Genetics of Human Hydrocephalus

  • Claudia SantoroEmail author
Living reference work entry

Latest version View entry history


Congenital hydrocephalus (CH) represents one of the most common congenital defects, with an incidence of 4.65 per 10,000 live-born neonates. It is estimated that about 40% of all congenital cases recognize a possible genetic etiology with few genetic forms of non-syndromic, isolated CH described today. On the other hand, thousands of genetic diseases including chromosomal aberration, monogenic disorders, associations, and methylation disorders can cause it. The wide range of genetic diseases associated with pediatric hydrocephalus reflects the high number of genes and pathways related to its pathophysiology, some of which are overlapping. Moreover next-generation sequencing and animal models are enriching knowledge, continuously broadening the number of molecular mechanisms involved into cerebrospinal fluid flux and hydrocephalus pathogenesis. This chapter focuses on genetic diseases that can be associated with hydrocephalus in children offering to reader elements for a proper clinical approach and genetic counseling.


Congenital hydrocephalus Syndrome Genetics Malformation Chromosomal aberration 


  1. Adle-Biassette H, Saugier-Veber P, Fallet-Bianco C et al (2013) Neuropathological review of 138 cases genetically tested for X-linked hydrocephalus: evidence for closely related clinical entities of un- known molecular bases. Acta Neuropathol 126:427–442PubMedCrossRefPubMedCentralGoogle Scholar
  2. Al-Dosari MS, Al-Owain M, Tulbah M et al (2013) Mutation in MPDZ causes severe congenital hydrocephalus. J Med Genet 50:54–58PubMedCrossRefPubMedCentralGoogle Scholar
  3. Aolad HM, Inouye M, Darmanto W et al (2000) Hydrocephalus in mice following X-irradiation at early gestational stage: possibly due to persistent deceleration of cell proliferation. J Radiat Res (Tokyo) 41:213–226CrossRefGoogle Scholar
  4. Asthagiri AR, Parry DM, Butman JA et al (2009) Neurofibromatosis type 2. Lancet 373:1974–1986PubMedPubMedCentralCrossRefGoogle Scholar
  5. Barker AR, Thomas R, Dawe HR (2014) Meckel-Gruber syndrome and the role of primary cilia in kidney, skeleton, and central nervous system development. Organogenesis 10:96–107PubMedCrossRefPubMedCentralGoogle Scholar
  6. Barresi R, Campbell KP (2006) Dystroglycan: from biosynthesis to pathogenesis of human disease. J Cell Sci 119:199–207PubMedCrossRefPubMedCentralGoogle Scholar
  7. Baser ME, Friedman JM, Aeschliman D et al (2002) Predictors of the risk of mortality in neurofibromatosis 2. Am J Hum Genet 71:715–723PubMedPubMedCentralCrossRefGoogle Scholar
  8. Baser ME, Kuramoto L, Joe H et al (2004) Genotype-phenotype correlations for nervous system tumors in neurofibromatosis 2: a population-based study. Am J Hum Genet 75:231–239PubMedPubMedCentralCrossRefGoogle Scholar
  9. Baser ME, Kuramoto L, Woods R et al (2005) The location of constitutional neurofibromatosis 2 (NF2) splice site mutations is associated with the severity of NF2. J Med Genet 42:540–546PubMedPubMedCentralCrossRefGoogle Scholar
  10. Baser ME, Friedman JM, Joe H et al (2011) Empirical development of improved diagnostic criteria for neurofibromatosis 2. Genet Med 13:576–581PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bay C, Kerzin L, Hall BD (1979) Recurrence risk in hydrocephalus. Birth Defects Orig Artic Ser 15:95–105PubMedPubMedCentralGoogle Scholar
  12. Bayri Y, Soylemez B, Seker A et al (2015) Neural tube defect family with recessive trait linked to chromosome 9q21.12-21.31. Childs Nerv Syst 31:1367–1370PubMedCrossRefPubMedCentralGoogle Scholar
  13. Becamel C, Figge A, Poliak S et al (2001) Interaction of serotonin 5-hydroxytryptamine type 2C receptors with PDZ10 of the multi-PDZ domain protein MUPP1. J Biol Chem 276:12974–12982PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bianchine JW, Lewis RC Jr (1974) The MASA syndrome: a new heritable mental retardation syndrome. Clin Genet 5:298–306PubMedCrossRefPubMedCentralGoogle Scholar
  15. Bott L, Boute O, Mention K, Vinchon M et al (2004) Congenital idiopathic intestinal pseudo-obstruction and hydrocephalus with stenosis of the aqueduct of Sylvius. Am J Med Genet 130A:84–87PubMedCrossRefPubMedCentralGoogle Scholar
  16. Bowen P (1974) Achondroplasia in two sisters with normal parents. Birth Defects Orig Artic Ser 10(12):31–36PubMedPubMedCentralGoogle Scholar
  17. Burton BK (1979a) Empiric recurrence risks for congenital hydrocephalus. Birth Defects Orig Artic Ser 15: 107–115PubMedPubMedCentralGoogle Scholar
  18. Burton BK (1979b) Recurrence risks for congenital hydrocephalus. Clin Genet 16:47–53PubMedCrossRefPubMedCentralGoogle Scholar
  19. Buysse K, Riemersma M, Powell G et al (2013) Missense mutations in beta-1,3- N-acetylglucosaminyltransferase 1 (B3GNT1) cause Walker-Warburg syndrome. Hum Mol Genet 22:1746–1754PubMedPubMedCentralCrossRefGoogle Scholar
  20. Cacciagli P, Desvignes JP, Girard N et al (2014) AP1S2 is mutated in X-linked Dandy-Walker malformation with intellectual disability, basal ganglia disease and seizures (Pettigrew syndrome). Eur J Hum Genet 22:363–368PubMedCrossRefPubMedCentralGoogle Scholar
  21. Cappuccio G, Pinelli M, Torella A (2017) An extremely severe phenotype attributed to WDR81 nonsense mutations. Ann Neurol 82:650–651PubMedCrossRefPubMedCentralGoogle Scholar
  22. Chae TH, Kim S, Marz KE et al (2004) The hyh mutation uncovers roles for alpha snap in apical protein localization and control of neural cell fate. Nat Genet 36:264–270PubMedCrossRefPubMedCentralGoogle Scholar
  23. Chen H (2012) Atlas of genetic diagnosis and counseling. Humana Press, TotowaCrossRefGoogle Scholar
  24. Chitayat D, Moore L, Del Bigio MR et al (1994) Familial Dandy-Walker malformation associated with macrocephaly, facial anomalies, developmental delay, and brain stem dysgenesis: prenatal diagnosis and postnatal outcome in brothers. A new syndrome? Am J Med Genet 52:406–415PubMedCrossRefPubMedCentralGoogle Scholar
  25. Choi JW, Lee JY, Phi JH, Wang KC, Chung HT, Paek SH, Kim DG, Park SH, Kim SK (2014) Clinical course of vestibular schwannoma in pediatric neurofibromatosis type 2. J Neurosurg Pediatr 13(6):650–657PubMedCrossRefPubMedCentralGoogle Scholar
  26. Cinalli G, Sainte-Rose C, Kollar EM et al (1998) Hydrocephalus and craniosynostosis. J Neurosurg 88: 209–214PubMedCrossRefPubMedCentralGoogle Scholar
  27. Collmann H, Sorensen N, Krauss J (2005) Hydrocephalus in craniosynostosis: a review. Childs Nerv Syst 21: 902–912PubMedCrossRefPubMedCentralGoogle Scholar
  28. Copp A, Greene ND (2010) Genetics and development of neural tube defects. J Pathol 220:217–230PubMedPubMedCentralGoogle Scholar
  29. Cuevas E, Rybak-Wolf A, Rohde AM et al (2015) Lin41/Trim71 is essential for mouse development and specifically ex- pressed in postnatal ependymal cells of the brain. Front Cell Dev Biol 3:20PubMedPubMedCentralCrossRefGoogle Scholar
  30. Dabora SL, Jozwiak S, Franz DN et al (2001) Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs. Am J Hum Genet 68:64–80PubMedCrossRefPubMedCentralGoogle Scholar
  31. Dahme M, Bartsch U, Martini R, Anliker B, Schachner M, Mantei N (1997) Disruption of the mouse L1 gene leads to malformations of the nervous system. Nat Genet 17(3):346–349PubMedCrossRefPubMedCentralGoogle Scholar
  32. De Angelis E, Watkins A, Schafer M et al (2002) Disease-associated mutations in L1 CAM interfere with ligand interactions and cell-surface expression. Hum Mol Genet 11:1–12PubMedCrossRefPubMedCentralGoogle Scholar
  33. Dessaud E, Yang LL, Hill K et al (2007) Interpretation of the sonic hedgehog morphogen gradient by a temporal adaptation mechanism. Nature 450:717–720PubMedCrossRefPubMedCentralGoogle Scholar
  34. Demyanenko GP, Tsai AY, Maness PF (1999) Abnormalities in neuronal process extension, hippocampal development, and the ventricular system of L1 knockout mice. J Neurosci 19(12):4907–4920PubMedCrossRefPubMedCentralGoogle Scholar
  35. DeMyer WE, Zeman W (1963) Alobar holoprosencephaly (arhinencephaly) with median cleft lip and palate: clinical, electroencephalographic and nosologic considerations. Confin Neurol 23:1–36PubMedCrossRefPubMedCentralGoogle Scholar
  36. Drielsma A, Jalas C, Simonis N et al (2012) Two novel CCDC88C mutations confirm the role of DAPLE in autosomal recessive congenital hydrocephalus. J Med Genet 49:708–712PubMedCrossRefPubMedCentralGoogle Scholar
  37. Ecsedi M, Grosshans H (2013) LIN-41/TRIM71: emancipation of a miRNA target. Genes Dev 27:581–589PubMedPubMedCentralCrossRefGoogle Scholar
  38. Ekici AB, Hilfinger D, Jatzwauk M et al (2010) Disturbed Wnt signalling due to a mutation in CCDC88C causes an autosomal recessive non-syndromic hydrocephalus with medial diverticulum. Mol Syndromol 1:99–112PubMedPubMedCentralCrossRefGoogle Scholar
  39. Evans DG, Huson SM, Donnai D, Neary W, Blair V, Newton V, Strachan T, Harris R (1992) A genetic study of type 2 neurofibromatosis in the United Kingdom. II. Guidelines for genetic counselling. J Med Genet 29(12):847–852PubMedPubMedCentralCrossRefGoogle Scholar
  40. Evans DG, Sainio M, Baser ME (2000) Neurofibromatosis type 2. J Med Genet 37:897–904PubMedPubMedCentralCrossRefGoogle Scholar
  41. Farschtschi S, Merker VL, Wolf D et al (2016) Bevacizumab treatment for symptomatic spinal ependymomas in neurofibromatosis type 2. Acta Neurol Scand 133:475–480PubMedCrossRefPubMedCentralGoogle Scholar
  42. Ferese R, Zampatti S, Griguoli AM et al (2016) A new splicing mutation in the L1CAM gene responsible for X-linked hydrocephalus (HSAS). J Mol Neurosci 59:376–381PubMedCrossRefPubMedCentralGoogle Scholar
  43. Ferner RE, Gutmann DH (2002) International consensus statement on malignant peripheral nerve sheath tumors in neurofibromatosis. Cancer Res 62:1573–1577PubMedPubMedCentralGoogle Scholar
  44. Ferner RE, Huson SM, Thomas N et al (2007) Guidelines for the diagnosis and management of individuals with neurofibromatosis 1. J Med Genet 44:81–88PubMedCrossRefPubMedCentralGoogle Scholar
  45. Eggenschwiler JT, Anderson KV (2007) Cilia and developmental signaling. Annu Rev Cell Dev Biol 23:345–373PubMedPubMedCentralCrossRefGoogle Scholar
  46. Forzano F, Mansour S, Ierullo A et al (2007) Posterior fossa malformation in fetuses: a report of 56 further cases and a review of the literature. Prenat Diagn 27:495–501PubMedCrossRefPubMedCentralGoogle Scholar
  47. Fransen E, Lemmon V, Van Camp G et al (1995) CRASH syndrome: clinical spectrum of corpus callosum hypoplasia, retardation, adducted thumbs, spastic paraparesis and hydrocephalus due to mutations in one single gene, L1. Eur J Hum Genet 3:273–284PubMedCrossRefPubMedCentralGoogle Scholar
  48. Ericson J, Morton S, Kawakami A, Roelink H, Jessell TM (1996) Two critical periods of Sonic hedgehog signaling required for the specification of motor neuron identity. Cell 87:661–673PubMedCrossRefPubMedCentralGoogle Scholar
  49. Euskirchen G, Auerbach RK, Snyder M (2012) SWI/SNF chromatin-remodeling factors: multiscale analyses and diverse functions. J Biol Chem 287:30897–30905PubMedPubMedCentralCrossRefGoogle Scholar
  50. Garne E, Loane M, Addor MC et al (2010) Congenital hydrocephalus – prevalence, prenatal diagnosis and outcome of pregnancy in four European regions. Eur J Paediatr Neurol 14:150–155PubMedCrossRefPubMedCentralGoogle Scholar
  51. Geis T, Marquard K, Rodl T et al (2013) Homozygous dystroglycan mutation associated with a novel muscle-eye-brain disease-like phenotype with multicystic leucodystrophy. Neurogenetics 14:205–213PubMedCrossRefPubMedCentralGoogle Scholar
  52. Gezer C, Ekin A, Ozeren M et al (2014) Chromosome abnormality incidence in fetuses with cerebral ventriculomegaly. J Obstet Gynaecol 34:387–391PubMedCrossRefPubMedCentralGoogle Scholar
  53. Godfrey C, Foley AR, Clement E et al (2011) Dystroglycanopathies: coming into focus. Curr Opin Genet Dev 21:278–285PubMedCrossRefPubMedCentralGoogle Scholar
  54. Goetzinger KR, Stamilio DM, Dicke JM et al (2008) Evaluating the incidence and likelihood ratios for chromosomal abnormalities in fetuses with common central nervous system malformations. Am J Obstet Gynecol 199:285.e1–285.e6CrossRefGoogle Scholar
  55. Gonseth S, Roy R, Houseman EA, de Smith AJ et al (2015) Periconceptional folate consumption is associated with neonatal DNA methylation modifications in neural crest regulatory and cancer development genes. Epigenetics 10:1166–1176PubMedPubMedCentralCrossRefGoogle Scholar
  56. Graham E, Duhl A, Ural S, Allen M, Blakemore K, Witter F (2001) The degree of antenatal ventriculomegaly is related to pediatric neurological morbidity. J Matern Fetal Med 10(4):258–263PubMedCrossRefPubMedCentralGoogle Scholar
  57. Greene ND, Copp AJ (2009) Development of the vertebrate central nervous system: formation of the neural tube. Prenat Diagn 29:303–311PubMedCrossRefPubMedCentralGoogle Scholar
  58. Greene ND, Stanier P, Moore GE (2011) The emerging role of epigenetic mechanisms in the etiology of neural tube defects. Epigenetics 6:875–883PubMedPubMedCentralCrossRefGoogle Scholar
  59. Grill J, Laithier V, Rodriguez D et al (2000) When do children with optic pathway tumours need treatment? An oncological perspective in 106 patients treated in a single Centre. Eur J Pediatr 159:692–696PubMedCrossRefPubMedCentralGoogle Scholar
  60. Guibaud L, Larroque A, Ville D et al (2012) Prenatal diagnosis of ‘isolated’ Dandy-Walker malformation: imaging findings and prenatal counselling. Prenat Diagn 32:185–193PubMedCrossRefPubMedCentralGoogle Scholar
  61. Gulsuner S, Tekinay AB, Doerschner K et al (2011) Homozygosity mapping and targeted genomic sequencing reveal the gene responsible for cerebellar hypoplasia and quadrupedal locomotion in a consanguineous kindred. Genome Res 21:1995–2003PubMedPubMedCentralCrossRefGoogle Scholar
  62. Hahn H, Wicking C, Zaphiropoulous PG et al (1996) Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85:841–851PubMedCrossRefPubMedCentralGoogle Scholar
  63. Harmacek L, Watkins-Chow DE, Chen J et al (2014) A unique missense allele of BAF155, a core BAF chromatin remodeling complex protein, causes neural tube closure defects in mice. Dev Neurobiol 74:483–497PubMedPubMedCentralCrossRefGoogle Scholar
  64. Hall JG, Solehdin F (1998) Genetics of neural tube defects. Ment Retard Dev Disabil Res Rev 4:269–281CrossRefGoogle Scholar
  65. Han C, Yang WZ, Zhang HT et al (2015) Clinical characteristics and long-term outcomes of moyamoya syndrome associated with neurofibromatosis type 1. J Clin Neurosci 22:286–290PubMedCrossRefPubMedCentralGoogle Scholar
  66. Haverkamp F, Wolfle J, Aretz M et al (1999) Congenital hydrocephalus internus and aqueduct stenosis: aetiology and implications for genetic counselling. Eur J Pediatr 158:474–478PubMedCrossRefPubMedCentralGoogle Scholar
  67. Hecht JT, Francomano CA, Horton WA et al (1987) Mortality in achondroplasia. Am J Hum Genet 41:454–464PubMedPubMedCentralGoogle Scholar
  68. Hikasa H, Sekido Y, Suzuki A (2016) Merlin/NF2-Lin28B-let-7 is a tumor-suppressive pathway that is cell-density dependent and hippo independent. Cell Rep 14:2950–2961PubMedCrossRefPubMedCentralGoogle Scholar
  69. Hirbe AC, Gutmann DH (2014) Neurofibromatosis type 1: a multidisciplinary approach to care. Lancet Neurol 13:834–843PubMedCrossRefPubMedCentralGoogle Scholar
  70. Holden ST, Cox JJ, Kesterton I et al (2006) Fanconi anaemia complementation group B presenting as X linked VACTERL with hydrocephalus syndrome. J Med Genet 43:750–754PubMedPubMedCentralCrossRefGoogle Scholar
  71. Holmes GL, Stafstrom CE, Tuberous Sclerosis Study Group (2007) Tuberous sclerosis complex and epilepsy: recent developments and future challenges. Epilepsia 48:617–630PubMedCrossRefGoogle Scholar
  72. Hoogeveen-Westerveld M, Ekong R, Povey S, Karbassi I, Batish SD, den Dunnen JT, van Eeghen A, Thiele E, Mayer K, Dies K, Wen L, Thompson C, Sparagana SP, Davies P, Aalfs C, van den Ouweland A, Halley D, Nellist M (2012) Functional assessment of TSC1 missense variants identified in individuals with tuberous sclerosis complex. Hum Mutat 33(3):476–479PubMedCrossRefPubMedCentralGoogle Scholar
  73. Hoogeveen-Westerveld M, Ekong R, Povey S, Mayer K, Lannoy N, Elmslie F, Bebin M, Dies K, Thompson C, Sparagana SP, Davies P, van Eeghen AM, Thiele EA, van den Ouweland A, Halley D, Nellist M (2013) Functional assessment of TSC2 variants identified in individuals with tuberous sclerosis complex. Hum Mutat 34(1):167–175PubMedCrossRefPubMedCentralGoogle Scholar
  74. Huson SM, Acosta MT, Belzberg AJ et al (2010) Back to the future: proceedings from the 2010 NF conference. Am J Med Genet A 155:307–321CrossRefGoogle Scholar
  75. Ibanez-Tallon I, Pagenstecher A, Fliegauf M et al (2004) Dysfunction of axonemal dynein heavy chain Mdnah5 inhibits ependymal flow and reveals a novel mechanism for hydrocephalus formation. Hum Mol Genet 13:2133–2141PubMedCrossRefPubMedCentralGoogle Scholar
  76. Joubert BR, den Dekker HT, Felix JF et al (2016) Maternal plasma folate impacts differential DNA methylation in an epigenome-wide meta-analysis of newborns. Nat Commun 7:10577PubMedPubMedCentralCrossRefGoogle Scholar
  77. Jóźwiak S, Nabbout R, Curatolo P et al (2013) Management of subependymal giant cell astrocytoma (SEGA) associated with tuberous sclerosis complex (TSC): clinical recommendations. Eur J Paediatr Neurol 17: 348–352PubMedCrossRefPubMedCentralGoogle Scholar
  78. Khoshnood B, Loane M, de Walle H et al (2015) Long term trends in prevalence of neural tube defects in Europe: population based study. BMJ 351:h5949PubMedPubMedCentralCrossRefGoogle Scholar
  79. Kibar Z, Vogan KJ, Groulx N et al (2001) Ltap, a mammalian homolog of Drosophila Strabismus/Van Gogh, is altered in the mouse neural tube mutant loop-tail. Nat Genet 28:251–255PubMedCrossRefPubMedCentralGoogle Scholar
  80. Kibar Z, Torban E, McDearmid JR et al (2007) Mutations in VANGL1 associated with neural-tube defects. N Engl J Med 356:1432–1437PubMedCrossRefPubMedCentralGoogle Scholar
  81. Kibar Z, Bosoi CM, Kooistra M et al (2009) Novel mutations in VANGL1 in neural tube defects. Hum Mutat 30:E706–E715PubMedPubMedCentralCrossRefGoogle Scholar
  82. Kibar Z, Salem S, Bosoi CM et al (2011) Contribution of VANGL2 mutations to isolated neural tube defects. Clin Genet 80:76–82PubMedCrossRefPubMedCentralGoogle Scholar
  83. Kielar M, Tuy FPD, Bizzotto S et al (2014) Mutations in Eml1 lead to ectopic progenitors and neuronal heterotopia in mouse and human. Nat Neurosci 17:923–933PubMedCrossRefPubMedCentralGoogle Scholar
  84. Kim JK, Huh SO, Choi H et al (2001) Srg3, a mouse homolog of yeast SWI3, is essential for early embryogenesis and involved in brain development. Mol Cell Biol 21:7787–7795PubMedPubMedCentralCrossRefGoogle Scholar
  85. Klezovitch O, Fernandez TE, Tapscott SJ et al (2004) Loss of cell polarity causes severe brain dysplasia in Lgl1 knockout mice. Genes Dev 18:559–571PubMedPubMedCentralCrossRefGoogle Scholar
  86. Kolble N, Wisser J, Kurmanavicius J et al (2000) Dandy-Walker malformation: prenatal diagnosis and outcome. Prenat Diagn 20:318–327PubMedCrossRefPubMedCentralGoogle Scholar
  87. Koontz NA, Wiens AL, Agarwal A et al (2013) Schwannomatosis: the overlooked neurofibromatosis? AJR Am J Roentgenol 200:W646–W653PubMedCrossRefPubMedCentralGoogle Scholar
  88. Korf BR (2000) Malignancy in neurofibromatosis type 1. Oncologist 5(6):477–485PubMedCrossRefPubMedCentralGoogle Scholar
  89. Korf BR (2001) Diagnosis and management of neurofibromatosis type 1. Curr Neurol Neurosci Rep 1:162–167PubMedCrossRefPubMedCentralGoogle Scholar
  90. Kosaki K, Ikeda K, Miyakoshi K et al (2004) Absent inner dynein arms in a fetus with familial hydrocephalus-situs abnormality. Am J Med Genet 129A:308–311PubMedCrossRefPubMedCentralGoogle Scholar
  91. Kousi M, Katsanis N (2016) The genetic basis of hydrocephalus. Annu Rev Neurosci 39:409–435PubMedCrossRefPubMedCentralGoogle Scholar
  92. Lekic T, Klebe D, Poblete R et al (2015) Neonatal brain hemorrhage (NBH) of prematurity: translational mechanisms of the vascular-neural network. Curr Med Chem 22:1214–1238PubMedPubMedCentralCrossRefGoogle Scholar
  93. Leshchyns’ka I, Sytnyk V (2016) Reciprocal interactions between cell adhesion molecules of the immunoglobulin superfamily and the cytoskeleton in neurons. Front Cell Dev Biol 4:9PubMedPubMedCentralGoogle Scholar
  94. Liu K, Jian Y, Sun X (2016) Negative regulation of phosphatidylinositol 3-phosphate levels in early-to-late endosome conversion. J Cell Biol 212:181–198PubMedPubMedCentralCrossRefGoogle Scholar
  95. Logan CV, Abdel-Hamed Z, Johnson CA et al (2011) Molecular genetics and pathogenic mechanisms for the severe ciliopathies: insights into neurodevelopment and pathogenesis of neural tube defects. Mol Neurobiol 43:12–26PubMedCrossRefPubMedCentralGoogle Scholar
  96. Manzini MC, Tambunan DE, Hill RS et al (2012) Exome sequencing and functional validation in zebrafish identify GTDC2 mutations as a cause of Walker-Warburg syndrome. Am J Hum Genet 91:541–547PubMedPubMedCentralCrossRefGoogle Scholar
  97. Mautner VF, Tatagiba M, Lindenau M, Fünsterer C, Pulst SM, Baser ME, Kluwe L, Zanella FE (1995) Spinal tumors in patients with neurofibromatosis type 2: MR imaging study of frequency, multiplicity, and variety. AJR Am J Roentgenol 165(4):951–955PubMedCrossRefPubMedCentralGoogle Scholar
  98. McAllister JP 2nd, Williams MA, Walker ML et al (2015) Hydrocephalus symposium expert panel. An update on research priorities in hydrocephalus: overview of the third National Institutes of Health-sponsored symposium “opportunities for hydrocephalus research: pathways to better outcomes”. J Neurosurg 123:1427–1438PubMedCrossRefPubMedCentralGoogle Scholar
  99. Mitchell LE (2005) Epidemiology of neural tube defects. Am J Med Genet C Semin Med Genet 135C:88–94PubMedCrossRefPubMedCentralGoogle Scholar
  100. Moavero R, Coniglio A, Garaci F et al (2013) Is mTOR inhibition a systemic treatment for tuberous sclerosis? Ital J Pediatr 39:57PubMedPubMedCentralCrossRefGoogle Scholar
  101. Murray JC, Johnson JA, Bird TD (1985) Dandy-Walker malformation: etiologic heterogeneity and empiric recurrence risks. Clin Genet 28:272–283PubMedCrossRefPubMedCentralGoogle Scholar
  102. Narita K, Takeda S (2015) Cilia in the choroid plexus: their roles in hydrocephalus and beyond. Front Cell Neurosci 9:39PubMedPubMedCentralCrossRefGoogle Scholar
  103. Narita K, Kawate T, Kakinuma N et al (2010) Multiple primary cilia modulate the fluid transcytosis in choroid plexus epithelium. Traffic 11:287–301PubMedCrossRefPubMedCentralGoogle Scholar
  104. National Institutes of Health (1988) Consensus development conference: neurofibromatosis conference statement. Arch Neurol 45:575–578CrossRefGoogle Scholar
  105. Needham LK, Thelen K, Maness PF (2001) Cytoplasmic domain mutations of the L1 cell adhesion molecule reduce L1-ankyrin interactions. J Neurosci 21: 1490–1500PubMedCrossRefPubMedCentralGoogle Scholar
  106. Newton R, Loughna SC, Stanier PM et al (1991) X-linked spina bifida: a linkage analysis. Miami short reports. In: Advances in gene technology: the molecular biology of human genetic disease, vol vol 1. IRL Press, New York, p 33Google Scholar
  107. Nguyen DTT, Richter D, Michel G et al (2017) The ubiquitin ligase LIN41/TRIM71 targets p53 to antagonize cell death and differentiation pathways during stem cell differentiation. Cell Death Differ 24:1063–1078PubMedPubMedCentralCrossRefGoogle Scholar
  108. Northrup H, Krueger DA, International Tuberous Sclerosis Complex Consensus Group (2013) International tuberous sclerosis complex consensus group. Tuberous sclerosis complex diagnostic criteria update: recommendations of the 2012 international tuberous sclerosis complex consensus conference. Pediatr Neurol 49: 243–254PubMedPubMedCentralCrossRefGoogle Scholar
  109. Novarino G, Akizu N, Gleeson JG (2011) Modeling human disease in humans: the ciliopathies. Cell 147:70–79PubMedPubMedCentralCrossRefGoogle Scholar
  110. Nunes FP, Merker VL, Jennings D et al (2013) Bevacizumab treatment for meningiomas in NF2: a retrospective analysis of 15 patients. PLoS One 8:e59941PubMedPubMedCentralCrossRefGoogle Scholar
  111. Obeid R, Pietrzik K, Oakley GP Jr et al (2015) Preventable spina bifida and anencephaly in Europe. Birth Defects Res A Clin Mol Teratol 103:763–771PubMedCrossRefPubMedCentralGoogle Scholar
  112. Ohata S, Nakatani J, Herranz-Pérez V, Cheng J, Belinson H, Inubushi T, Snider WD, García-Verdugo JM, Wynshaw-Boris A, Alvarez-Buylla A (2014) Loss of Dishevelleds disrupts planar polarity in ependymal motile cilia and results in hydrocephalus. Neuron 83(3):558–571. Scholar
  113. Osenbach RK, Menezes AH (1992) Diagnosis and management of the Dandy-Walker malformation: 30 years of experience. Pediatr Neurosurg 18:179–189PubMedCrossRefPubMedCentralGoogle Scholar
  114. Oshita A, Kishida S, Kobayashi H et al (2003) Identification and characterization of a novel Dvl-binding protein that suppresses Wnt signalling pathway. Genes Cells 8:1005–1017PubMedCrossRefPubMedCentralGoogle Scholar
  115. Parker MJ, Budd JLS, Draper ES et al (2003) Trisomy 13 and trisomy 18 in a defined population: epidemiological, genetic and prenatal observations. Prenat Diagn 23:856–860PubMedCrossRefPubMedCentralGoogle Scholar
  116. Philip N, Auger M, Mattei JF et al (1988) Achondroplasia in sibs of normal parents. J Med Genet 25:857–859PubMedPubMedCentralCrossRefGoogle Scholar
  117. Plotkin SR, Stemmer-Rachamimov AO, Barker FG 2nd et al (2009) Hearing improvement after bevacizumab in patients with neurofibromatosis type 2. N Engl J Med 361:358–367PubMedPubMedCentralCrossRefGoogle Scholar
  118. Plotkin SR, Merker VL, Halpin C et al (2012) Bevacizumab for progressive vestibular schwannoma in neurofibromatosis type 2: a retrospective review of 31 patients. Otol Neurotol 33:1046–1052PubMedCrossRefPubMedCentralGoogle Scholar
  119. Purandare SM, Ware SM, Kwan KM et al (2002) A complex syndrome of left-right axis, central nervous system and axial skeleton defects in Zic3 mutant mice. Development 129:2293–2302PubMedPubMedCentralGoogle Scholar
  120. Raam MS, Solomon BD, Muenke M (2011) Holoprosencephaly: a guide to diagnosis and clinical management. Indian Pediatr 48:457–466PubMedPubMedCentralCrossRefGoogle Scholar
  121. Radtke HB, Sebold CD, Allison C et al (2007) Neurofibromatosis type 1 in genetic counseling practice: recommendations of the national society of genetic counselors. J Genet Couns 16:387–407PubMedCrossRefPubMedCentralGoogle Scholar
  122. Rasmussen SA, Wong LY, Yang Q et al (2003) Population-based analyses of mortality in trisomy 13 and trisomy 18. Pediatrics 111:777–784PubMedCrossRefPubMedCentralGoogle Scholar
  123. Reardon W, Zhou XP, Eng C (2001) A novel germline mutation of the PTEN gene in a patient with macrocephaly, ventricular dilatation, and features of VATER association. J Med Genet 38:820–823PubMedPubMedCentralCrossRefGoogle Scholar
  124. Rendtorff ND, Bjerregaard B, Frödin M et al (2005) Analysis of 65 tuberous sclerosis complex (TSC) patients by TSC2 DGGE, TSC1/TSC2 MLPA, and TSC1 long-range PCR sequencing, and report of 28 novel mutations. Hum Mutat 26:374–383PubMedCrossRefPubMedCentralGoogle Scholar
  125. Roscioli T, Kamsteeg EJ, Buysse K et al (2012) Mutations in ISPD cause Walker-Warburg syndrome and defective glycosylation of a-dystroglycan. Nat Genet 44:581–585PubMedPubMedCentralCrossRefGoogle Scholar
  126. Rosenthal A, Joulet M, Kenwrick S (1992) Aberrant splicing of neural cell adhesion molecule L1 mRNA in a family with X-linked hydrocephalus. Nat Genet 2:107–112. Note: Erratum: Nature Genet 3:273 only, 1993PubMedCrossRefPubMedCentralGoogle Scholar
  127. Ruggieri M (1999) The different forms of neurofibromatosis. Childs Nerv Syst 15:295–308PubMedCrossRefPubMedCentralGoogle Scholar
  128. Ruggieri M, Praticò AD, Evans DG (2015) Diagnosis, management, and new therapeutic options in childhood Neurofibromatosis type 2 and related forms. Semin Pediatr Neurol 22:240–258PubMedCrossRefPubMedCentralGoogle Scholar
  129. Sakata-Haga H, Sawada K, Ohnishi T et al (2004) Hydrocephalus following prenatal exposure to ethanol. Acta Neuropathol (Berl) 108:393–398CrossRefGoogle Scholar
  130. Salonen R, Norio R (1984) The Meckel syndrome in Finland: epidemiologic and genetic aspects. Am J Med Genet 18(4):691–698PubMedCrossRefPubMedCentralGoogle Scholar
  131. Salonen R, Herva R, Norio R (1981) The hydrolethalus syndrome: delineation of a ‘new’ lethal malformation syndrome, based on 28 patients. Clin Genet 19: 321–330PubMedCrossRefPubMedCentralGoogle Scholar
  132. Santoro C, Maietta A, Giugliano T et al (2015) Arg(1809) substitution in neurofibromin: further evidence of a genotype-phenotype correlation in neurofibromatosis type 1. Eur J Hum Genet 23:1460–1461PubMedPubMedCentralCrossRefGoogle Scholar
  133. Schrander-Stumpel C, Fryns JP (1998) Congenital hydrocephalus: nosology and guidelines for clinical approach and genetic counselling. Eur J Pediatr 157:355–362PubMedCrossRefPubMedCentralGoogle Scholar
  134. Seo JH, Zilber Y, Babayeva S et al (2011) Mutations in the planar cell polarity gene, Fuzzy, are associated with neural tube defects in humans. Hum Mol Genet 20:4324–4333PubMedCrossRefPubMedCentralGoogle Scholar
  135. Sgulò FG, Spennato P, Aliberti F et al (2017) Contemporary occurrence of hydrocephalus and Chiari I malformation in sagittal craniosynostosis. Case report and review of the literature. Childs Nerv Syst 33:187–192PubMedCrossRefPubMedCentralGoogle Scholar
  136. Shikata Y, Okada T, Hashimoto M et al (2011) Ptch1-mediated dosage-dependent action of Shh signaling regulates neural progenitor development at late gestational stages. Dev Biol 349:147–159PubMedCrossRefPubMedCentralGoogle Scholar
  137. Simmons K, Hashmi SS, Scheuerle A et al (2014) Mortality in babies with achondroplasia: revisited. Birth Defects Res A Clin Mol Teratol 100:247–249PubMedCrossRefPubMedCentralGoogle Scholar
  138. Solomon BD (2011) VACTERL/VATER association. Orphanet J Rare Dis 6:56PubMedPubMedCentralCrossRefGoogle Scholar
  139. Stevens E, Carss KJ, Cirak S et al (2013) Mutations in B3GALNT2 cause congenital muscular dystrophy and hypoglycosylation of alpha-dystroglycan. Am J Hum Genet 92:354–365PubMedPubMedCentralCrossRefGoogle Scholar
  140. Stevenson DA, Schill L, Schoyer L et al (2016) The fourth international symposium on genetic disorders of the Ras/MAPK pathway. Am J Med Genet A 170: 1959–1966PubMedPubMedCentralCrossRefGoogle Scholar
  141. Stoll C, Alembik Y, Dott B et al (1992) An epidemiologic study of environmental and genetic factors in congenital hydrocephalus. Eur J Epidemiol 8:797–803PubMedCrossRefPubMedCentralGoogle Scholar
  142. Sun L, Wu Q, Jiang SW et al (2015) Prenatal diagnosis of central nervous system anomalies by high-resolution chromosomal microarray analysis. Biomed Res Int 2015:426379PubMedPubMedCentralGoogle Scholar
  143. Svard J, Rozell B, Toftgard R, Teglund S (2009) Tumor suppressor gene co-operativity in compound Patched1 and suppressor of fused heterozygous mutant mice. Mol Carcinog 48:408–419PubMedPubMedCentralCrossRefGoogle Scholar
  144. Szudek J, Birch P, Friedman JM (2000) Growth charts for young children with neurofibromatosis 1 (NF1). Am J Med Genet 92:224–228PubMedCrossRefPubMedCentralGoogle Scholar
  145. Tarpey PS, Stevens C, Teague J et al (2006) Mutations in the gene encoding the sigma 2 subunit of the adaptor protein 1 complex, AP1S2, cause X-linked mental retardation. Am J Hum Genet 79:1119–1124PubMedPubMedCentralCrossRefGoogle Scholar
  146. Thelen K, Kedar V, Panicker AK et al (2002) The neural cell adhesion molecule L1 potentiates integrin-dependent cell migration to extracellular matrix proteins. J Neurosci 22:4918–3491PubMedCrossRefPubMedCentralGoogle Scholar
  147. Toriello HV (1984) Report of a third kindred with X-linked anencephaly/spina bifida. (Letter). Am J Med Genet 19:411–412PubMedCrossRefPubMedCentralGoogle Scholar
  148. Tort J, Lelong N, Prunet C et al (2013) Maternal and health care determinants of preconceptional use of folic acid supplementation in France: results from the 2010 National Perinatal Survey. BJOG 120:1661–1667PubMedCrossRefPubMedCentralGoogle Scholar
  149. Trotter TL, Hall JG (2005) American Academy of Pediatrics Committee on Genetics Health supervision for children with achondroplasia. Pediatrics 116:771–783PubMedCrossRefPubMedCentralGoogle Scholar
  150. Tsoi H, Yu AC, Chen ZS et al (2014) A novel missense mutation in CCDC88C activates the JNK pathway and causes a dominant form of spinocerebellar ataxia. J Med Genet 51:590–595PubMedPubMedCentralCrossRefGoogle Scholar
  151. Tsunoda I, McCright IJ, Kuang LQ et al (1997) Hydrocephalus in mice infected with a Theiler’s murine encephalomyelitis virus variant. J Neuro-Oncol 56: 1302–1313Google Scholar
  152. Tüzel E, Samli H, Kuru I et al (2007) Association of hypospadias with hypoplastic synpolydactyly and role of HOXD13 gene mutations. Urology 70:161–164PubMedCrossRefPubMedCentralGoogle Scholar
  153. Ullrich NJ (2015) Neurocutaneous syndromes and brain tumors. J Child Neurol 31:1399–1411PubMedCrossRefPubMedCentralGoogle Scholar
  154. von Renesse A, Petkova MV, Lutzkendorf S et al (2014) POMK mutation in a family with congenital muscular dystrophy with merosin deficiency, hypomyelination, mild hearing deficit and intellectual disability. J Med Genet 51:275–282CrossRefGoogle Scholar
  155. Vos YJ, Hofstra RM (2010) An updated and upgraded L1CAM mutation database. Hum Mutat 31(1):E1102–E1109. Scholar
  156. Vos YJ, de Walle HE, Bos KK et al (2010) Genotype-phenotype correlations in L1 syndrome: a guide for genetic counselling and mutation analysis. J Med Genet 47:169–175PubMedCrossRefPubMedCentralGoogle Scholar
  157. Waller DK, Correa A, Vo TM et al (2008) The population-based prevalence of achondroplasia and thanatophoric dysplasia in selected regions of the US. Am J Med Genet A 146A:2385–2389PubMedPubMedCentralCrossRefGoogle Scholar
  158. Wang T, Liu Y, Xu XH et al (2011) Lgl1 activation of rab10 promotes axonal membrane trafficking underlying neuronal polarization. Dev Cell 21:431–444PubMedCrossRefPubMedCentralGoogle Scholar
  159. Webster MK, Donoghue DJ (1996) Constitutive activation of fibroblast growth factor receptor 3 by the transmembrane domain point mutation found in achondroplasia. EMBO J 15:520–527PubMedPubMedCentralCrossRefGoogle Scholar
  160. Weller S, Gartner J (2001) Genetic and clinical aspects of X-linked hydrocephalus (L1 disease): mutations in the L1CAM gene. Hum Mutat 18:1–12PubMedCrossRefPubMedCentralGoogle Scholar
  161. Wetmore C, Eberhart DE, Curran T (2000) The normal patched allele is expressed in medulloblastomas from mice with heterozygous germ-line mutation of patched. Cancer Res 60:2239–2246PubMedPubMedCentralGoogle Scholar
  162. Witters I, Fryns JP (2008) Trisomy 18 presenting with severe limb deformations. Prenat Diagn 28:549–550PubMedCrossRefPubMedCentralGoogle Scholar
  163. Yamakasi M, Thompson P, Lemmon V (1997) CRASH syndrome: mutations in L1CAM correlate with severity of the disease. Neuropediatrics 28:175–178CrossRefGoogle Scholar
  164. Yamamoto GL, Aguena M, Gos M et al (2015) Rare variants in SOS2 and LZTR1 are associated with Noonan syndrome. J Med Genet 52:413–421PubMedCrossRefPubMedCentralGoogle Scholar
  165. Yamasaki M, Kanemura Y (2015) Molecular biology of pediatric hydrocephalus and hydrocephalus-related diseases. Neurol Med Chir (Tokyo) 55:640–646CrossRefGoogle Scholar
  166. Zhang J, Williams MA, Rigamonti D (2006) Genetics of human hydrocephalus. J Neurol 253:1255–1266PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2019

Authors and Affiliations

  1. 1.Dipartimento della Donna, del Bambino e della Chirurgia Generale e SpecialisticaUniversity of Campania “Luigi Vanvitelli”NaplesItaly

Section editors and affiliations

  • James P. McAllister II
    • 1
  • Giuseppe Cinalli
    • 2
  1. 1.Department of Neurosurgery, Division of Pediatric NeurosurgeryWashington University School of Medicine and the St. Louis Children’s HospitalSt. LouisUSA
  2. 2.Department of Pediatric NeurosurgerySantobono-Pausilipon Children’s HospitalNaplesItaly

Personalised recommendations