In-Depth View: Functional Characteristics of CSF Shunt Devices (Pros and Cons)

  • Alfred AschoffEmail author
Living reference work entry

Latest version View entry history


The treatment of hydrocephalus or similar diseases requires shunt devices. Thousands of patients live with shunts over decades, in the hope that the regulation of their ICP could improve their physical condition. This chapter discusses the pros and cons of the different types of devices and comprehends the technological development of valves since 1949. The chapter starts with the description of the possibilities for classification and the requirements for shunts, further of their functioning against the background of the physiological preconditions like ICP and normal CSF flowrates. The question is, thereby, which physical factors influence the working of devices, especially how they depend on the posture of patients and how the valve technologies answer those problems. Based on extensive clinical and laboratory studies, the author outlines the most common devices of the last 60 years and discusses simple differential pressure valves as well-adjustable, antisiphon, gravitational, and low-flow valves.


Valves Hydrocephalus valves Shunt devices Shunt technology Ball-in-cone valves Distal slit valves Proximal slit valves Adjustable valves Gravitational valves Low-flow valves Antisiphon devices 


  1. Abbott R, Sandler AL (2016) Cerebrospinal shunts: selection of components, techniques for insertion and for revision. In: Kombogiorgas D (ed) The cerebrospinal fluid shunts. Nova Biomedical, New York, pp 221–244Google Scholar
  2. Akbar M, Aschoff A, Georgi J, Nennig E, Heiland S, Abel R, Stippich C (2012) Adjustable cerebrospinal fluid shunt valves in 3.0-Tesla MRI: a phantom study using explanted devices. RöFo 2010 187(7):594–602Google Scholar
  3. Alavi S, Schulz M, Schaumann A, Schwarz K, Thomale UW (2017) Valve exchange towards an adjustable differential pressure valve with gravitational unit, clinical outcome of a single-center study. Childs Nerv Syst 33(5):759–765PubMedCrossRefPubMedCentralGoogle Scholar
  4. Ames RH (1967) Ventriculo-peritoneal shunts in the management of hydrocephalus. J Neurosurg 27:525–529PubMedCrossRefPubMedCentralGoogle Scholar
  5. Arnell K, Koskinen LO, Malm J, Eklund A (2009) Evaluation of Strata NSC and Codman hakim adjustable cerebrospinal fluid shunts and their corresponding antisiphon device. J Neurosurg Ped 3(3):166–172PubMedPubMedCentralGoogle Scholar
  6. Aschoff A (1995) In-vitro-Tests von Hydrocephalus-Ventilen. Inauguration thesis (in German, 537 pages), University of HeidelbergGoogle Scholar
  7. Aschoff A, Osterloh M, Kunze S (1990) Longtime-tests of 34 hydrocephalus-Valves. Child’s Nerv Syst 6:282Google Scholar
  8. Aschoff A, Kremer P, Benesch C, Klank A, Kunze S (1991) Shunt-technology and overdrainage. Eur J Pediatr Surg 1(Suppl I):49–50PubMedPubMedCentralGoogle Scholar
  9. Aschoff A, Benesch C, Kremer P, Klank A, Osterloh M, Fruh K (1993) The solved and unsolved problems of hydrocephalus-valves. A critical comment. Adv Neurosurg 21:103–114CrossRefGoogle Scholar
  10. Aschoff A, Benesch C, Kremer P, Fruh K, Klank A, Kunze S (1995) Overdrainage and shunt-technology. A critical comparison of programmable, hydrostatic and variable-resistance-valves and flow-reducing devices. Childs Nerv Syst 11:193–200PubMedCrossRefGoogle Scholar
  11. Aschoff A, Kremer P, Hashemi B, Benesch C, Kunze S (1996) Technical design of 130 hydrocephalus valves. An overview on historical, available, and prototype valves. Childs Nerv Syst 12:503Google Scholar
  12. Aschoff A, Kremer P, Hashemi B, Kunze S (1999) The scientific history of hydrocephalus and its treatment. Neurosurg Rev 22:67–93PubMedCrossRefGoogle Scholar
  13. Aschoff A, Richard KE, Block F, Schnippering H, Kunze S (2001) Shunt-telemetry over 6 weeks at home under daily life conditions. Childs Nerv Syst 17:433–434Google Scholar
  14. Aschoff A, Kiefer M, Kehler U, Hashemi B, UnterbergA (2009) Adjustable gravitational valves. From the conception in 1996 to first implantations 2008. Cerebrospinal Fluid Res 6(Suppl 2):S22Google Scholar
  15. Bayston R, Grove N, Siegel J, Lawellin D, Barsham S (1989) Prevention of hydrocephalus catheter colonisation in vitro by impregnation with antimicrobials. J Neurol Neurosurg Psychiatry 52:605–609PubMedPubMedCentralCrossRefGoogle Scholar
  16. Beez T, Sarikaya-Sewert S, Bellstädt L, Mühmer M, Steiger HJ (2014) Fixed-pressure gravity-assisted valves and adjustable differential pressure valves in the treatment of pediatric hydrocephalus – a single center study of valve performance in the clinical setting. Childs Nerv Syst 30(2):293–7Google Scholar
  17. Benninger C, Schäfer H, Mittermaier G, Wöhrle J, Aschoff A (1992) Liquoraszites bei hydrocephalus hypersecretorius. In: Aktuelle Neuropädiatrie 1992. Ciba-Geigy-Verlag, Wehr, pp 267–269Google Scholar
  18. Bering EA Jr (1955) Choroid plexus and arterial pulsation of cerebrospinal fluid. Arch Neurol Psych 73:165–172CrossRefGoogle Scholar
  19. Beuriat PA, Puget S, Cinalli G, Blauwblomme T, Beccaria K, Zerah M, Sainte-Rose C (2017) Hydrocephalus treatment in children: long-term outcome in 975 consecutive patients. J Neurosurg Pediatr 21:1–9Google Scholar
  20. Biedermann N (2011) Langzeitverläufe 10 Jahre nach der Implantation von verstellbaren Medos-Ventilen 1995–1999. Medical thesis, University of HeidelbergGoogle Scholar
  21. Boon AJW, Tans JTJ, Delwel EJ, Egeler-Peerdeman SM, Hanlo PW, Wurzer HAL, Aavezaat CJJ, de Jong D, Gooskens RHJM, Hermans J (1998) Dutch Normal-Pressure Hydrocephalus Study: randomized comparison of low- and medium pressure shunts. J Neurosurg 88:490–495PubMedCrossRefPubMedCentralGoogle Scholar
  22. Brydon HL, Bayston R, Hyyward R, Harkness W (1996) The effect of protein and blood cells on the flow-pressure characteristics of shunts. Neurosurgery 38:498–505PubMedPubMedCentralGoogle Scholar
  23. Cedzich C, Wießner A (2003) The treatment of hydrocephalus in infants and children using hydrostatic valves. Zentralblt Neurochir 64:51–57CrossRefGoogle Scholar
  24. Chhabra DK, Agrawal GD, Mittal P (1993) “Z” flow hydrocephalus shunts, a new approach to the problem of hydrocephalus, the rationale behind its design and the initial results of pressure monitoring after “Z” flow shunt implantation. Acta Neurochir 121:43–47PubMedCrossRefGoogle Scholar
  25. Choux M, Genitori L, Lang D, Lena G (1992) Shunt implantation: reducing the incidence of shunt infection. J Neurosurgery 77:875–880CrossRefGoogle Scholar
  26. Codman (1992) Codman-Medos-sales training manual. Codman, RandolphGoogle Scholar
  27. Czosnyka Z, Czosnyka M, Whitehouse H, Pickard JD (1997) Hydrodynamic properties of hydrocephalus shunts. United Kingdom shunt evaluation laboratory. J Neurol Neurosurg Psychiatry 62:43–50PubMedPubMedCentralCrossRefGoogle Scholar
  28. Czosnyka Z, Czosnyka M, Richards HK, Pickard JD (1998) Posture-related overdrainage: comparison of the performance of 10 hydrocephalus shunts in vitro. Neurosurgery 42:327–334PubMedCrossRefGoogle Scholar
  29. Czosnyka ZH, Czosnyka M, Richards HK, Pickard JD (2002) Laboratory evaluation of hydrocephalus shunts – conclusion of the U.K. shunt evaluation programme. Acta Neurochir 144:525–538PubMedCrossRefGoogle Scholar
  30. Decq JL, Barat L, Duplessis E, Leguerinel C, Gendrault P (1995) Shunt failure in adult hydrocephalus: flow-controlled shunt versus differential pressure shunts - a cooperative study in 289 patients. Surg Neurol 43:333–339PubMedCrossRefGoogle Scholar
  31. Dette K, Hlavac M, Vienenkoetter B, Unterberg A, Aschoff A (2008) Urgent adjustment of variable Medos-, Sophysa- and Miethke-ProGAV-valves with standard permanent magnets. Possibilities and limitations hydrocephalus. Clin Neurol Neurosurg 110(Suppl 1):35Google Scholar
  32. DiRocco C, Marchese E, Velardi F (1994) A survey of the first complication of newly implanted CSF shunt devices for the treatment of nontumoral hydrocephalus. Childs Nerv Syst 10:321–327CrossRefGoogle Scholar
  33. Drake JM, Sainte-Rose C (1995) The shunt book. Blackwell Science, Cambridge, MAGoogle Scholar
  34. Drake JM, daSilva M, Rutka JT (1993) Functional obstruction of an Antisiphon device by raised tissue capsule pressure. Neurosurgery 32:137–139PubMedCrossRefPubMedCentralGoogle Scholar
  35. Drake JM, Kestle JRW, Milner R, Cinalli G et al (1998) Randomized trial of cerebrospinal fluid shunt valve design in pediatric hydrocephalus. Neurosurgery 43:294–305PubMedCrossRefPubMedCentralGoogle Scholar
  36. Eklund A, Koskinen LOD, Malm J (2004) Features of the Sinushunt and its influence on the cerebrospinal fluid system. J Neurol Neurosurg Psychiatry 75:1156–1159PubMedPubMedCentralCrossRefGoogle Scholar
  37. Ekstedt J, Friden H (1980) Hydrodynamic properties of CSF shunt systems. In: Shulmann K, Marmarou A, Miller JD, Becker DP, Hochwald GM, Brock M (eds) Intracranial pressure IV. Springer, Berlin/Wien/New York, pp 483–485CrossRefGoogle Scholar
  38. Elixmann IM, Kwiecien M, Goffin C, Walter M, Misgeld B, Kiefer M, Steudel WI, Radermacher K, Leonhardt S (2014 Sep) Control of an electromechanical hydrocephalus shunt – a new approach. IEEE Trans Biomed Eng 61(9):2379–2388Google Scholar
  39. Eymann R, Steudel WI, Kiefer M (2007) Pediatric gravitational shunts: first results from a prospective study. J Neurosurg Pediatr 106(3 Suppl):179–184CrossRefGoogle Scholar
  40. Forrest DM (1962) Flow characteristics of the Spitz-Holter valve. Develop Med Child Neurol 4:295–297CrossRefGoogle Scholar
  41. Fox JD, Portnoy HD, Shulte RR (1973) Cerebrospinal fluid shunts: an experimental evaluation of flow rates and pressure values in the anti-siphon valve. Surg Neurol 1:299–302PubMedGoogle Scholar
  42. Freimann FB, Luhdo ML, Rohde V, Vajkoczy P, Wolf S, Sprung C (2014) The Frankfurt horizontal plane as a reference for the implantation of gravitational units: a series of 376 adult patients. Acta Neurochir (Wien) 156(7):1351–6PubMedCrossRefGoogle Scholar
  43. Goodrich JT (2016) Historical vignettes on the medical and surgical treatment of hydrocephalus. In: Kombogiorgas D (ed) The cerebrospinal fluid shunts. Nova Biomedical, New York, pp 1–20Google Scholar
  44. Gruber RW, Roehrig B (2010) Prevention of ventricular catheter obstruction and slit ventricle syndrome by the prophylactic use of the Integra antisiphon device in shunt therapy for pediatric hypertensive hydrocephalus: a 25-year follow-up study. J Neurosurg Pediatr 5(1):4–16PubMedPubMedCentralGoogle Scholar
  45. Gruber R, Jenny P, Herzog B (1984) Experiences with the antisiphon-device (ASD) in shunt therapy of pediatric hydrocephalus. J Neurosurg 61:156–162PubMedCrossRefPubMedCentralGoogle Scholar
  46. Hakim S (1973) Hydraulic and mechanical miss-matching of valve shunts used in the treatment of hydrocephalus: the need for a servo-valve shunt. Dev Med Child Neurol 15:646–653PubMedCrossRefPubMedCentralGoogle Scholar
  47. Hakim CA (1985) The physics and physiopathology of the hydraulic complex of the central nervous system. Thesis, Massachusetts Institute of Technology, Cambridge MA (fig 25)Google Scholar
  48. Hakim S, Hakim C (1984) Patent of the adjustable Medos-Hakim-Valve 21.07.83 US 516137; 08.12.83 US 559864; 0812.83 US 559865; European patent, application no EP 90202828.1, 23.07.84Google Scholar
  49. Hakim S, Duran de la Roche F, Burton JD (1973) A critical analysis of valve shunts used in the treatment of hydrocephalus. Dev Med Child Neurol 15:230–255PubMedCrossRefPubMedCentralGoogle Scholar
  50. Hanlo PW, Cinalli G, Vandertop WP, Faber JA, Bogeskov L, Borgesen SE, Boschert J, Chumas P, Eder H, Pople IK, Serlo W, Vitzthum E (2003) Treatment of hydrocephalus determined by the European Orbis Sigma Valve II survey: a multicenter prospective 5-year shunt survival study in children and adults in whom a flow-regulating shunt was used. J Neurosurg 99(1):52–57PubMedCrossRefPubMedCentralGoogle Scholar
  51. Henle A (1896) Beitrag zur Pathologie und Therapie des Hydrocephalus. Mitteilungen Grenzgebiet Med Chir 1:264–302Google Scholar
  52. Hertle DN, Tilgner J, Fruh K, Keinert T, Hagenston AM, Unterberg A, Aschoff A (2010) Reversible occlusion (on-/off-) valves in shunted tumor patients. Neurosurg Rev 34(2):235–242PubMedCrossRefPubMedCentralGoogle Scholar
  53. Horton DD, Pollay M (1990) Fluid flow performance of a new siphon-control device for ventricular shunts. J Neurosurg 72:926–932PubMedCrossRefGoogle Scholar
  54. Ingraham FD, Matson DD, Alexander E Jr, Woods RP (1948) Studies in the treatment of experimental hydrocephalus. J Neuropath Exp Neurol 7:123–143PubMedCrossRefGoogle Scholar
  55. ISO 7197:1989 (E) TC150/SC 3 - N 45 (1989) International Standard: Neurosurgical implants – Sterile, single-use hydrocephalus shunts and components. First edition, 1989-08-01. International Organization for Standardization, GenévaGoogle Scholar
  56. Jetzki S, Leonhardt S (2018) An electronic implant for hydrocephalus therapy assistance. Conf Proc IEEE Eng Med Biol Soc 2008:715–718Google Scholar
  57. Johanson CE (2016) Physiology and pathology of cerebrospinal fluid: pressure, formation, composition, flow and reabsorption. In: Kombogiorgas D (ed) The cerebrospinal fluid shunts. Nova Biomedical, New York, p 21Google Scholar
  58. Kadowaki C, Hara M, Numoto M, Takeuchi K, Saito I (1995) CSF shunt physics: factors influencing in shunt CSF flow. Childs Nerv Syst 11:203–206PubMedCrossRefGoogle Scholar
  59. Kehler U, Kiefer M, Eymann R, Wagner W, Tschan CA, Langer N, Rohde V, Ludwig HC, Gliemroth J, Meier U, Lemcke J, Thomale UW, Fritsch M, Krauss JK, Mirzayan MJ, Schuhmann M, Huthmann A (2015) Prosaika: A prospective multicenter registry with the first programmable gravitational device for hydrocephalus shunting. Clin Neurol Neurosurg 137:132–136PubMedCrossRefGoogle Scholar
  60. Keith HD, Watts C (1983) Testing of cerebrospinal fluid shunt systems under dynamic flow conditions. Med Instrum 17:297–302PubMedGoogle Scholar
  61. Kestle JR, Walker ML for the Strata Investigators (2005) A multicenter prospective cohort study of the STRATA valve for the management of hydrocephalus in pediatric children. J Neurosurg Pediatr 102(2):141–145CrossRefGoogle Scholar
  62. Kestle J, Drake J, Milner R et al (2000) Long term follow-up from the shunt design trial. Pediatr Neurosurg 31:230–236CrossRefGoogle Scholar
  63. Kiefer M, Eymann R, Meier U (2002) Five years experience with gravitational shunts in chronic hydrocephalus of adults. Acta Neurochir 144:755–767. discussion 767PubMedCrossRefPubMedCentralGoogle Scholar
  64. Kombigiorgas DA (2016) Types and components of cerebrospinal fluid shunts. In: Kombogiorgas D (ed) The cerebrospinal fluid shunts. Nova Biomedical, New York, pp 85–98Google Scholar
  65. Kremer P, Aschoff A, St K (1994) Risks of using siphon-reducing devices. Childs Nerv Syst 10:231–235PubMedCrossRefPubMedCentralGoogle Scholar
  66. Kuffer F, Strub D (1971) Ein ligaturfreier Konnektor für Hydrocephalus-Ventile. (Vorschlag zu einem neuen Ventil). Z Kinderchir 9:293–301Google Scholar
  67. Lemcke J, Meier U, Müller M, Fritsch M, Kiefer M, Eymann R, Schumann M, Speil A, Kehler U, Langer N, Weber F, Remenez V, Stengel D, Ludwig HC, Rohde V (2013) Safety and efficacy of gravitational shunt valves in patients with idiopathic normal pressure hydrocephalus: a pragmatic, randomized, open level multicentre trial (SVASONA). J Neurol Neurosurg & Psychiatry 2013;01–8Google Scholar
  68. Lutz BR, Venkataraman P, Browd SR (2013) New and improved ways to treat hydrocephalus: pursuit of a smart shunt. Surg Neurol Int 4(Suppl 1):S38–S50PubMedPubMedCentralCrossRefGoogle Scholar
  69. Malbrain M, Cheatham M, Kirkpatrick A et al (2006) Results from the international conference of experts on intra-abdominal hypertension and abdominal compartment syndrome. I. Definitions. Intens Care Med 32:1722–1732CrossRefGoogle Scholar
  70. Mangano FT, Menendez JA, Habrock T, Narayan P, Leonhard JR, Park TS, Smyth MD (2005) Early programmable valve malfunctions in pediatric hydrocephalus. J Neurosurg Pediatr 103(6 Suppl):501–507CrossRefGoogle Scholar
  71. McCullough DC (1986) Symptomatic progressive ventriculomegaly in hydrocephalus with patent shunt and anti-siphon devices. Neurosurgery 4:617–621CrossRefGoogle Scholar
  72. Miethke C (2016) Manufacture and function of cerebrospinal fluid shunts. In: Kombogiorgas D (ed) The cerebrospinal fluid shunts. Nova Biomedical, New York, pp 99–220Google Scholar
  73. Miethke C, Affeld K (1994) A new valve for the treatment of hydrocephalus. Biomed Tech 39:181–187CrossRefGoogle Scholar
  74. Nulsen FE, Spitz EB (1952) Treatment of hydrocephalus by direct shunt from ventricle to jugular vein. Surg Forum 2:399–403Google Scholar
  75. Oikonomou J, Aschoff A, Hashemi B, Kunze S (1999) New valves – new dangers? 22 valves (38 probes) designed in the nineties in ultralong-term test (365 days). Eur J Pediatric Surg 9(Suppl 1):23–26CrossRefGoogle Scholar
  76. Paes N (1996) A new auto-adjusting flow regulating device. Childs Nerv Syst 12:619–625PubMedCrossRefPubMedCentralGoogle Scholar
  77. Park J, Kim GJ, Hwang SK (2007) Valve inclination influences the performance of gravity-assisted valve. Surg Neurol 68:14–18PubMedCrossRefPubMedCentralGoogle Scholar
  78. Patwardhan RV, Nanda A (2005) Implanted ventricular shunts in the United States: the billion-dollar-a-year cost of hydrocephalus treatment. Neurosurgery 56:139–145PubMedCrossRefPubMedCentralGoogle Scholar
  79. Payr E (1908) Drainage der Hirnventrikel mittels frei transplantierter Blutgefäße; Bemerkungen über Hydrocephalus. Arch Clin Chir 87:801–885Google Scholar
  80. Piotrowicz A (2013) Die Hydrocephalusbehandlung mit verstellbaren Medos-Ventilen 1990–1994. Medical thesis, Univ. HeidelbergGoogle Scholar
  81. Portnoy HD (1989) Pat US 4,867,741 (2003) “Resistive Valve”. Concept study. Personal communicationGoogle Scholar
  82. Portnoy HD, Schulte RR, Fox JL (1973) Antisiphon and reversible occlusion valves for shunting in hydrocephalus and preventing post-shunt subdural hematomas. J Neurosurg 38:729–738PubMedCrossRefGoogle Scholar
  83. Pudenz RH, Russel FE, Hurd AM, Sheldon CM (1957) Ventriculo-auriculostomy. A technique for shunting cerebrospinal fluid into the right auricle. Preliminary report. J Neurosurg 14:171–179PubMedCrossRefGoogle Scholar
  84. Raimondi AJ, Robinson JS, Kawanuera K (1977) Complications of ventriculo-peritoneal shunting and a critical comparison of the three-piece and one-piece systems. Childs Brain 3:321–342PubMedPubMedCentralGoogle Scholar
  85. Rayport M, Reiss J (1969) Hydrodynamic properties of certain shunt assemblies for the treatment of hydrocephalus. Part 2: pressure flow characteristics of the Spitz-Holter, Pudenz-Heyer, and Cordis-hakim shunt systems. J Neurosurg 30:463–467CrossRefGoogle Scholar
  86. Rekate HL (1980) Closed-loop control of intra-cranial pressure. Ann Biomed Eng 8:515–522PubMedCrossRefPubMedCentralGoogle Scholar
  87. Richard KE, Block FR, Ackermann CW, Britten E, Steinberg J, Weber M (1989) Untersuchung des Regelverhaltens von Shuntsystemen zur operativen Behandlung des Hydrocephalus. Abschlußbericht zum Forschungsvorhaben RI 328/3-2 der DFGGoogle Scholar
  88. Richards H, Seeley H, Pickard J (2007) Are adjustable valves effective? Data from the UK Shunt Registry. Fluids Barriers CNS 4(Suppl 1):S30Google Scholar
  89. Rohde V, Haberl EJ, Ludwig HC, Thomale UW (2009) First experiences with an adjustable gravitational valve in childhood hydrocephalus. J Neurosurg Pediatr 3:90–93PubMedCrossRefPubMedCentralGoogle Scholar
  90. Sainte-Rose Ch (1984) Patent publication, European Patent EP 0 115 973 A1, (05.01.1984Google Scholar
  91. Sainte-Rose C, Hooven MD, Hirsch JF (1987) A new approach in the treatment of hydrocephalus. J Neurosurg 66:213–226PubMedCrossRefPubMedCentralGoogle Scholar
  92. Schiebel P, Unterberg A, Aschoff A (2008) Success rate of adjusting Codman Medos programmable valves by using a new programmer with acoustic device. Clin Neurol Neurosurg 110(Suppl 1):S12CrossRefGoogle Scholar
  93. Schoener WF, Verheggen R, Reparon C, Markakis E (1991) Evaluation of shunt failures by compliance analysis and inspection of shunt valves and shunt materials, using microscopic or scanning electron microscopic techniques. In: Matsumoto S, Tamaki N (eds) Hydrocephalus. Pathogenesis and treatment. Springer, Tokyo-Berlin-Heidelberg, pp 452–472Google Scholar
  94. Serlo W, von Wendt L, Heikkinen ES, Heikkinen ER (1986) Ball and spring or core valve for hydrocephalus shunting? Ann Clin Res 18(Suppl 47):103–106PubMedGoogle Scholar
  95. Sobotta J (1946) Atlas der deskriptiven Anatomie des Menschen, Urbahn und Schwarzenberg, Berlin-München-Wien, Fig. 18, p 29Google Scholar
  96. Sotelo J, Rubalcava MA, Gómez-Lata S (1995) A new shunt for hydrocephalus that relies on CSF production rather than on ventricular pressure. Initial clinical experiences. Surg Neurol 43:324–332PubMedCrossRefGoogle Scholar
  97. Spitz EB (1961) Critical analysis of the ventriculo-vascular shunt in the treatment of hydrocephalus; résumé of statistics. Harvey Cushing Society, Mexico City. (cit. according DeLange 1977)Google Scholar
  98. Sprung C, Miethke C, Shaken K, Lanksch WR (1997) The importance of the dual-switch valve for the treatment of adult normotensive or hypertensive hydrocephalus. Eur J Pediatr Surg 7(Supp1):38–40PubMedCrossRefGoogle Scholar
  99. Sundström N, Lagebrant M, Eklund A, Koskinen LD, Malm J (2017) Subdural hematomas in 1846 patients with shunted idiopathic normal pressure hydrocephalus: treatment and long-term survival. J Neurosurg. 2017 Oct 27:1–8Google Scholar
  100. Thomale UW, Gebert AF, Haberl H, Schulz M (2013) Shunt survival rates by using adjustable differential pressure valve combined with a gravitational valve (ProGAV) in pediatric neurosurgery. Childs Nerv Syst 29(3):425–431Google Scholar
  101. Trost HA, Claussen G, Heissler H, Gaab MR (1991) Testing the hydrocephalus shunt valve: long term bench test results of various new and implanted hydrocephalus shunt valves. The need for a model for testing shunt valves under physiological conditions. Eur J Pediatr Surg 1(Suppl I):38–40PubMedCrossRefGoogle Scholar
  102. Tuli S, Drake J, Lawless J, Wigg M, Lamberti-Pasculli M (2000) Risk factors for repeated cerebrospinal shunt failures in pediatric patients with hydrocephalus. J Neurosurg 92:31–38PubMedCrossRefGoogle Scholar
  103. Vienenkötter B, Unterberg A, Aschoff A (2008) Failures and suboptimal positions of gravitational valves at different implantation sites (retroauricular vs. thoracal). Clin Neurol Neurosurg 110(Suppl 1):S2Google Scholar
  104. Vlach JP, Négre P (2001) Adjustable valves. Future developments. Nerv Syst Child 26:248Google Scholar
  105. Wang VY, Barbarao NM, Lawton MT et al (2007) Complications of lumboperitoneal shunts. Neurosurgery 60:1045–1049PubMedCrossRefPubMedCentralGoogle Scholar
  106. Watts C, Keith HD (1983) Testing the hydrocephalus shunt valve. Childs Brain 10:217–228PubMedPubMedCentralGoogle Scholar
  107. Woerdeman PA, Cochrane DD (2014) Disruption of silicone valve housing in a Codman hakim precision valve with integrated Siphonguard. Neurosurg Peditatr 13(5):532–535PubMedPubMedCentralGoogle Scholar
  108. Yamada H, Funakoshi T, Ando T, Sakai N, Sakata K (1979) Clinical studies on prevention of overdrainage syndrome after ventriculoperitoneal shunt by use of an antisiphon ball valve. Childs Brain 5:556Google Scholar
  109. Zemack G, Romner B (2001) Seven years of clinical experience with the programmable Codman hakim valve: a retrospective analysis of 583 patients. J Neurosurg 92:941–948CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Formerly at Department of NeurosurgeryUniversity of HeidelbergHeidelbergGermany

Section editors and affiliations

  • C. Di Rocco
    • 1
  • Gianpiero Tamburrini
    • 2
  1. 1.International Neuroscience InstituteHannoverGermany
  2. 2.Pediatric Neurosurgery, Institute of NeurosurgeryCatholic University Medical SchoolRomeItaly

Personalised recommendations