Anatomy of the Cranial and Spinal Meninges

  • Laurent SakkaEmail author
Living reference work entry


The anatomy, the histology, and the principles of cerebrospinal fluid circulation are reviewed. The basic of comparative anatomy are rapidly reviewed. The anatomical details of the three meningeal layers and their relationships with the nervous system and the venous system are reviewed, with specific attention to anatomical and histological details that have specific interest in the pathophysiology of hydrocephalus, circulation and resorption of cerebrospinal fluid, and surgical techniques for the treatment of hydrocephalus.


Cranial and spinal meninges anatomy CSF dynamics 


  1. Abbott NJ (2004) Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int 45:545–552CrossRefPubMedGoogle Scholar
  2. Adachi M, Hosoya T, Haku T, Yamaguchi K (1998) Dilated Virchow-Robin spaces: MRI pathological study. Neuroradiology 40:27–31CrossRefPubMedGoogle Scholar
  3. Alcolado R, Weller RO, Parrish EP, Garrod D (1988) The cranial arachnoid and pia mater in man: anatomical and ultrastructural observations. Neuropathol Appl Neurobiol 14:1–17CrossRefPubMedGoogle Scholar
  4. Allen C, Sievers J, Berrety M, Jenner S (1981) Experimental studies on cerebellar foliation. II. A morphometric analysis of cerebellar fissuration defects and growth retardation after neonatal treatment with 6-OHDA in the rat. J Comp Neurol 203:771–783CrossRefPubMedGoogle Scholar
  5. Angelov DN (1989) Morphogenesis of rat cranial meninges. A light- and electron-microscopic study. Cell Tissue Res 257:207–216CrossRefPubMedGoogle Scholar
  6. Ariëns Kappers CU (1947) Anatomie comparée du système nerveux, particulièrement de celui des Mammifères et de l’Homme. Masson et Cie, ParisGoogle Scholar
  7. Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S, Detmar M, Wiig H, Alitalo K (2015) A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med 212(7):991–999CrossRefPubMedPubMedCentralGoogle Scholar
  8. Balédent O, Henry-Feugeas MC, Idy-Peretti I (2001) Cerebrospinal fluid dynamics and relation with blood flow: a magnetic resonance study with semiautomated cerebrospinal fluid segmentation. Invest Radiol 36(7):368–377CrossRefPubMedGoogle Scholar
  9. Beccari N (1943) Neurologia Comparata dei Vertebrati. Sansoni, FirenzeGoogle Scholar
  10. Bechmann I, Priller J, Kovac A, Bontert M, Wehner T, Klett FF, Bohsung J, Stuschke M, Dirnagl U, Nitsch R (2001) Immune surveillance of mouse brain perivascular spaces by blood-borne macrophages. Eur J Neurosci 14:1651–1658CrossRefPubMedGoogle Scholar
  11. Brian O, Tom P, Wang D et al (2010) Aquaporins: relevance to cerebrospinal fluid physiology and therapeutic potential in hydrocephalus. Cerebrospinal Fluid Res 7:15CrossRefGoogle Scholar
  12. Brierley JB, Field EJ (1948) The connexions of the spinal sub-arachnoid space with the lymphatic. J Anat 82:153–166PubMedPubMedCentralGoogle Scholar
  13. Bucchieri F, Farina F, Zummo G, Cappello F (2015) Lymphatic vessels of the dura mater: a new discovery? J Anat 227(5):702–703CrossRefPubMedPubMedCentralGoogle Scholar
  14. Carpenter RL, Hogan QH, Liu SS, Crane B, Moore J (1998) Lumbosacral cerebrospinal fluid volume is the primary determinant of sensory block extent and duration during spinal anesthesia. Anesthesiology 89(7):24–29CrossRefPubMedGoogle Scholar
  15. Catala M (1998) Embryonic and fetal development of structures associated with the cerebro-spinal fluid in man and other species. Part I: the ventricular system, meninges and choroid plexuses. Arch Anat Cytol Pathol 46:153–169PubMedGoogle Scholar
  16. Chernoff EAG (1996) Spinal cord regeneration: a phenomenon unique to urodeles? Int J Dev Biol 40:823–831PubMedGoogle Scholar
  17. Christodoulides M, Makepeace BL, Partridge KA, Kaur D, Fowler MI, Weller RO, Heckels JE (2002) Interaction of Neisseria meningitidis with human meningeal cells induces the secretion of a distinct group of chemotactic, proinflammatory, and growth-factor cytokines. Infect Immun 70(8):4035–4044CrossRefPubMedPubMedCentralGoogle Scholar
  18. Clarot F, Callonnec F, Douvrin F, Hannequin D, Simonet J, Proust B, Thiébot J (2000) Giant cervical epidural veins after lumbar puncture in a case of intracranial hypotension. AJNR Am J Neuroradiol 21:787–789PubMedGoogle Scholar
  19. Cohen MC, Scheimberg I (2009) Histology of the dural membrane supports the theoretical considerations of its role in the pathophysiology of subdural collections in nontraumatic circumstances. Pediatr Radiol 39:880–881CrossRefPubMedPubMedCentralGoogle Scholar
  20. Courchesne E, Chisum HJ, Townsend J, Cowles A, Covington J, Egaas B, Harwood M, Hinds S, Press GA (2000) Normal brain development and aging: quantitative analysis at in vivo MR imaging in healthy volunteers. Radiology 216:672–682CrossRefPubMedGoogle Scholar
  21. Cserr HF (1971) Physiology of the choroid plexus. Physiol Rev 51:273–311CrossRefPubMedGoogle Scholar
  22. Cserr HF, Ostrach LH (1974) On the presence of subarachnoid fluid in the mudpuppy, Necturus maculosus. Comp Biochem Physiol 48:145–151CrossRefGoogle Scholar
  23. Cserr HF, Harling-Berg CJ, Knopf PM (1992) Drainage of brain extracellular fluid into blood and deep cervical lymph and its immunological significance. Brain Pathol 4:269–276CrossRefGoogle Scholar
  24. Cuatico W, Parker JC (1989) Further observations on spinal meningeal nerves and their role in pain production. Acta Neurochir 101:126–128CrossRefPubMedGoogle Scholar
  25. Damkier HH, Brown PD, Praetorius J (2013) Cerebrospinal fluid secretion by the choroid plexus. Physiol Rev 93:1847–1892CrossRefPubMedGoogle Scholar
  26. Dagain A, Vignes JR, Dulou R, Dutertre G, Delmas JM, Guerin J, Liguoro D (2008) Junction between the great cerebral vein and the straight sinus: an anatomical, immunohistochemical, and ultrastructural study on 25 human brain cadaveric dissections. Clin Anat 21:389–397CrossRefPubMedGoogle Scholar
  27. Davson H, Segal MB (1996) Physiology of the cerebrospinal fluid and Blood–brain barriers. CRC Press, LondonGoogle Scholar
  28. Davson H, Welch K, Segal MB (1987) Physiology and pathophysiology of the cerebrospinal fluid. Churchill LivingstoneGoogle Scholar
  29. D’Avella D, Cicciarello R, Albiero F, Andrioli G (1983) Scanning electron microscopic study of human arachnoid villi. J Neurosurg 59:620–626CrossRefPubMedGoogle Scholar
  30. Decimo I, Bifari F, Rodriguez FJ et al (2011) Nestin- and doublecortin-positive cells reside in adult spinal cord meninges and participate in injury-induced parenchymal reaction. Stem Cells 29:2062–2076CrossRefPubMedPubMedCentralGoogle Scholar
  31. Destrieux C, Kakou MK, Velut S, Lefrancq T, Jan M (1998) Microanatomy of the hypophyseal fossa boundaries. J Neurosurg 88:743–752CrossRefPubMedGoogle Scholar
  32. Di Chiro G (1966) Observations on the circulation of the cerebrospinal fluid. Acta Radiol Diagn (Stockh) 5:988–1002CrossRefGoogle Scholar
  33. Dilenge D, Perey B (1973) An angiographic study of the meningorachidian venous system. Radiology 108:333–337CrossRefPubMedGoogle Scholar
  34. Doepp F, Schreiber SJ, von Münster T, Rademacher J, Klingebiel R, Valdueza JM (2004) How does the blood leave the brain? A systematic ultrasound analysis of cerebral venous drainage patterns. Neuroradiology 46(7):565–570CrossRefPubMedGoogle Scholar
  35. Edgard MA, Nundy S (1966) Innervation of the spinal dura mater. J Neurol Neurosurg Psychiatry 29:530–534CrossRefGoogle Scholar
  36. Edsbagge M, Starck G, Zetterberg H, Ziegelitz D, Wikkelso C (2011) Spinal cerebrospinal fluid volume in healthy elderly individuals. Clin Anat 24(6):733–740CrossRefPubMedGoogle Scholar
  37. Ellis DZ, Nathanson JA, Sweadner KJ (2000) Carbachol inhibits Na+K+ATPase activity in choroid plexus via stimulation of the NO/cGMP pathway. Am J Physiol Cell Physiol 279:C1685–C1693CrossRefPubMedGoogle Scholar
  38. Elman R (1923) Spinal arachnoid granulations with special reference to the CSF. Bull Johns Hopkins Hosp 34:99–104Google Scholar
  39. Erlich SS, McComb JG, Hyman S et al (1986) Ultrastructural morphology of the olfactory pathway for cerebrospinal fluid drainage in the rabbit. J Neurosurg 64:466–473CrossRefPubMedGoogle Scholar
  40. Faraci FM, Mayhan WG, Heistad DD (1990) Effect of vasopressin on production of cerebrospinal fluid: possible role of vasopressin (V1)-receptors. Am J Phys 258:R94–R98Google Scholar
  41. Ferretti P, Zhang F, O’Neil P (2003) Changes in spinal cord regenerative ability through phylogenesis and development: lessons to be learnt. Dev Dyn 226:245–256CrossRefPubMedGoogle Scholar
  42. Foldi M, Csillik B, Zoltan OT (1968) Lymphatic drainage of the brain. Experientia 24:1283–1287CrossRefPubMedGoogle Scholar
  43. Fox RJ, Walji AH, Mielke B, Petruk KC, Aronyk KE (1996) Anatomic details of intradural channels in the parasagittal dura: a possible pathway for flow of cerebrospinal fluid. Neurosurgery 39(1):84–90CrossRefPubMedGoogle Scholar
  44. François P, Travers N, Lescanne E, Arbeille B, Jan M, Velut S (2010) The interperiosteo-dural concept applied to the perisellar compartment: a microanatomical and electron microscopic study. J Neurosurg 113(5):1045–1052CrossRefPubMedGoogle Scholar
  45. Froelich SC, Abdel Aziz KM, Cohen PD, van Loveren HR, Keller JT (2008) Microsurgical and endoscopic anatomy of Liliequist’s membrane: a complex and variable structure of the basal cisterns. Neurosurgery 63:1–8CrossRefGoogle Scholar
  46. Fukushi J, Makagiansar IT, Stallcup WB (2004) NG2 proteoglycan promotes endothelial cell motility and angiogenesis via engagement of galectin-3 and alpha3beta1 integrin. Mol Biol Cell 15:3580–3590CrossRefPubMedPubMedCentralGoogle Scholar
  47. Garceau GJ (1953) The filum terminal syndrome (the cord traction syndrome). J Bone Joint Surg Am 35:711–716CrossRefPubMedGoogle Scholar
  48. Gideon P, Thomsen C, Ståhlberg F, Henriksen O (1994) Cerebrospinal fluid production and dynamics in normal aging: a MRI phase-mapping study. Acta Neurol Scand 89(5):362–366CrossRefPubMedGoogle Scholar
  49. Gomez DG, Ehrmann JE, Potts DG, Pavese AM, Gilanian A (1983) The arachnoid granulations of the newborn human an ultrastructural study. Int J Dev Neurosci 1:139–147CrossRefPubMedGoogle Scholar
  50. Gooding CA, Price DC, Newton TH (1972) Experimental studies of falx and tentorial opacification during cerebral angiography. Radiology 102:77–82CrossRefPubMedGoogle Scholar
  51. Greitz D (2004) Radiological assessment of hydrocephalus: new theories and implications for therapy. Neurosurg Rev 27(3):145–165CrossRefPubMedPubMedCentralGoogle Scholar
  52. Greitz D, Greitz T, Hindmarsh T (1997) A new view on the CSF-circulation with the potential for pharmacological treatment of childhood hydrocephalus. Acta Paediatr 86(2):125–132CrossRefPubMedGoogle Scholar
  53. Groen J, Baljet B, Drukker J (1988) The innervation of the spinal dura mater: anatomy and clinical implications. Acta Neurochir 92:39–46CrossRefPubMedGoogle Scholar
  54. Groeschel S, Chong WK, Surtees R, Hanefeld F (2006) Virchow-Robin spaces on magnetic resonance images: normative data, their dilatation, and a review of the literature. Neuroradiology 48:745–754CrossRefPubMedGoogle Scholar
  55. Gupta S, Soellinger M, Boesiger P, Poulikakos D, Kurtcuoglu V (2009) Three-dimensional computational modeling of subject-specific cerebrospinal fluid flow in the subarachnoid space. J Biomech Eng 131(2):021010CrossRefPubMedGoogle Scholar
  56. Haines DE, Harkey HL, Al-Mefty O (1993) The “subdural” space: a new look at an outdated concept. Neurosurgery 32(1):111–120CrossRefPubMedGoogle Scholar
  57. Hakuba A, Ohata K (2000) Embryology of the cavernous sinus. In: The cavernous sinus: a comprehensive text. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  58. Hannah JA (1936) The aetiology of subdural hematoma: an anatomical and pathological study. J Nerv Ment Dis 84:169–186CrossRefGoogle Scholar
  59. Harrington MG, Salomon RM, Pogoda JM et al (2010) Cerebrospinal fluid sodium rhythms. Cerebrospinal Fluid Res 7:3CrossRefPubMedPubMedCentralGoogle Scholar
  60. Harvey SC, Burr HS (1924) An experimental study of the origin of the meninges. Proc Soc Exp Biol Med 22:52–53CrossRefGoogle Scholar
  61. Harvey SC, Burr HS (1926) The development of the meninges. Arch Neurol Psychiatr 15:545–567CrossRefGoogle Scholar
  62. Heier LA, Bauer CJ, Schwartz L, Zimmerman RD, Morgello S, Deck MD (1989) Large Virchow-Robin spaces: MR–clinical correlation. AJNR Am J Neuroradiol 10:929–936PubMedGoogle Scholar
  63. Hendrick EB, Hoffman HJ, Humphreys RP (1983) The tethered spinal cord. Clin Neurosurg 30:457–463CrossRefPubMedGoogle Scholar
  64. Hickey WF, Hsu BL, Kimura H (1991) T-lymphocyte entry into the central nervous system. J Neurosci Res 28:254–260CrossRefPubMedGoogle Scholar
  65. Himango WA, Low FN (1971) The fine structure of a lateral recess of the subarachnoid space in the rat. Anat Rec 171:1–19CrossRefPubMedGoogle Scholar
  66. Hochstetter F (1919) Beiträge zur entwicklungsgeschichte des menschlichen gehirns. Deuticke, ViennaGoogle Scholar
  67. Hodel J, Silvera J, Bekaert O, Rahmouni A, Bastuji-Garin S, Vignaud A et al (2011) Intracranial cerebrospinal fluid spaces imaging using a pulse-triggered three-dimensional turbo spin echo MR sequence with variable flip-angle distribution. Eur Radiol 21:402–410CrossRefPubMedGoogle Scholar
  68. Hoffman HJ, Hendrick EB, Humphreys R (1976) The tethered spinal cord: its protean manifestations, diagnosis and surgical correction. Childs Brain 2:145–155PubMedGoogle Scholar
  69. Inoue K, Seker A, Osawa S, Alencastro LF, Matsushima T, Rhoton AL Jr (2009) Microsurgical and endoscopic anatomy of the supratentorial arachnoidal membranes and cisterns. Neurosurgery 65:644–664CrossRefPubMedPubMedCentralGoogle Scholar
  70. Ivanow G, Romodanowsky K (1928) Uber den anatomischen Zusammenhang der cerebralenund spinalen submeningealen Raume mit den Lymphsystem. Z gee exp Med 58:596–607Google Scholar
  71. Jackson HC, Winkelmann RK, Bickel WH (1966) Nerve endings in the human lumbar spinal column and related structures. J Bone Joint Surg 48:1272–1281CrossRefPubMedGoogle Scholar
  72. Johanson C, Duncan J, Klinge P, Brinker T, Stopa E, Silverberg G (2008) Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res 5:10CrossRefPubMedPubMedCentralGoogle Scholar
  73. Kamiryo T, Orita T, Nishizaki T, Aoki H (1990) Development of the rat meninx: experimental study using bromodeoxyuridine. Anat Rec 227:207–210CrossRefPubMedGoogle Scholar
  74. Kartenbeck J, Schwechheimer K, Moll R, Franke WW (1984) Attachment of vimentin filaments to desmosomal plaques in human meningiomal cells and arachnoidal tissue. J Cell Biol 98:1072–1081CrossRefPubMedGoogle Scholar
  75. Kelkenberg U, von Rautenfeld DB, Brinker T, Hans VH (2001) Chicken arachnoid granulations: a new model for cerebrospinal fluid absorption in man. Neuroreport 12(3):553–557CrossRefPubMedGoogle Scholar
  76. Kerber CW, Newton TH (1973) The macro- and microvasculature of the dura mater. Neuroradiology 6:175–179CrossRefPubMedGoogle Scholar
  77. Kety SS, Schmidt CF (1948) The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J Clin Invest 27:476–483CrossRefPubMedPubMedCentralGoogle Scholar
  78. Key A, Retzius G (1875) Studien in der Anatomie des Nervensystems und des Bindegewebes. Samsin and Wallen, StockholmGoogle Scholar
  79. Kida S, Pentazis A, Weller RO (1993) Cerebrospinal fluid drains directly from the subarachnoid space into nasal lymphatics in the rat. Anatomy, histology and immunological significance. Neuropathol Appl Neurobiol 19:480–488CrossRefPubMedGoogle Scholar
  80. Kido DK, Gomez DG, Pavese AM Jr, Potts DG (1976) Human spinal arachnoid villi and granulations. Neuroradiology 11:221–228CrossRefPubMedGoogle Scholar
  81. Klatzo I, Steinwall O (1965) Observation on cerebrospinal fluid pathways and behaviour of the blood-brain barrier in sharks. Acta Neuropathol 5:161–175CrossRefPubMedGoogle Scholar
  82. Krahn V (1982) The pia mater at the site of the entry of blood vessels into the central nervous system. Anat Embryol 164:257–263CrossRefPubMedGoogle Scholar
  83. Krisch B, Leonhardt H, Oksche A (1984) Compartments and perivascular arrangement of the meninges covering the cerebral cortex of the rat. Cell Tissue Res 238:459–474CrossRefPubMedGoogle Scholar
  84. Kuhlenbeck H (1975) The central nervous system of vertebrates: a general survey of its comparative anatomy with an introduction to the pertinent fundamental biologic and logical concepts. Volume 3, part II: overall morphologic patterns. S Karger, BazelGoogle Scholar
  85. Kuslich SD, Ulstrom CL, Michael CJ (1991) The tissue origin of low back pain and sciatica: a report of pain response to tissue stimulation during operations on the lumbar spine using local anesthesia. Orthop Clin North Am 22:181–187PubMedGoogle Scholar
  86. Lasjaunias P, Berenstein A (1990) Surgical Neuro-angiography. 3 Functional vascular anatomy of brain, spinal cord and spine. Springer, BerlinGoogle Scholar
  87. Latarget A (1948) Traité d’anatomie humaine Tome 2, Angéiologie, système nerveux central. G Doin, ParisGoogle Scholar
  88. Lazorthes G (1976) Vascularisation et circulation cérébrales. Masson, ParisGoogle Scholar
  89. Lazorthes G, Gouazé A, Djindjian R (1973) Vascularisation et circulation de la moelle épinière, anatomie, physiologie, pathologie, angiographie. Masson, ParisGoogle Scholar
  90. Lebret A, Hodel J, Rahmouni A, Decq P, Petit E (2013) Cerebrospinal fluid volume analysis for hydrocephalus diagnosis and clinical research. Comput Med Imaging Graph 37:224–233CrossRefPubMedGoogle Scholar
  91. Le Douarin N (1982) The neural crest. Cambridge University Press, Cambridge/LondonGoogle Scholar
  92. Le Gros Clark WE (1920) On the Pacchionian bodies. J Anat 55(Pt 1):40–48PubMedPubMedCentralGoogle Scholar
  93. Lee RR, Abraham RA, Quinn CB (2001) Dynamic physiologic changes in lumbar CSF volume quantitatively measured by three-dimensional fast spin-echo MRI. Spine 26:1172–1178CrossRefPubMedGoogle Scholar
  94. Lemire RJ (1969) Variations in development of the caudal neural tube in human embryos (Horizons XIV–XXI). Teratology 2:361–370CrossRefPubMedGoogle Scholar
  95. Levine JM (1994) Increased expression of the NG2 chondroitin-sulfate proteoglycan after brain injury. J Neurosci 14:4716–4730CrossRefPubMedGoogle Scholar
  96. Levy LM, Di Chiro G (1990) MR phase imaging and cerebrospinal fluid flow in the head and spine. Neuroradiology 32:399–406CrossRefPubMedGoogle Scholar
  97. Lindvall M, Owman C (1981) Autonomic nerves in the mammalian choroid plexus and their influence on the formation of cerebrospinal fluid. J Cereb Blood Flow Metab 1:245–266CrossRefPubMedGoogle Scholar
  98. Lindvall M, Edvinsson L, Owman C (1978) Sympathetic nervous control of cerebrospinal fluid production from the choroid plexus. Science 201:176–178CrossRefPubMedGoogle Scholar
  99. Lindvall M, Edvinsson L, Owman C (1979) Effect of sympathomimetic drugs and corresponding receptor antagonists on the rate of cerebrospinal fluid production. Exp Neurol 64:132–145CrossRefPubMedPubMedCentralGoogle Scholar
  100. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS, Harris TH, Kipnis J (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523(7560):337–341CrossRefPubMedPubMedCentralGoogle Scholar
  101. Luedemann W, Kondziella D, Tienken K, Klinge P, Brinker T (2002) Berens von Rautenfeld D. Spinal cerebrospinal fluid pathways and their significance for the compensation of kaolin-hydrocephalus. Acta Neurochir Suppl 81:271–273PubMedPubMedCentralGoogle Scholar
  102. Mack J, Squier W, Eastman JT (2009) Anatomy and development of the meninges: implications for subdural collections and CSF circulation. Pediatr Radiol 39:200–210CrossRefGoogle Scholar
  103. Markowitz S, Saito K, Moskowitz MA (1987) Neurogenically mediated leakage of plasma protein occurs from blood vessels in dura mater but not brain. J Neurosci 7:4129–4136CrossRefPubMedPubMedCentralGoogle Scholar
  104. Marmarou A, Shulman K, LaMorgese J (1975) Compartmental analysis of compliance and outflow resistance of the cerebrospinal fluid system. J Neurosurg 43:523–534CrossRefPubMedPubMedCentralGoogle Scholar
  105. Martyr JW, Song SJ, Hua J, Burrows S (2011) The correlation between cauda equina nerve root volume and sensory block height after spinal anaesthesia with glucose-free bupivacaine. Anaesthesia 66(7):590–594CrossRefPubMedGoogle Scholar
  106. Massiat MH (2002) Bases anatomiques de l’infiltration du nerf sinu-vertébral de Luschka en L2. MSBM, Université de Nantes, Faculté de MédecineGoogle Scholar
  107. Matsumae M, Kikinis R, Mórocz IA, Lorenzo AV, Sándor T, Albert MS, Black PM, Jolesz FA (1996) Age-related changes in intracranial compartment volumes in normal adults assessed by magnetic resonance imaging. J Neurosurg 84:982–991CrossRefPubMedGoogle Scholar
  108. May C, Kaye JA, Atack JR, Schapiro MB, Friedland RP, Rapoport SI (1990) Cerebrospinal fluid production is reduced in healthy aging. Neurology 40(3 Pt 1):500–503CrossRefPubMedGoogle Scholar
  109. Merland JJ, Riche MC, Chiras J (1980) Intraspinal extramedullary arteriovenous fistulae draining into the medullary veins. J Neuroradiol 7:271–320PubMedGoogle Scholar
  110. Milhorat TH (1974) Failure of choroid plexectomy as treatment for hydrocephalus. Surg Gynecol Obstet 139:505–508PubMedPubMedCentralGoogle Scholar
  111. Mollanji R, Bozanovic-Sosic R, Zakharov A, Makarian L, Johnston MG (2002) Blocking cerebrospinal fluid absorption through the cribriform plate increases resting intracranial pressure. Am J Physiol Regul Integr Comp Physiol 282:R1593–R1599CrossRefPubMedGoogle Scholar
  112. Murphy DG, DeCarli C, McIntosh AR et al (1996) Sex differences in human brain morphometry and metabolism: an in vivo quantitative magnetic resonance imaging and positron emission tomography study on the effect of aging. Arch Gen Psychiatry 53:585–594CrossRefPubMedGoogle Scholar
  113. Nakagomi T, Nakano-Doi A, Matsuyama T (2015) Leptomeninges: a novel stem cell niche harboring ischemia-induced neural progenitors. Histol Histopathol 30:391–399PubMedGoogle Scholar
  114. Nicholas DS, Weller RO (1988) The fine anatomy of the human spinal meninges. A light and scanning electron microscopy study. J Neurosurg 69:276–282CrossRefPubMedGoogle Scholar
  115. O’Rahilly R, Müller F (1986) The meninges in human development. J Neuropathol Exp Neurol 45(5):588–608CrossRefPubMedGoogle Scholar
  116. Osaka K, Handad H, Matsumoto S, Yasuda M (1980) Development of the cerebrospinal fluid pathway in the normal and abnormal human development. Childs Brain 6:26–38PubMedGoogle Scholar
  117. Ouyang T, Rothfus WE, Ng JM, Challinor SM (2011) Imaging of the pituitary. Radiol Clin N Am 49(3):549–571CrossRefPubMedGoogle Scholar
  118. Padget DH (1957) The development of the cranial venous system in man from the viewpoint of comparative anatomy. Contrib Embryol 36:79–140Google Scholar
  119. Palay S (1944) The histology of the meninges of the toad (Bufo). Anat Rec 88:257–270CrossRefGoogle Scholar
  120. Pan W, Banks WA, Kastin AJ (1997) Permeability of the blood-brain and blood-spinal cord barriers to interferons. J Neuroimmunol 76:105–111CrossRefPubMedGoogle Scholar
  121. Parkinson D (2000) History of the extradural neural axis compartment. Surg Neurol 54:422–431CrossRefPubMedGoogle Scholar
  122. Paturet P (1964) Traité d’anatomie humaine, Tome IV, Système nerveux. Masson Inc., ParisGoogle Scholar
  123. Pollay M (2010) The function and structure of the cerebrospinal fluid outflow system. Cerebrospinal Fluid Res 7:9CrossRefPubMedPubMedCentralGoogle Scholar
  124. Pollay M, Curl F (1967) Secretion of cerebrospinal fluid by the ventricular ependyma of the rabbit. Am J Phys 213:1031–1038Google Scholar
  125. Protasoni M, Sangiorgi S, Cividini A, Culuvaris GT, Tomei G, Dell’Orbo C, Raspanti M, Balbi S, Reguzzoni M (2011) The collagenic architecture of human dura mater. J Neurosurg 114(6):1723–1730CrossRefPubMedGoogle Scholar
  126. Quencer RM, Donovan Post MJ, Hinks RS (1990) Cine MR in the evaluation of normal and abnormal CSF flow: intracranial and intraspinal studies. Neuroradiology 32:371–391CrossRefPubMedGoogle Scholar
  127. Ransohoff RM, Engelhardt B (2012) The anatomical and cellular basis of immune surveillance in the central nervous system. Nature Rev Immunol 12:623–635CrossRefGoogle Scholar
  128. Raoul S (1999) Etude anatomique du nerf sinu-vertébral. Thèse de Médecine, Université de Nantes, Faculté de MédecineGoogle Scholar
  129. Redzic ZB, Preston JE, Duncan JA, Chodobski A, Szmydynger-Chodobska J (2005) The choroid plexus-cerebrospinal fluid system: from development to aging. Curr Top Dev Biol 71:1–52CrossRefPubMedGoogle Scholar
  130. Reier PJ, Stensaas LJ, Guth L (1983) The astrocytic scar as an impediment to regeneration in the central nervous system. In: Kao CC, Bunge RP, Reier PJ (eds) Spinal cord reconstruction. Raven Press, New York, pp 163–195Google Scholar
  131. Reina MA, De Leon CO, Lopez A, Andre JA, Mora M, Fernandez A (2002) The origin of the spinal subdural space: ultrastructure findings. Anesth Analg 94:991–995CrossRefPubMedGoogle Scholar
  132. Reina MA, De Leon Casasola O, Villanueva MC, Lopez A, Maches F, De Andres JA (2004) Ultrastructural findings in human spinal pia mater in relation to subarachnoid anesthesia. Anesth Analg 98:1479–1485CrossRefPubMedGoogle Scholar
  133. Reiss K, Mentlein R, Sievers J, Hartmann D (2002) Stromal cell-derived factor 1 is secreted by meningeal cells and acts as chemotactic factor on neuronal stem cells of the cerebellar external granular layer. Neuroscience 115:295–305CrossRefPubMedGoogle Scholar
  134. Rexed BA, Wennstrom KG (1959) Arachnoidal proliferation and cystic formation in the spinal nerve-root pouches of man. J Neurosurg 16:73–84CrossRefPubMedGoogle Scholar
  135. Rollins NK, Deline C, Morriss MC (1993) Prevalence and clinical significance of dilated Virchow-Robin spaces in childhood. Radiology 189:53–57CrossRefPubMedGoogle Scholar
  136. Sakka L, Coll G, Chazal J (2011) Anatomy and physiology of cerebrospinal fluid. Eur Ann Otorhinolaryngol Head Neck Dis 128:309–316CrossRefPubMedPubMedCentralGoogle Scholar
  137. Sakka L, Gabrillargues J, Coll G (2016) Anatomy of the spinal meninges. Operative Neurosurgery 12:168–188Google Scholar
  138. Scarff JE (1970) Treatment of nonobstructive (communicating) hydrocephalus by endoscopic cauterization of choroid plexuses. J Neurosurg 33:1–18CrossRefPubMedPubMedCentralGoogle Scholar
  139. Schnitt SJ, Vogel H (1986) Meningiomas. Diagnostic value of immunoperoxidase staining for epithelial membrane antigen. Am J Surg Pathol 10:640–649CrossRefPubMedGoogle Scholar
  140. Schueler M, Neuhuber WL, De Col R, Messlinger K (2014) Innervation of rat and human dura mater and pericranial tissues in the parieto-temporal region by meningeal afferents. Headache 54(6):996–1009CrossRefPubMedPubMedCentralGoogle Scholar
  141. Sensenig EC (1949) The early development of the human vertebral column. Contr Embryol Carneg Instn 33:21–41Google Scholar
  142. Sensenig EC (1951) The early development of the meninges of the spinal cord in human embryos. Contr Embryol Carneg Instn 34:145–157Google Scholar
  143. Sievers J, Von Knebel DC, Pehlmann FW, Berry M (1986) Meningeal cells influence cerebellar development over a critical period. Anat Embryol 175:91–100CrossRefPubMedPubMedCentralGoogle Scholar
  144. Sievers J, Pehlemann FW, Gude S, Berry M (1994a) A time course study of the alterations in the development of the hamster cerebellar cortex after destruction of the overlying meningeal cells with 6-hydroxydopamine on the day of birth. J Neurocytol 23:117–134CrossRefPubMedGoogle Scholar
  145. Sievers J, Pehlemann FW, Gude S, Berry M (1994b) Meningeal cells organize the superficial glia limitans of the cerebellum and produce components of both the interstitial matrix and the basement membrane. J Neurocytol 23:135–149CrossRefPubMedGoogle Scholar
  146. Silva N, Januel AC, Tall P, Cognard C (2007) Spinal epidural arteriovenous fistulas associated with progressive myelopathy. Report of four cases. J Neurosurg Spine 6:552–558CrossRefPubMedGoogle Scholar
  147. Silverberg GD, Heit G, Huhn S, Jaffe RA, Chang SD, Bronte-Stewart H, Rubenstein E, Possin K, Saul TA (2001) The cerebrospinal fluid production rate is reduced in dementia of the Alzheimer’s type. Neurology 57:1763–1766CrossRefPubMedGoogle Scholar
  148. Silverberg GD, Huhn S, Jaffe RA, Chang SD, Saul T, Heit G, Von Essen A, Rubenstein E (2002) Downregulation of cerebrospinal fluid production in patients with chronic hydrocephalus. J Neurosurg 97:1271–1275CrossRefPubMedGoogle Scholar
  149. Silverberg GD, Mayo M, Saul T, Rubenstein E, McGuire D (2003) Alzheimer’s disease, normal pressure hydrocephalus and senescent changes in CSF circulatory physiology: a hypothesis. Lancet Neurol 2:5006–50511CrossRefGoogle Scholar
  150. Silverman AJ, Sutherland AK, Wilhelm M, Silver R (2000) Mast cells migrate from blood to brain. J Neurosci 20:401–408CrossRefPubMedGoogle Scholar
  151. Stoquart-Elsankari S, Lehmann P, Villette A, Czosnyka M, Meyer ME, Deramond H, Balédent O (2009) A phase-contrast MRI study of physiologic cerebral venous flow. J Cereb Blood Flow Metab 29(6):1208–1215CrossRefPubMedGoogle Scholar
  152. Stretter G (1915) The development of the venous sinuses of the dura mater in the human embryo. Am J Anat 18(2):145–178CrossRefGoogle Scholar
  153. Struckhoff G (1995) Coculture of meningeal and astrocytic cells – a model for the formation of the glial limiting membrane. Int J Dev Neurosci 13:595–606CrossRefPubMedGoogle Scholar
  154. Stylianopoulou F, Herbert J, Soares MB, Efstratiadis A (1988) Expression of the insulin-like growth factor II gene in the choroid plexus and the leptomeninges of the adult rat central nervous system. Proc Natl Acad Sci U S A 85:141–145CrossRefPubMedPubMedCentralGoogle Scholar
  155. Sullivan JT, Grouper S, Walker MT, Parrish TB, McCarthy RJ, Wong CA (2006) Lumbosacral cerebrospinal fluid volume in humans using three-dimensional magnetic resonance imaging. Anesth Analg 103:1306–1310CrossRefPubMedGoogle Scholar
  156. Taptas JN (1949) La loge du sinus caverneux, sa constitution et les rapports des éléments vasculaires et nerveux qui la traversent. Sem Hôp 25:1719–1722PubMedGoogle Scholar
  157. Tencer AF, Allen BL, Ferguson RL (1985) A biomechanical study of thoracolumbar spine fractures with bone in the canal. Part III. Mechanical properties of the dura and its tethering ligaments. Spine 110:741–747CrossRefGoogle Scholar
  158. Tsuker M (1947) Innervation of the choroid plexus. Arch Neurol Psychiatr 58:474–483CrossRefGoogle Scholar
  159. Tsunoda A, Mitsuoka H, Sato K, Kanayama S (2000) A quantitative index of intracranial cerebrospinal fluid distribution in normal pressure hydrocephalus using an MRI-based processing technique. Neuroradiology 42:424–429CrossRefPubMedGoogle Scholar
  160. Tubbs RS, Hansasuta A, Stetler W, Kelly DR, Blevins D, Humphrey R, Chua GD, Shoja MM, Loukas M, Oakes WJ (2007) Human spinal arachnoid villi revisited: immunohistological study and review of the literature. J Neurosurg Spine 7:328–331CrossRefPubMedGoogle Scholar
  161. Upton ML, Weller RO (1985) The morphology of cerebrospinal fluid drainage pathways in human arachnoid granulations. J Neurosurg 63:867–875CrossRefPubMedGoogle Scholar
  162. van Swieten JC, van den Hout JH, van Ketel BA, Hijdra A, Wokke JH, van Gijn J (1991) Periventricular lesions in the white matter on magnetic resonance imaging in the elderly. A morphometric correlation with arteriolosclerosis and dilated perivascular spaces. Brain 114(Pt 2):761–774CrossRefPubMedGoogle Scholar
  163. Vandenabeele F, Creemers J, Lambrichts I (1996) Ultrastructure of the human spinal arachnoid mater and dura mater. J Anat 189:417–430PubMedPubMedCentralGoogle Scholar
  164. Veening JG, Barendregt HP (2010) The regulation of brain states by neuroactive substances distributed via the cerebrospinal fluid; a review. Cerebrospinal Fluid Res 7:1CrossRefPubMedPubMedCentralGoogle Scholar
  165. Vignes JR, Dagain A, Guérin J, Liguoro D (2007) A hypothesis of cerebral venous system regulation based on a study of the junction between the cortical bridging veins and the superior sagittal sinus. Laboratory investigation. J Neurosurg 107:1205–1210PubMedGoogle Scholar
  166. Voelz K, Kondziella D, von Rautenfeld DB, Brinker T, Ludemann W (2007) A ferritin tracer study of compensatory spinal CSF outflow pathways in kaolin-induced hydrocephalus. Acta Neuropathol 113:569–575CrossRefPubMedGoogle Scholar
  167. Watters GV, Page L, Lorenzo AV, Cutler RW, Barlow CF (1969) Relationship between cerebrospinal fluid (CSF) formation, absorption and pressure in human hydrocephalus. Trans Am Neurol Assoc 94:153–156PubMedGoogle Scholar
  168. Weed LH (1916) The formation of the cranial subarachnoid spaces. Anat Rec 10:475–481CrossRefGoogle Scholar
  169. Weed LH (1917) The development of the cerebrospinal spaces in pig and in man. Contr Embryol Carneg Instn No. 14, Publ. No. 225Google Scholar
  170. Welch K, Friedman V (1960) The cerebrospinal fluid valves. Brain 83:454–469CrossRefPubMedGoogle Scholar
  171. Welch K, Pollay M (1963) The spinal arachnoid villi of the monkeys Cercopithecus aethiops and Macaca irus. Anat Rec 145:43–48CrossRefPubMedGoogle Scholar
  172. Weller RO (2005) Microscopic morphology and histology of the human meninges. Morphologie 89:22–34CrossRefPubMedGoogle Scholar
  173. Weller RO, Kida S, Zhang ET (1992) Pathways of fluid drainage from the brain-morphological aspects and immunological significance in rat and man. Brain Pathol 2:277–284CrossRefPubMedGoogle Scholar
  174. Weller RO (1995) Fluid compartments and fluid balance in the central nervous system. In Williams PL ed. Gray’s Anatomy, 38th ed. Edinburgh, Churchill Livingstone, 1202–1224Google Scholar
  175. Weller RO, Engelhardt B, Phillips MJ (1996) Lymphocyte targeting of the central nervous system: a review of afferent and efferent CNS-immune pathways. Brain Pathol 6:275–288CrossRefPubMedGoogle Scholar
  176. Wiberg G (1949) Back pain in relation to the nerve supply of the intervertebral disc. Acta Orthop Scand 19:211–221CrossRefPubMedGoogle Scholar
  177. Wilson JT (1936) On the nature and mode of origin of the foramen of Magendie. J Anat 71:423–426Google Scholar
  178. Yokoyama S, Hirano H, Moroki K, Goto M, Imamura S, Kuratsu JI (2001) Are nonfunctioning pituitary adenomas extending into the cavernous sinus aggressive and/or invasive? Neurosurgery 49:857–863PubMedGoogle Scholar
  179. Zerah M, Roujeau T, Catala M, Pierre-Kahn A (2008) Spinal Lipoma. In: Ozek M, Cinalli G, Maixner W (eds) Spina bifida management and outcome. Springer, Milan, pp 245–275Google Scholar
  180. Zhang ET, Richards HK, Kida S, Weller RO (1992) Directional and compartmentalised drainage of interstitial fluid and cerebrospinal fluid from the rat brain. Acta Neuropathol 83(3):233–239CrossRefPubMedGoogle Scholar
  181. Zhang J, Smith D, Yamamoto M, Ma L, McCaffery P (2003) The meninges is a source of retinoic acid for the late-developing hindbrain. J Neurosci 23:7610–7620CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Université Clermont Auvergne, Département d’AnatomieClermont-FerrandFrance

Personalised recommendations