365PubMedPubMedCentralCrossRefGoogle Scholar
  20. Brinker T, Stopa E, Morrison J et al (2014) A new look at cerebrospinal fluid circulation. Fluids Barriers CNS 11:10. Scholar
  21. Brouwer MC, McIntyre P, Prasad K et al (2015) Corticosteroids for acute bacterial meningitis. Cochrane Database Syst Rev 12:CD004405Google Scholar
  22. Bueno D, Garcia-Fernàndez J (2016) Evolutionary development of embryonic cerebrospinal fluid composition and regulation: an open research field with implications for brain development and function. Fluids Barriers CNS 13:5. Scholar
  23. Cains S, Shepherd A, Nabiuni M et al (2009) Addressing a folate imbalance in fetal cerebrospinal fluid can decrease the incidence of congenital hydrocephalus. J Neuropathol Exp Neurol 68:404–416PubMedCrossRefGoogle Scholar
  24. Capel C, Makki M, Gondry-Jouet C et al (2014) Insights into cerebrospinal fluid and cerebral blood flows in infants and young children. J Child Neurol 29:1608–1615PubMedCrossRefGoogle Scholar
  25. Chau KF, Springel MW, Broadbelt KG et al (2015) Progressive differentiation and instructive capacities of amniotic fluid and cerebrospinal fluid proteomes following neural tube closure. Dev Cell 35:789–802PubMedPubMedCentralCrossRefGoogle Scholar
  26. Codazzi F, Pelizzoni I, Zacchetti D et al (2015) Iron entry in neurons and astrocytes: a link with synaptic activity. Front Mol Neurosci 8:18. Scholar
  27. Connor JR, Ponnuru P, Wang XS et al (2011) Profile of altered brain iron acquisition in restless legs syndrome. Brain 134(Pt 4):959–968PubMedPubMedCentralCrossRefGoogle Scholar
  28. Cushing H (1914) Studies on the cerebro-spinal fluid. J Med Res 31:1–19PubMedPubMedCentralGoogle Scholar
  29. Damkier HH, Brown PD, Praetorius J (2013) Cerebrospinal fluid secretion by the choroid plexus. Physiol Rev 93:1847–1892PubMedCrossRefGoogle Scholar
  30. Dandy WE (1918) Extirpation of the choroid plexus of the lateral ventricles in communicating hydrocephalus. Ann Surg 68:569–579PubMedPubMedCentralCrossRefGoogle Scholar
  31. Dandy WE, Blackfan KD (1914) Internal hydrocephalus an experimental, clinical and pathological study. Am J Dis Child 8:406–482CrossRefGoogle Scholar
  32. Davson H (1962) The blood-cerebrospinal fluid and blood-brain barriers. Ergeb Physiol 52:20–73, 1963CrossRefGoogle Scholar
  33. de Graaf MT, Smitt PA, Luitwieler RL et al (2011) Central memory CD4+ T cells dominate the normal cerebrospinal fluid. Cytometry B Clin Cytom 80(1):43–50PubMedCrossRefGoogle Scholar
  34. De Spiegelaere W, Casteleyn C, Van den Broeck W et al (2008) Electron microscopic study of the porcine choroid plexus epithelium. Anat Histol Embryol 37:458–463PubMedCrossRefGoogle Scholar
  35. Deczkowska A, Baruch K, Schwartz M (2016) Type I/II interferon balance in the regulation of brain physiology and pathology. Trends Immunol 37:181–192PubMedCrossRefGoogle Scholar
  36. Del Bigio MR, Di Curzio D (2016) Nonsurgical therapy for hydrocephalus: a comprehensive and critical review. Fluids Barriers CNS 13:3. Scholar
  37. Demeestere D, Libert C, Roosmarijn E et al (2015) Therapeutic implications of the choroid plexus–cerebrospinal fluid interface in neuropsychiatric disorders. Brain Behav Immun 50:1–13. Scholar
  38. Dempsey EW (1968) Fine structure of the rat’s intercolumnar tubercle and its adjacent ependyma and choroid plexus, with especial reference to the appearance of its sinusoidal vessels in experimental argyria. Exp Neurol 22:568–589PubMedCrossRefGoogle Scholar
  39. Dreha-Kulaczewski S, Joseph AA, Merboldt KD et al (2015) Inspiration is the major regulator of human CSF flow. J Neurosci 35:2485–2491PubMedCrossRefGoogle Scholar
  40. Driggers RW, Ho CY, Korhonen EM et al (2016) Zika virus infection with prolonged maternal viremia and fetal brain abnormalities. N Engl J Med 374:2142–2151PubMedCrossRefGoogle Scholar
  41. Dziegielewska KM, Ek J, Habgood MD et al (2001) Development of the choroid plexus. Microsc Res Tech 52:5–20PubMedCrossRefGoogle Scholar
  42. Eboli P, Danielpour M (2011) Acute obstructive hydrocephalus due to a large posterior third ventricle choroid plexus cyst. Pediatr Neurosurg 47:292–294PubMedCrossRefGoogle Scholar
  43. Egnor M, Zheng L, Rosiello A et al (2002) A model of pulsations in communicating hydrocephalus. Pediatr Neurosurg 36:281–303PubMedCrossRefGoogle Scholar
  44. Eisenberg HM, McComb JG, Lorenzo AV (1974) Cerebrospinal fluid overproduction and hydrocephalus associated with choroid plexus papilloma. J Neurosurg 40:381–385PubMedCrossRefGoogle Scholar
  45. Ellis DZ, Nathanson JA, Sweadner KJ (2000) Carbachol inhibits Na(+)-K(+)-ATPase activity in choroid plexus via stimulation of the NO/cGMP pathway. Am J Physiol Cell Physiol 279:C1685–C1693PubMedCrossRefGoogle Scholar
  46. Engelhardt B, Sorokin L (2009) The blood-brain and the blood-cerebrospinal fluid barriers: function and dysfunction. Semin Immunopathol 31:497–511PubMedCrossRefGoogle Scholar
  47. Faraci FM, Mayhan WG, Heistad DD (1990) Effect of vasopressin on production of cerebrospinal fluid: possible role of vasopressin (V1)-receptors. Am J Phys 258:R94–R98Google Scholar
  48. Findlay JW (1899) The choroid plexuses of the lateral ventricles of the brain, their histology, normal and pathological, (in relation specially to insanity). Brain 22:11–25CrossRefGoogle Scholar
  49. Fong K, Chong K, Toi A et al (2011) Fetal ventriculomegaly secondary to isolated large choroid plexus cysts: prenatal findings and postnatal outcome. Prenat Diagn 31:395–400PubMedCrossRefGoogle Scholar
  50. Fujimoto Y, Matsushita H, Plese JP et al (2004) Hydrocephalus due to diffuse villous hyperplasia of the choroid plexus. Case report and review of the literature. Pediatr Neurosurg 40:32–36PubMedCrossRefGoogle Scholar
  51. Gan CW, Feng SS (2010) Transferrin-conjugated nanoparticles of poly(lactide)-D-alpha-tocopheryl polyethylene glycol succinate diblock copolymer for targeted drug delivery across the blood-brain barrier. Biomaterials 31:7748–7757PubMedCrossRefGoogle Scholar
  52. Grapp M, Wrede A, Schweizer M et al (2013) Choroid plexus transcytosis and exosome shuttling deliver folate into brain parenchyma. Nat Commun 4:2123. Scholar
  53. Guerra MM, Gonzalez C, Caprile T et al. (2015) Understanding how the subcommissural organ and other periventricular secretoary structures contribute via the cerebrospinal fluid to neurogenesis. Front Cell Neurosci 9:480. Scholar
  54. Hendrix S, Nitsch R (2007) The role of T helper cells in neuroprotection and regeneration. J Neuroimmunol 184:100–112PubMedCrossRefGoogle Scholar
  55. Hickey WF, Hsu BL, Kimura H (1991) T-lymphocyte entry into the central nervous system. J Neurosci Res 28:254–260PubMedCrossRefGoogle Scholar
  56. Hladky SB, Barrand MA (2014) Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS 11:26. Scholar
  57. Ho NF, Hooker JM, Sahay A et al (2013) In vivo imaging of adult human hippocampal neurogenesis: progress, pitfalls and promise. Mol Psychiatry 18:404–416PubMedPubMedCentralCrossRefGoogle Scholar
  58. Horvath E, Kovacs K, Scheithauer BW (1999) Pituitary hyperplasia. Pituitary 1:169–179PubMedCrossRefGoogle Scholar
  59. Huang CL (2010) Regulation of ion channels by secreted Klotho: mechanisms and implications. Kidney Int 77:855–860PubMedCrossRefGoogle Scholar
  60. Huh MS, Todd MAM, Picketts DJ (2009) SCO-ping out the mechanisms underlying the etiology of hydrocephalus. Physiology 24:117–126PubMedCrossRefGoogle Scholar
  61. Janssen SF, van der Spek SJ, Ten Brink JB et al (2013) Gene expression and functional annotation of the human and mouse choroid plexus epithelium. PLoS One 8:e83345PubMedPubMedCentralCrossRefGoogle Scholar
  62. Johanson CE, Johanson NLW (2016) Merging transport data for choroid plexus with blood-brain barrier to model CNS homeostasis and disease more effectively. CNS Neurol Dis- Drug Targets 15:1151–1180CrossRefGoogle Scholar
  63. Johanson CE, Donahue JE, Spangenberger A et al (2006) Atrial natriuretic peptide: its putative role in modulating the choroid plexus-CSF system for intracranial pressure regulation. Acta Neurochir Suppl 96:451–456PubMedCrossRefGoogle Scholar
  64. Johanson CE, Duncan JA 3rd, Klinge PM et al (2008) Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res 5:10PubMedPubMedCentralCrossRefGoogle Scholar
  65. Johanson CE, Stopa EG, McMillan PN (2011) The blood-cerebrospinal fluid barrier: structure and functional significance. Methods Mol Biol 686:101–131PubMedCrossRefGoogle Scholar
  66. Kahle KT, Kulkarni AV, Limbrick DD Jr et al (2016) Hydrocephalus in children. Lancet 387:788–799PubMedCrossRefGoogle Scholar
  67. Kanat A, Turkmenoglu O, Aydin MD et al (2013) Toward changing of the pathophysiologic basis of acute hydrocephalus after subarachnoid hemorrhage: a preliminary experimental study. World Neurosurg 80:390–395PubMedCrossRefGoogle Scholar
  68. Kaur C, Rathnasamy G, Ling EA (2016) The choroid plexus in healthy and diseased brain. J Neuropathol Exp Neurol 75:198. pii: nlv030. [Epub ahead of print]PubMedCrossRefGoogle Scholar
  69. Kelly EJ, Yamada S (2016) Cerebrospinal fluid flow studies and recent advancements. Semin Ultrasound CT MR 37:92–99PubMedCrossRefGoogle Scholar
  70. Kim KS (2008) Mechanisms of microbial traversal of the blood-brain barrier. Nat Rev Microbiol 6:625–634PubMedPubMedCentralCrossRefGoogle Scholar
  71. Kishimoto N, Sawatomo K (2012) Planar polarity of ependymal cilia. Differentiation 83:S86–S90PubMedCrossRefGoogle Scholar
  72. Kiviniemi V, Wang X, Korhonen V et al (2016) Ultra-fast magnetic resonance encephalography of physiological brain activity – Glymphatic pulsation mechanisms? J Cereb Blood Flow Metab 36:1033–1045PubMedCrossRefGoogle Scholar
  73. Kivisakk P, Mahad DJ, Callahan MK et al (2003) Human cerebrospinal fluid central memory CD4+ T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. Proc Natl Acad Sci U S A 100:8389–8394PubMedPubMedCentralCrossRefGoogle Scholar
  74. Klosovski BN (1963) The development of the brain and its disturbance by harmful factors. Macmillan, New YorkGoogle Scholar
  75. Knuckey NW, Preston J, Palm D et al (1993) Hydrocephalus decreases chloride efflux from the choroid plexus epithelium. Brain Res 618:313–317PubMedCrossRefGoogle Scholar
  76. Kulkarni AV, Shams I, Cochrane DD et al (2010) Quality of life after endoscopic third ventriculostomy and cerebrospinal fluid shunting: an adjusted multivariable analysis in a large cohort. J Neurosurg Pediatr 6:11–16PubMedCrossRefGoogle Scholar
  77. Kulkarni AV, Riva-Cambrin J, Browd SR et al (2014) Endoscopic third ventriculostomy and choroid plexus cauterization in infants with hydrocephalus: a retrospective hydrocephalus clinical research network study. J Neurosurg Pediatr 14:224–229PubMedCrossRefGoogle Scholar
  78. Kunis G, Baruch K, Rosenzweig N et al (2013) IFN-γ-dependent activation of the brain’s choroid plexus for CNS immune surveillance and repair. Brain 136:3427–3440PubMedCrossRefGoogle Scholar
  79. Kurts C, Panzer U, Anders H-J et al (2013) The immune system and kidney disease: basic concepts and clinical implications. Nat Rev Immunol 13:738–753PubMedCrossRefGoogle Scholar
  80. Lach B, Haust MD (2011) Nodular lesions of choroid plexus in Hurler disease. Fetal Pediatr Pathol 33:189–198CrossRefGoogle Scholar
  81. Lagaraine C, Skipor J, Szczepkowska A et al (2011) Tight junction proteins vary in the choroid plexus of ewes according to photoperiod. Brain Res 1393:44–51PubMedCrossRefGoogle Scholar
  82. Lehtinen MK, Zappaterra MW, Chen X et al (2011) The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron 69:893–905PubMedPubMedCentralCrossRefGoogle Scholar
  83. Levine S (1987) Choroid plexus: target for systemic disease and pathway to the brain. Lab Investig 56:231–233PubMedGoogle Scholar
  84. Li X, Tsibouklis J, Weng T et al (2016) Nano carriers for drug transport across the blood–brain barrier. J Drug Target.
  85. Liddelow SA (2015) Development of the choroid plexus and blood-CSF barrier. Front Neurosci 9:32PubMedPubMedCentralCrossRefGoogle Scholar
  86. Lindvall M, Owman C (1981) Autonomic nerves in the mammalian choroid plexus and their influence on the formation of cerebrospinal fluid. J Cereb Blood Flow Metab 1:245–266PubMedCrossRefGoogle Scholar
  87. Liu T, Jin X, Prasad RM (2014) Three types of ependymal cells with intracellular calcium oscillation are characterized by distinct cilia beating properties. J Neurosci Res 92:1199–1204PubMedCrossRefGoogle Scholar
  88. Lovell MA, Robertson JD, Teesdale WJ et al (1998) Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci 158:47–52PubMedCrossRefGoogle Scholar
  89. Lun MP, Monuki ES, Lehtinen MK (2015) Development and functions of the choroid plexus-cerebrospinal fluid system. Nat Rev Neurosci 16:445–457PubMedPubMedCentralCrossRefGoogle Scholar
  90. Mabrouk OS, Falk T, Sherman SJ et al (2012) CNS penetration of the opioid glycopeptide MMP-2200: a microdialysis study. Neurosci Lett 531:99–103PubMedPubMedCentralCrossRefGoogle Scholar
  91. Maher CO, Platt JH Jr (2015) Incidental findings on brain and spine imaging in children. Pediatrics 135:e1084–e1096. Scholar
  92. Mandell JG, Kulkarni AV, Warf BC (2015) Volumetric brain analysis in neurosurgery: part 2. Brain and CSF volumes discriminate neurocognitive outcomes in hydrocephalus. J Neurosurg Pediatr 15:125–132PubMedCrossRefGoogle Scholar
  93. Marques F, Sousa JC (2015) The choroid plexus is modulated by various peripheral stimuli: implications to diseases of the central nervous system. Front Cell Neurosci 9:136PubMedPubMedCentralCrossRefGoogle Scholar
  94. Marques F, Sousa JC, Coppola G et al (2009) The choroid plexus response to a repeated peripheral inflammatory stimulus. BMC Neurosci 10:135PubMedPubMedCentralCrossRefGoogle Scholar
  95. Mashayekhi F, Draper CE, Bannister CM (2002) Deficient cortical development in the hydrocephalic Texas (H-Tx) rat: a role for CSF. Brain 125(Pt 8):1859–1874PubMedCrossRefGoogle Scholar
  96. Matsumae M, Hirayama A, Atsumi H et al (2014) Velocity and pressure gradients of cerebrospinal fluid assessed with magnetic resonance imaging. J Neurosurg 120:218–227PubMedCrossRefGoogle Scholar
  97. Milhorat TH (1974) Failure of choroid plexectomy as treatment for hydrocephalus. Surg Gynecol Obstet 139:505–508PubMedGoogle Scholar
  98. Milhorat TH (1975) The third circulation revisited. J Neurosurg 42:628–645PubMedCrossRefGoogle Scholar
  99. Milhorat TH, Hammock MK, Chien T et al (1976) Normal rate of cerebrospinal fluid formation five years after bilateral choroid plexus extirpation. Case report. J Neurosurg 44:735–739PubMedCrossRefGoogle Scholar
  100. Millar ID, Bruce JI, Brown PD (2007) Ion channel diversity, channel expression and function in the choroid plexuses. Cerebrospinal Fluid Res 4:8PubMedPubMedCentralCrossRefGoogle Scholar
  101. Miyan JA, Nabiyouni M, Zendah M (2003) Development of the brain: a vital role for cerebrospinal fluid. Can J Physiol Pharmacol 81:317–328PubMedCrossRefGoogle Scholar
  102. Mogk S, Meiwes A, Boßelmann CM et al (2014) The lane to the brain: how African trypanosomes invade the CNS. Trends Parasitol 30:470–477PubMedCrossRefGoogle Scholar
  103. Morishita H, Hensch TK (2008) Critical period revisited: impact on vision. Curr Opin Neurobiol 18:101–107PubMedCrossRefGoogle Scholar
  104. Muller WA (2009) Mechanisms of transendothelial migration of leukocytes. Circ Res 105:223–230PubMedPubMedCentralCrossRefGoogle Scholar
  105. Narita K, Takeda S (2015) Cilia in the choroid plexus: their roles in hydrocephalus and beyond. Front Cell Neurosci 9:39PubMedPubMedCentralCrossRefGoogle Scholar
  106. Netsky MG, Shuangshoti S (eds) (1975) The choroid plexus in health and disease. University Press of Virginia, CharlottesvilleGoogle Scholar
  107. Ousman SS, Kubes P (2012) Immune surveillance in the central nervous system. Nat Neurosci 15:1096–1101PubMedCrossRefGoogle Scholar
  108. Owens T, Bechmann I, Engelhardt B (2008) Perivascular spaces and the two steps to neuroinflammation. J Neuropathol Exp Neurol 67:1113–1121PubMedCrossRefGoogle Scholar
  109. Papadopoulos MC, Verkman AS (2013) Aquaporin water channels in the nervous system. Nat Rev Neurosci 14:265–277PubMedPubMedCentralCrossRefGoogle Scholar
  110. Philippidou P, Dasen JS (2013) Hox genes: choreographers in neural development, architects of circuit organization. Neuron 80:12–34PubMedCrossRefGoogle Scholar
  111. Pindrik J, Rocque BG, Arynchyna AA et al (2016) Radiographic markers of clinical outcomes after endoscopic third ventriculostomy with choroid plexus cauterization: cerebrospinal fluid turbulence and choroid plexus visualization. J Neurosurg Pediatr 18:287–295. [Epub ahead of print]PubMedPubMedCentralCrossRefGoogle Scholar
  112. Popescu BO, Gherghiceanu M, Kostin S et al (2012) Telocytes in meninges and choroid plexus. Neurosci Lett 516:265–269PubMedCrossRefGoogle Scholar
  113. Prasongchean W, Vernay B, Asgarian Z et al (2015) The neural milieu of the developing choroid plexus: neural stem cells, neurons and innervation. Front Neurosci 9:103. Scholar
  114. Prochiantz A, Di Nardo AA (2015) Homeoprotein signaling in the developing and adult nervous system. Neuron 85:911–925PubMedPubMedCentralCrossRefGoogle Scholar
  115. Prodinger C, Bunse J, Kruger M et al (2011) CD11c-expressing cells reside in the juxtavascular parenchyma and extend processes into the glia limitans of the mouse nervous system. Acta Neuropathol 121:445–458PubMedCrossRefGoogle Scholar
  116. Pruski M, Rajnicek A, Yang Z et al (2016) The ciliary GTPase Arl13b regulates cell migration and cell cycle progression. Cell Adhes Migr 10:1–13CrossRefGoogle Scholar
  117. Reeder JD, Kaude JV, Setzer ES (1982) Choroid plexus hemorrhage in premature neonates: recognition by sonography. AJNR Am J Neuroradiol 3:619–622PubMedGoogle Scholar
  118. Rouault TM, Zhang D-l, Jeong SY (2009) Brain iron homeostasis, the choroid plexus, and localization of iron transport proteins. Metab Brain Dis 24:673–684PubMedPubMedCentralCrossRefGoogle Scholar
  119. Sandberg DI, Chamiraju P, Zoeller G et al (2012) Endoscopic choroid plexus coagulation in infants with hydranencephaly or hydrocephalus with a minimal cortical mantle. Pediatr Neurosurg 48:6–12PubMedCrossRefGoogle Scholar
  120. Satir P, Christensen ST (2007) Overview of structure and function of mammalian cilia. Annu Rev Physiol 69:377–400PubMedCrossRefGoogle Scholar
  121. Saunders NR, Dziegielewska KM, Møllgård K et al (2015) Influx mechanisms in the embryonic and adult rat choroid plexus: a transcriptome study. Front Neurosci 9:123. Scholar
  122. Saunders NR, Habgood MD, Møllgård K et al (2016) The biological significance of brain barrier mechanisms: help or hindrance in drug delivery to the central nervous system. F1000Res 5. pii: F1000 Faculty Rev-313
  123. Schwerk C, Tenenbaum T, Kim KS et al (2015) The choroid plexus- a multi-role player during infectious diseases of the CNS. Front Cell Neurosci 9:80. Scholar
  124. Semba RD, Moghekar AR, Hu J et al (2014) Klotho in the cerebrospinal fluid of adults with and without Alzheimer’s disease. Neurosci Lett 558:37–40PubMedCrossRefGoogle Scholar
  125. Shuangshoti S, Netsky MG (1966) Neuroepithelial (colloid) cysts of the nervous system: further observations on pathogenesis, location, incidence, and histochemistry. Neurology 16:887–903CrossRefGoogle Scholar
  126. Silverberg GD, Heit G, Huhn S et al (2001) The cerebrospinal fluid production rate is reduced in dementia of the Alzheimer’s type. Neurology 57:1763–1766PubMedCrossRefGoogle Scholar
  127. Silverberg GD, Huhn S, Jaffe RA et al (2002) Downregulation of cerebrospinal fluid production in patients with chronic hydrocephalus. J Neurosurg 97:1271–1275PubMedCrossRefGoogle Scholar
  128. Sopjani M, Dërmaku-Sopjani M (2016) Klotho-dependent cellular transport regulation. Vitam Horm 101:59–84PubMedCrossRefGoogle Scholar
  129. Spector R (2010) Nature and consequences of mammalian brain and CSF efflux transporters: four decades of progress. J Neurochem 112:13–23PubMedCrossRefGoogle Scholar
  130. Spector R, Johanson CE (2014) The nexus of vitamin homeostasis and DNA synthesis and modification in mammalian brain. Mol Brain 7:3. Scholar
  131. Spector R, Lorenzo AV (1975) Folate transport in the central nervous system. Am J Phys 229:777–782Google Scholar
  132. Spector R, Keep RF, Snodgrass SR et al (2015a) A balanced view of choroid plexus structure and function: focus on adult humans. Exp Neurol 267:78–86PubMedCrossRefGoogle Scholar
  133. Spector R, Snodgrass SR, Johanson CE (2015b) A balanced view of the cerebrospinal fluid composition and functions: focus on adult humans. Exp Neurol 273:57–68PubMedCrossRefGoogle Scholar
  134. Steinfeld R, Grapp M, Kraetzner R (2009) Folate receptor alpha defect causes cerebral folate transport deficiency: a treatable neurodegenerative disorder associated with disturbed myelin metabolism. Am J Hum Genet 85:354–363PubMedPubMedCentralCrossRefGoogle Scholar
  135. Stephan AH, Barres BA, Stevens B (2012) The complement system: an unexpected role in synaptic pruning during development and disease. Annu Rev Neurosci 35:369–389PubMedCrossRefGoogle Scholar
  136. Stern L (1921) Le liquide céfalo-rachidien au point de vue de ses rapports avec la circulation sanguine et avec les éléments nerveux de l’axe cérébrospinal. Schweiz Arch Neurol Psychiatr 8:215–232Google Scholar
  137. Stranahan AM, Hao S, Dey A et al (2016) Blood-brain barrier breakdown promotes macrophage infiltration and cognitive impairment in leptin receptor-deficient mice. J Cereb Blood Flow Metab 36:2108–2121PubMedPubMedCentralCrossRefGoogle Scholar
  138. Tennyson VM, Pappas GD (1968) The fine structure of the choroid plexus adult and developmental stages. Prog Brain Res 29:63–85PubMedCrossRefGoogle Scholar
  139. Tietz S, Engelhardt B (2015) Brain barriers: crosstalk between complex tight junctions and adherens junctions. J Cell Biol 209:493–506PubMedPubMedCentralCrossRefGoogle Scholar
  140. Tirapelli DP, Lopes Lda S, Lachat JJ et al (2007) Ultrastructural study of the lateral ventricle choroid plexus in experimental hydrocephalus in Wistar rats. Arq Neuropsiquiatr 65:974–977PubMedCrossRefGoogle Scholar
  141. Tomás J, Santos CR, Quintela T, Gonçalves I (2016) “Tasting” the cerebrospinal fluid: another function of the choroid plexus? Neuroscience 320:160–171PubMedCrossRefGoogle Scholar
  142. Tu GF, Cole T, Southwell BR et al (1990) Expression of the genes for transthyretin, cystatin C and beta A4 amyloid precursor protein in sheep choroid plexus during development. Brain Res Dev Brain Res 55:203–208PubMedCrossRefGoogle Scholar
  143. Vincent A, Forster N, Maynes JT et al (2014) OTX2 mutations cause autosomal dominant pattern dystrophy of the retinal pigment epithelium. J Med Genet 51:797–805PubMedCrossRefGoogle Scholar
  144. Wang ZY, Stoltenberg M, Jo SM et al (2004) Dynamic zinc pools in mouse choroid plexus. NeuroReport 15:1801–1804PubMedCrossRefGoogle Scholar
  145. Warf BC (2005) Comparison of endoscopic third ventriculostomy alone and combined with choroid plexus cauterization in infants younger than 1 year of age: a prospective study in 550 African children. J Neurosurg 103(Suppl 6):475–481PubMedGoogle Scholar
  146. Warf BC, Ondoma S, Kulkarni A et al (2009) Neurocognitive outcome and ventricular volume in children with myelomeningocele treated for hydrocephalus in Uganda. J Neurosurg Pediatr 4:564–570PubMedCrossRefGoogle Scholar
  147. Warf BC, Tracy S, Mugamba J (2012) Long-term outcome for endoscopic third ventriculostomy alone or in combination with choroid plexus cauterization for congenital aqueductal stenosis in African infants. J Neurosurg Pediatr 10:108–111PubMedCrossRefGoogle Scholar
  148. Warren DT, Hendson G, Cochran DD (2009) Bilateral choroid plexus hyperplasia: a case report and management strategies. Childs Nerv Syst 25:1617–1622PubMedCrossRefGoogle Scholar
  149. Watanabe M, Yamada H et al (2004) Immunohistochemical localization of Klotho protein in brain, kidney, and reproductive organs of mice. Cell Struct Funct 29:91–99PubMedCrossRefGoogle Scholar
  150. Weaver CE, McMillan PN, Duncan JA et al (2004) Hydrocephalus disorders: their biophysical and neuroendocrine impact on the choroid plexus epithelium. In: Hertz L (ed) Non-neuronal cells of the nervous system: function and dysfunction. Advances in molecular and cell biology, vol 31. Elsevier Press, Amsterdam, pp 269–293CrossRefGoogle Scholar
  151. Weber JR, Tuomanen EI (2007) Cellular damage in bacterial meningitis: an interplay of bacterial and host driven toxicity. J Neuroimmunol 184:45–52PubMedCrossRefGoogle Scholar
  152. Welch K, Strand R, Bresnan M et al (1983) Congenital hydrocephalus due to villous hypertrophy of the telencephalic choroid plexuses. Case report. J Neurosurg 59:172–175PubMedCrossRefGoogle Scholar
  153. Whish S, Dziegielewska KM, Møllgård K et al (2015) The inner CSF-brain barrier: developmentally controlled access to the brain via intercellular junctions. Front Neurosci 9:16PubMedPubMedCentralCrossRefGoogle Scholar
  154. Whitehead MT, Oh C, Raju A, Choudhri AF (2015) Physiologic pineal region, choroid plexus, and dural calcifications in the first decade of life. Am J Neuroradiol 36:575–80PubMedCrossRefGoogle Scholar
  155. Wiesel TN, Hubel DH (1963) Single-cell responses in striate cortex of kittens deprived of vision in one eye. J Neurophysiol 26:1003–1017PubMedCrossRefGoogle Scholar
  156. Wilcox DR, Folmsbee SS, Muller WJ, Longnecker R (2016) The type I interferon response determines differences in choroid plexus susceptibility between newborns and adults in herpes simplex virus encephalitis. MBio 7(2):e00437–e00416PubMedPubMedCentralCrossRefGoogle Scholar
  157. Willis T (1664) Cerebri anatome, 2nd edn. Flesher J, LondonGoogle Scholar
  158. Wolburg H, Paulus W (2010) Choroid plexus: biology and pathology. Acta Neuropathol 119:75–88PubMedCrossRefGoogle Scholar
  159. Wolf SA, Steinr B, Akpinarli A et al (2009) CD4-positive T lymphocytes provide a neuroimmunological link in the control of adult hippocampal neurogenesis. J Immunol 182:3979–3984PubMedCrossRefGoogle Scholar
  160. Yamada S, Miyazaki M, Yamashita Y et al (2013) Influence of respiration on cerebrospinal fluid movement using magnetic resonance spin labeling. Fluids Barriers CNS 10:36PubMedPubMedCentralCrossRefGoogle Scholar
  161. Yamasaki M, Kanemura Y (2015) Molecular biology of pediatric hydrocephalus and hydrocephalus-related diseases. Neurol Med Chir (Tokyo) 55:640–646CrossRefGoogle Scholar
  162. Zappatera MV, Lehtinen MK (2013) The cerebrospinal fluid: regulator of neurogenesis, behavior, and beyond. Cell Mol Life Sci 69:2863–2878CrossRefGoogle Scholar
  163. Zhao R, Goldman ID (2013) The proton-coupled folate transporter: physiological and pharmacological roles. Curr Opin Pharmacol 13:875–880PubMedPubMedCentralCrossRefGoogle Scholar
  164. Zhou G, Hotta J, Lehtinen MK et al (2015) Enlargement of choroid plexus in complex regional pain syndrome. Sci Rep 5:14329. Scholar
  165. Zhu X, Di Rocco C (2013) Choroid plexus coagulation for hydrocephalus. Childs Nerv Syst 29:35–42PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Neurology and PediatricsSchool of Medicine, UCLATorranceUSA
  2. 2.Department of NeurosurgeryAlpert Medical School, Brown UniversityProvidenceUSA

Section editors and affiliations

  • Pat McAllister
    • 1
  • Giuseppe Cinalli
    • 2
  1. 1.Department of Neurosurgery, Division of Pediatric NeurosurgeryWashington University in St. LouisSt. LouisUSA
  2. 2.Department of Pediatric NeurosurgerySantobono-Pausilipon Children’s HospitalNaplesItaly

Personalised recommendations