Advertisement

Endothelial Dysfunction and Vascular Remodeling in Hypertension

  • Julie GoodwinEmail author
Reference work entry

Abstract

The endothelium is a critical mediator of blood pressure homeostasis through its roles in producing and interacting with circulating vasoactive compounds, most notably nitric oxide. Endothelial dysfunction is a marker of cardiovascular disease and may develop under a variety of conditions commonly observed in the pediatric population including chronic kidney disease, acute kidney injury, and childhood obesity. Ongoing endothelial dysfunction eventually leads to adaptive mechanisms, namely, vascular remodeling by which the structure of resistance vessels is altered, as is systemic blood pressure. Multiple factors central to the endothelium contribute to and perpetuate vascular remodeling including hemodynamic forces, reactive oxygen species, and the adipokine adiponectin.

Keywords

Endothelium Endothelial dysfunction Vascular remodeling Pediatric hypertension Nitric oxide Adiponectin Reactive oxygen species 

References

  1. Abbott RA, Harkness MA, Davies PS (2002) Correlation of habitual physical activity levels with flow-mediated dilation of the brachial artery in 5–10 year old children. Atherosclerosis 160(1):233–239PubMedGoogle Scholar
  2. Aldamiz-Echevarria L, Andrade F (2012) Asymmetric dimethylarginine, endothelial dysfunction and renal disease. Int J Mol Sci 13(9):11288–11311PubMedPubMedCentralGoogle Scholar
  3. Alvarez A, Cerda-Nicolas M, Naim Abu Nabah Y, Mata M, Issekutz AC, Panes J, Lobb RR, Sanz MJ (2004) Direct evidence of leukocyte adhesion in arterioles by angiotensin II. Blood 104(2):402–408PubMedGoogle Scholar
  4. Aras-Lopez R, Xavier FE, Ferrer M, Balfagon G (2009) Dexamethasone decreases neuronal nitric oxide release in mesenteric arteries from hypertensive rats through decreased protein kinase C activation. Clin Sci (Lond) 117(8):305–312Google Scholar
  5. Baden MY, Yamada Y, Takahi Y, Obata Y, Saisho K, Tamba S, Yamamoto K, Umeda M, Furubayashi A, Tsukamoto Y, Sakaguchi K, Matsuzawa Y (2013) Association of adiponectin with blood pressure in healthy people. Clin Endocrinol 78(2):226–231Google Scholar
  6. Barton M, Yanagisawa M (2008) Endothelin: 20 years from discovery to therapy. Can J Physiol Pharmacol 86(8):485–498PubMedGoogle Scholar
  7. Baylis C (2006) Arginine, arginine analogs and nitric oxide production in chronic kidney disease. Nat Clin Pract Nephrol 2(4):209–220PubMedPubMedCentralGoogle Scholar
  8. Becher UM, Endtmann C, Tiyerili V, Nickenig G, Werner N (2011) Endothelial damage and regeneration: the role of the renin-angiotensin-aldosterone system. Curr Hypertens Rep 13(1):86–92PubMedGoogle Scholar
  9. Bruyndonckx L, Hoymans VY, Lemmens K, Ramet J, Vrints CJ (2016) Childhood obesity-related endothelial dysfunction: an update on pathophysiological mechanisms and diagnostic advancements. Pediatr Res 79(6):831–837PubMedGoogle Scholar
  10. Bush NC, Darnell BE, Oster RA, Goran MI, Gower BA (2005) Adiponectin is lower among African Americans and is independently related to insulin sensitivity in children and adolescents. Diabetes 54(9):2772–2778PubMedGoogle Scholar
  11. Cahill PA, Redmond EM (2016) Vascular endothelium – gatekeeper of vessel health. Atherosclerosis 248:97–109PubMedGoogle Scholar
  12. Cardounel AJ, Cui H, Samouilov A, Johnson W, Kearns P, Tsai AL, Berka V, Zweier JL (2007) Evidence for the pathophysiological role of endogenous methylarginines in regulation of endothelial NO production and vascular function. J Biol Chem 282(2):879–887PubMedGoogle Scholar
  13. Chatterjee S, Browning EA, Hong N, DeBolt K, Sorokina EM, Liu W, Birnbaum MJ, Fisher AB (2012) Membrane depolarization is the trigger for PI3K/Akt activation and leads to the generation of ROS. Am J Phys Heart Circ Phys 302(1):H105–H114Google Scholar
  14. Chien SJ, Lin IC, Hsu CN, Lo MH, Tain YL (2015) Homocysteine and arginine-to-asymmetric dimethylarginine ratio associated with blood pressure abnormalities in children with early chronic kidney disease. Circ J 79(9):2031–2037PubMedGoogle Scholar
  15. Choi H, Allahdadi KJ, Tostes RC, Webb RC (2011) Augmented S-nitrosylation contributes to impaired relaxation in angiotensin II hypertensive mouse aorta: role of thioredoxin reductase. J Hypertens 29(12):2359–2368PubMedPubMedCentralGoogle Scholar
  16. Chow WS, Cheung BM, Tso AW, Xu A, Wat NM, Fong CH, Ong LH, Tam S, Tan KC, Janus ED, Lam TH, Lam KS (2007) Hypoadiponectinemia as a predictor for the development of hypertension: a 5-year prospective study. Hypertension 49(6):1455–1461PubMedGoogle Scholar
  17. Conger JD, Robinette JB, Schrier RW (1988) Smooth muscle calcium and endothelium-derived relaxing factor in the abnormal vascular responses of acute renal failure. J Clin Invest 82(2):532–537PubMedPubMedCentralGoogle Scholar
  18. Conger JD, Schultz MF, Miller F, Robinette JB (1994) Responses to hemorrhagic arterial pressure reduction in different ischemic renal failure models. Kidney Int 46(2):318–323PubMedGoogle Scholar
  19. Conger J, Robinette J, Villar A, Raij L, Shultz P (1995) Increased nitric oxide synthase activity despite lack of response to endothelium-dependent vasodilators in postischemic acute renal failure in rats. J Clin Invest 96(1):631–638PubMedPubMedCentralGoogle Scholar
  20. Cruz M, Garcia-Macedo R, Garcia-Valerio Y, Gutierrez M, Medina-Navarro R, Duran G, Wacher N, Kumate J (2004) Low adiponectin levels predict type 2 diabetes in Mexican children. Diabetes Care 27(6):1451–1453PubMedGoogle Scholar
  21. Davies PF, Remuzzi A, Gordon EJ, Dewey CF Jr, Gimbrone MA Jr (1986) Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc Natl Acad Sci U S A 83(7):2114–2117PubMedPubMedCentralGoogle Scholar
  22. Dentelli P, Rosso A, Orso F, Olgasi C, Taverna D, Brizzi MF (2010) microRNA-222 controls neovascularization by regulating signal transducer and activator of transcription 5A expression. Arterioscler Thromb Vasc Biol 30(8):1562–1568PubMedGoogle Scholar
  23. Ehrhart-Bornstein M, Lamounier-Zepter V, Schraven A, Langenbach J, Willenberg HS, Barthel A, Hauner H, McCann SM, Scherbaum WA, Bornstein SR (2003) Human adipocytes secrete mineralocorticoid-releasing factors. Proc Natl Acad Sci U S A 100(24):14211–14216PubMedPubMedCentralGoogle Scholar
  24. Fang YC, Yeh CH (2015) Role of microRNAs in vascular remodeling. Curr Mol Med 15(8):684–696PubMedPubMedCentralGoogle Scholar
  25. Fish JE, Santoro MM, Morton SU, Yu S, Yeh RF, Wythe JD, Ivey KN, Bruneau BG, Stainier DY, Srivastava D (2008) miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell 15(2):272–284PubMedPubMedCentralGoogle Scholar
  26. Folkow B (1982) Physiological aspects of primary hypertension. Physiol Rev 62(2):347–504PubMedGoogle Scholar
  27. Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropoulos A, Sessa WC (1999) Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399(6736):597–601PubMedPubMedCentralGoogle Scholar
  28. Fulton D, Gratton JP, Sessa WC (2001) Post-translational control of endothelial nitric oxide synthase: why isn’t calcium/calmodulin enough? J Pharmacol Exp Ther 299(3):818–824PubMedGoogle Scholar
  29. Gerszten RE, Lim YC, Ding HT, Snapp K, Kansas G, Dichek DA, Cabanas C, Sanchez-Madrid F, Gimbrone MA Jr, Rosenzweig A, Luscinskas FW (1998) Adhesion of monocytes to vascular cell adhesion molecule-1-transduced human endothelial cells: implications for atherogenesis. Circ Res 82(8):871–878PubMedGoogle Scholar
  30. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY (2004) Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 351(13):1296–1305PubMedGoogle Scholar
  31. Goodfriend TL, Egan BM, Kelley DE (1999) Plasma aldosterone, plasma lipoproteins, obesity and insulin resistance in humans. Prostaglandins Leukot Essent Fatty Acids 60(5–6):401–405PubMedGoogle Scholar
  32. Goodwin JE, Zhang J, Geller DS (2008) A critical role for vascular smooth muscle in acute glucocorticoid-induced hypertension. J Am Soc Nephrol 19(7):1291–1299PubMedPubMedCentralGoogle Scholar
  33. Goodwin JE, Zhang J, Gonzalez D, Albinsson S, Geller DS (2011) Knockout of the vascular endothelial glucocorticoid receptor abrogates dexamethasone-induced hypertension. J Hypertens 29(7):1347–1356PubMedPubMedCentralGoogle Scholar
  34. Goran MI, Treuth MS (2001) Energy expenditure, physical activity, and obesity in children. Pediatr Clin N Am 48(4):931–953Google Scholar
  35. Guarasci GR, Kline RL (1996) Pressure natriuresis following acute and chronic inhibition of nitric oxide synthase in rats. Am J Phys 270(2 Pt 2):R469–R478Google Scholar
  36. Guo C, Ricchiuti V, Lian BQ, Yao TM, Coutinho P, Romero JR, Li J, Williams GH, Adler GK (2008) Mineralocorticoid receptor blockade reverses obesity-related changes in expression of adiponectin, peroxisome proliferator-activated receptor-gamma, and proinflammatory adipokines. Circulation 117(17):2253–2261PubMedPubMedCentralGoogle Scholar
  37. Hahn AW, Jonas U, Buhler FR, Resink TJ (1994) Activation of human peripheral monocytes by angiotensin II. FEBS Lett 347(2–3):178–180PubMedGoogle Scholar
  38. Harper SJ, Bates DO (2003) Endothelial permeability in uremia. Kidney Int Suppl 84:S41–S44Google Scholar
  39. He Y, Si D, Yang C, Ni L, Li B, Ding M, Yang P (2014) The effects of amlodipine and S(-)-amlodipine on vascular endothelial function in patients with hypertension. Am J Hypertens 27(1):27–31PubMedGoogle Scholar
  40. Heilman K, Zilmer M, Zilmer K, Kool P, Tillmann V (2009) Elevated plasma adiponectin and decreased plasma homocysteine and asymmetric dimethylarginine in children with type 1 diabetes. Scand J Clin Lab Invest 69(1):85–91PubMedGoogle Scholar
  41. Hendrickson RJ, Cappadona C, Yankah EN, Sitzmann JV, Cahill PA, Redmond EM (1999) Sustained pulsatile flow regulates endothelial nitric oxide synthase and cyclooxygenase expression in co-cultured vascular endothelial and smooth muscle cells. J Mol Cell Cardiol 31(3):619–629PubMedGoogle Scholar
  42. Herrera M, Garvin JL (2005) A high-salt diet stimulates thick ascending limb eNOS expression by raising medullary osmolality and increasing release of endothelin-1. Am J Physiol Renal Physiol 288(1):F58–F64PubMedGoogle Scholar
  43. Herrera M, Ortiz PA, Garvin JL (2006a) Regulation of thick ascending limb transport: role of nitric oxide. Am J Physiol Renal Physiol 290(6):F1279–F1284PubMedGoogle Scholar
  44. Herrera M, Silva G, Garvin JL (2006b) A high-salt diet dissociates NO synthase-3 expression and NO production by the thick ascending limb. Hypertension 47(1):95–101PubMedGoogle Scholar
  45. Hsieh HJ, Liu CA, Huang B, Tseng AH, Wang DL (2014) Shear-induced endothelial mechanotransduction: the interplay between reactive oxygen species (ROS) and nitric oxide (NO) and the pathophysiological implications. J Biomed Sci 21:3PubMedPubMedCentralGoogle Scholar
  46. Huby AC, Otvos L Jr, Belin de Chantemele EJ (2016) Leptin induces hypertension and endothelial dysfunction via aldosterone-dependent mechanisms in obese female mice. Hypertension 67(5):1020–1028PubMedPubMedCentralGoogle Scholar
  47. Imai Y, Abe K, Sasaki S, Minami N, Munakata M, Nihei M, Sekino H, Yoshinaga K (1989) Exogenous glucocorticoid eliminates or reverses circadian blood pressure variations. J Hypertens 7(2):113–120PubMedGoogle Scholar
  48. Ingelsson E, Pencina MJ, Tofler GH, Benjamin EJ, Lanier KJ, Jacques PF, Fox CS, Meigs JB, Levy D, Larson MG, Selhub J, D’Agostino RB Sr, Wang TJ, Vasan RS (2007) Multimarker approach to evaluate the incidence of the metabolic syndrome and longitudinal changes in metabolic risk factors: the Framingham offspring study. Circulation 116(9):984–992PubMedGoogle Scholar
  49. Inoue A, Yanagisawa M, Kimura S, Kasuya Y, Miyauchi T, Goto K, Masaki T (1989) The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc Natl Acad Sci U S A 86(8):2863–2867PubMedPubMedCentralGoogle Scholar
  50. Jacobi J, Porst M, Cordasic N, Namer B, Schmieder RE, Eckardt KU, Hilgers KF (2006) Subtotal nephrectomy impairs ischemia-induced angiogenesis and hindlimb re-perfusion in rats. Kidney Int 69(11):2013–2021PubMedGoogle Scholar
  51. Kanzelmeyer N, Tsikas D, Chobanyan-Jurgens K, Beckmann B, Vaske B, Illsinger S, Das AM, Lucke T (2012) Asymmetric dimethylarginine in children with homocystinuria or phenylketonuria. Amino Acids 42(5):1765–1772PubMedGoogle Scholar
  52. Kazumi T, Kawaguchi A, Sakai K, Hirano T, Yoshino G (2002) Young men with high-normal blood pressure have lower serum adiponectin, smaller LDL size, and higher elevated heart rate than those with optimal blood pressure. Diabetes Care 25(6):971–976PubMedGoogle Scholar
  53. Khalil RA (2013) Protein kinase C inhibitors as modulators of vascular function and their application in vascular disease. Pharmaceuticals 6(3):407–439PubMedPubMedCentralGoogle Scholar
  54. Khandelwal P, Murugan V, Hari S, Lakshmy R, Sinha A, Hari P, Bagga A (2016) Dyslipidemia, carotid intima-media thickness and endothelial dysfunction in children with chronic kidney disease. Pediatr Nephrol 31(8):1313–1320PubMedGoogle Scholar
  55. Kielstein JT, Impraim B, Simmel S, Bode-Boger SM, Tsikas D, Frolich JC, Hoeper MM, Haller H, Fliser D (2004) Cardiovascular effects of systemic nitric oxide synthase inhibition with asymmetrical dimethylarginine in humans. Circulation 109(2):172–177PubMedGoogle Scholar
  56. Konior A, Schramm A, Czesnikiewicz-Guzik M, Guzik TJ (2014) NADPH oxidases in vascular pathology. Antioxid Redox Signal 20(17):2794–2814PubMedPubMedCentralGoogle Scholar
  57. Kranzhofer R, Schmidt J, Pfeiffer CA, Hagl S, Libby P, Kubler W (1999) Angiotensin induces inflammatory activation of human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 19(7):1623–1629PubMedGoogle Scholar
  58. Kuchan MJ, Frangos JA (1993) Shear stress regulates endothelin-1 release via protein kinase C and cGMP in cultured endothelial cells. Am J Phys 264(1 Pt 2):H150–H156Google Scholar
  59. Lagrange J, Li Z, Fassot C, Bourhim M, Louis H, Nguyen Dinh Cat A, Parlakian A, Wahl D, Lacolley P, Jaisser F, Regnault V (2014) Endothelial mineralocorticoid receptor activation enhances endothelial protein C receptor and decreases vascular thrombosis in mice. FASEB J 28(5):2062–2072PubMedGoogle Scholar
  60. Landgraf K, Friebe D, Ullrich T, Kratzsch J, Dittrich K, Herberth G, Adams V, Kiess W, Erbs S, Korner A (2012) Chemerin as a mediator between obesity and vascular inflammation in children. J Clin Endocrinol Metab 97(4):E556–E564PubMedGoogle Scholar
  61. Langille BL, Adamson SL (1981) Relationship between blood flow direction and endothelial cell orientation at arterial branch sites in rabbits and mice. Circ Res 48(4):481–488PubMedGoogle Scholar
  62. Li H, Witte K, August M, Brausch I, Godtel-Armbrust U, Habermeier A, Closs EI, Oelze M, Munzel T, Forstermann U (2006) Reversal of endothelial nitric oxide synthase uncoupling and up-regulation of endothelial nitric oxide synthase expression lowers blood pressure in hypertensive rats. J Am Coll Cardiol 47(12):2536–2544PubMedGoogle Scholar
  63. Li AM, Au CT, Chook P, Lam HS, Wing YK (2013) Reduced flow-mediated vasodilation of brachial artery in children with primary snoring. Int J Cardiol 167(5):2092–2096PubMedGoogle Scholar
  64. Liu X, Cheng Y, Zhang S, Lin Y, Yang J, Zhang C (2009) A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ Res 104(4):476–487PubMedPubMedCentralGoogle Scholar
  65. Loscalzo J (2004) L-arginine and atherothrombosis. J Nutr 134 (10 Suppl):2798S–2800S; discussion 2818S–2819SPubMedGoogle Scholar
  66. Luther JM (2016) Aldosterone in vascular and metabolic dysfunction. Curr Opin Nephrol Hypertens 25(1):16–21PubMedPubMedCentralGoogle Scholar
  67. Maeda K, Okubo K, Shimomura I, Funahashi T, Matsuzawa Y, Matsubara K (1996) cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose most abundant Gene transcript 1). Biochem Biophys Res Commun 221(2):286–289. doi:10.1006/bbrc.1996.0587CrossRefPubMedGoogle Scholar
  68. Mason RP (2011) Optimal therapeutic strategy for treating patients with hypertension and atherosclerosis: focus on olmesartan medoxomil. Vasc Health Risk Manag 7:405–416. doi:10.2147/VHRM.S20737CrossRefPubMedPubMedCentralGoogle Scholar
  69. Matsuguma K, Ueda S, Yamagishi S, Matsumoto Y, Kaneyuki U, Shibata R, Fujimura T, Matsuoka H, Kimoto M, Kato S, Imaizumi T, Okuda S (2006) Molecular mechanism for elevation of asymmetric dimethylarginine and its role for hypertension in chronic kidney disease. J Am Soc Nephrol 17(8):2176–2183PubMedGoogle Scholar
  70. Matsuo Y, Oberbach A, Till H, Inge TH, Wabitsch M, Moss A, Jehmlich N, Volker U, Muller U, Siegfried W, Kanesawa N, Kurabayashi M, Schuler G, Linke A, Adams V (2013) Impaired HDL function in obese adolescents: impact of lifestyle intervention and bariatric surgery. Obesity (Silver Spring) 21(12):E687–E695Google Scholar
  71. Merten M, Chow T, Hellums JD, Thiagarajan P (2000) A new role for P-selectin in shear-induced platelet aggregation. Circulation 102(17):2045–2050PubMedGoogle Scholar
  72. Mitchell BM, Dorrance AM, Mack EA, Webb RC (2004) Glucocorticoids decrease GTP cyclohydrolase and tetrahydrobiopterin-dependent vasorelaxation through glucocorticoid receptors. J Cardiovasc Pharmacol 43(1):8–13PubMedGoogle Scholar
  73. Montezano AC, Dulak-Lis M, Tsiropoulou S, Harvey A, Briones AM, Touyz RM (2015a) Oxidative stress and human hypertension: vascular mechanisms, biomarkers, and novel therapies. Can J Cardiol 31(5):631–641PubMedGoogle Scholar
  74. Montezano AC, Tsiropoulou S, Dulak-Lis M, Harvey A, Camargo Lde L, Touyz RM (2015b) Redox signaling, Nox5 and vascular remodeling in hypertension. Curr Opin Nephrol Hypertens 24(5):425–433PubMedPubMedCentralGoogle Scholar
  75. Mount PF, Power DA (2006) Nitric oxide in the kidney: functions and regulation of synthesis. Acta Physiol (Oxf) 187(4):433–446Google Scholar
  76. Moyes AJ, Khambata RS, Villar I, Bubb KJ, Baliga RS, Lumsden NG, Xiao F, Gane PJ, Rebstock AS, Worthington RJ, Simone MI, Mota F, Rivilla F, Vallejo S, Peiro C, Sanchez Ferrer CF, Djordjevic S, Caulfield MJ, MacAllister RJ, Selwood DL, Ahluwalia A, Hobbs AJ (2014) Endothelial C-type natriuretic peptide maintains vascular homeostasis. J Clin Invest 124(9):4039–4051PubMedPubMedCentralGoogle Scholar
  77. Nguyen Dinh Cat A, Griol-Charhbili V, Loufrani L, Labat C, Benjamin L, Farman N, Lacolley P, Henrion D, Jaisser F (2010) The endothelial mineralocorticoid receptor regulates vasoconstrictor tone and blood pressure. FASEB J 24(7):2454–2463PubMedGoogle Scholar
  78. Noma K, Oyama N, Liao JK (2006) Physiological role of ROCKs in the cardiovascular system. Am J Physiol Cell Physiol 290(3):C661–C668PubMedPubMedCentralGoogle Scholar
  79. Ogawa Y, Kikuchi T, Nagasaki K, Hiura M, Tanaka Y, Uchiyama M (2005) Usefulness of serum adiponectin level as a diagnostic marker of metabolic syndrome in obese Japanese children. Hypertens Res 28(1):51–57PubMedGoogle Scholar
  80. Ogden CL, Carroll MD, Kit BK, Flegal KM (2014) Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA 311(8):806–814PubMedPubMedCentralGoogle Scholar
  81. Osika W, Montgomery SM, Dangardt F, Wahrborg P, Gan LM, Tideman E, Friberg P (2011) Anger, depression and anxiety associated with endothelial function in childhood and adolescence. Arch Dis Child 96(1):38–43PubMedGoogle Scholar
  82. Pacurari M, Kafoury R, Tchounwou PB, Ndebele K (2014) The renin-angiotensin-aldosterone system in vascular inflammation and remodeling. Int J Inflamm 2014:689360Google Scholar
  83. Panagopoulou P, Galli-Tsinopoulou A, Fleva A, Pavlitou-Tsiontsi E, Vavatsi-Christaki N, Nousia-Arvanitakis S (2008) Adiponectin and insulin resistance in childhood obesity. J Pediatr Gastroenterol Nutr 47(3):356–362PubMedGoogle Scholar
  84. Piovesan A, Panarelli M, Terzolo M, Osella G, Matrella C, Paccotti P, Angeli A (1990) 24-hour profiles of blood pressure and heart rate in Cushing’s syndrome: relationship between cortisol and cardiovascular rhythmicities. Chronobiol Int 7(3):263–265PubMedGoogle Scholar
  85. Poliseno L, Tuccoli A, Mariani L, Evangelista M, Citti L, Woods K, Mercatanti A, Hammond S, Rainaldi G (2006) MicroRNAs modulate the angiogenic properties of HUVECs. Blood 108(9):3068–3071PubMedGoogle Scholar
  86. Potenza MA, Marasciulo FL, Chieppa DM, Brigiani GS, Formoso G, Quon MJ, Montagnani M (2005) Insulin resistance in spontaneously hypertensive rats is associated with endothelial dysfunction characterized by imbalance between NO and ET-1 production. Am J Phys Heart Circ Phys 289(2):H813–H822Google Scholar
  87. Provencher PH, Saltis J, Funder JW (1995) Glucocorticoids but not mineralocorticoids modulate endothelin-1 and angiotensin II binding in SHR vascular smooth muscle cells. J Steroid Biochem Mol Biol 52(3):219–225Google Scholar
  88. Qi G, Jia L, Li Y, Bian Y, Cheng J, Li H, Xiao C, Du J (2011) Angiotensin II infusion-induced inflammation, monocytic fibroblast precursor infiltration, and cardiac fibrosis are pressure dependent. Cardiovasc Toxicol 11(2):157–167PubMedGoogle Scholar
  89. Raaz U, Toh R, Maegdefessel L, Adam M, Nakagami F, Emrich FC, Spin JM, Tsao PS (2014) Hemodynamic regulation of reactive oxygen species: implications for vascular diseases. Antioxid Redox Signal 20(6):914–928PubMedPubMedCentralGoogle Scholar
  90. Radtke T, Eser P, Kriemler S, Saner H, Wilhelm M (2013a) Adolescent blood pressure hyperreactors have a higher reactive hyperemic index at the fingertip. Eur J Appl Physiol 113(12):2991–3000PubMedGoogle Scholar
  91. Radtke T, Kriemler S, Eser P, Saner H, Wilhelm M (2013b) Physical activity intensity and surrogate markers for cardiovascular health in adolescents. Eur J Appl Physiol 113(5):1213–1222PubMedGoogle Scholar
  92. Rajagopalan S, Kurz S, Munzel T, Tarpey M, Freeman BA, Griendling KK, Harrison DG (1996) Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest 97(8):1916–1923PubMedPubMedCentralGoogle Scholar
  93. Rao GN, Berk BC (1992) Active oxygen species stimulate vascular smooth muscle cell growth and proto-oncogene expression. Circ Res 70(3):593–599PubMedGoogle Scholar
  94. Renna NF, de Las HN, Miatello RM (2013) Pathophysiology of vascular remodeling in hypertension. Int J Hypertens 2013:808353PubMedPubMedCentralGoogle Scholar
  95. Rickard AJ, Morgan J, Chrissobolis S, Miller AA, Sobey CG, Young MJ (2014) Endothelial cell mineralocorticoid receptors regulate deoxycorticosterone/salt-mediated cardiac remodeling and vascular reactivity but not blood pressure. Hypertension 63(5):1033–1040PubMedGoogle Scholar
  96. Riedel S, Radzanowski S, Bowen TS, Werner S, Erbs S, Schuler G, Adams V (2015) Exercise training improves high-density lipoprotein-mediated transcription of proangiogenic microRNA in endothelial cells. Eur J Prev Cardiol 22(7):899–903PubMedGoogle Scholar
  97. Rojas E, Rodriguez-Molina D, Bolli P, Israili ZH, Faria J, Fidilio E, Bermudez V, Velasco M (2014) The role of adiponectin in endothelial dysfunction and hypertension. Curr Hypertens Rep 16(8):463PubMedGoogle Scholar
  98. Sabatel C, Malvaux L, Bovy N, Deroanne C, Lambert V, Gonzalez ML, Colige A, Rakic JM, Noel A, Martial JA, Struman I (2011) MicroRNA-21 exhibits antiangiogenic function by targeting RhoB expression in endothelial cells. PLoS One 6(2):e16979PubMedPubMedCentralGoogle Scholar
  99. Schafer N, Lohmann C, Winnik S, van Tits LJ, Miranda MX, Vergopoulos A, Ruschitzka F, Nussberger J, Berger S, Luscher TF, Verrey F, Matter CM (2013) Endothelial mineralocorticoid receptor activation mediates endothelial dysfunction in diet-induced obesity. Eur Heart J 34(45):3515–3524PubMedPubMedCentralGoogle Scholar
  100. Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF (1995) A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem 270(45):26746–26749PubMedGoogle Scholar
  101. Singh M, Mensah GA, Bakris G (2010) Pathogenesis and clinical physiology of hypertension. Cardiol Clin 28(4):545–559PubMedGoogle Scholar
  102. Soga J, Noma K, Hata T, Hidaka T, Fujii Y, Idei N, Fujimura N, Mikami S, Maruhashi T, Kihara Y, Chayama K, Kato H, Liao JK, Higashi Y, Group RS (2011) Rho-associated kinase activity, endothelial function, and cardiovascular risk factors. Arterioscler Thromb Vasc Biol 31(10):2353–2359PubMedGoogle Scholar
  103. Steinberg HO, Brechtel G, Johnson A, Fineberg N, Baron AD (1994) Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release. J Clin Invest 94(3):1172–1179PubMedPubMedCentralGoogle Scholar
  104. Sutton TA, Mang HE, Campos SB, Sandoval RM, Yoder MC, Molitoris BA (2003) Injury of the renal microvascular endothelium alters barrier function after ischemia. Am J Physiol Renal Physiol 285(2):F191–F198PubMedGoogle Scholar
  105. Szmitko PE, Teoh H, Stewart DJ, Verma S (2007) Adiponectin and cardiovascular disease: state of the art? Am J Phys Heart Circ Phys 292(4):H1655–H1663Google Scholar
  106. Takabe W, Warabi E, Noguchi N (2011) Anti-atherogenic effect of laminar shear stress via Nrf2 activation. Antioxid Redox Signal 15(5):1415–1426PubMedGoogle Scholar
  107. Takemoto M, Sun J, Hiroki J, Shimokawa H, Liao JK (2002) Rho-kinase mediates hypoxia-induced downregulation of endothelial nitric oxide synthase. Circulation 106(1):57–62PubMedGoogle Scholar
  108. Tummala PE, Chen XL, Sundell CL, Laursen JB, Hammes CP, Alexander RW, Harrison DG, Medford RM (1999) Angiotensin II induces vascular cell adhesion molecule-1 expression in rat vasculature: a potential link between the renin-angiotensin system and atherosclerosis. Circulation 100(11):1223–1229PubMedGoogle Scholar
  109. Urbanet R, Nguyen Dinh Cat A, Feraco A, Venteclef N, El Mogrhabi S, Sierra-Ramos C, Alvarez de la Rosa D, Adler GK, Quilliot D, Rossignol P, Fallo F, Touyz RM, Jaisser F (2015) Adipocyte mineralocorticoid receptor activation leads to metabolic syndrome and induction of prostaglandin D2 synthase. Hypertension 66(1):149–157PubMedGoogle Scholar
  110. Vallance P, Leone A, Calver A, Collier J, Moncada S (1992a) Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet 339(8793):572–575PubMedGoogle Scholar
  111. Vallance P, Leone A, Calver A, Collier J, Moncada S (1992b) Endogenous dimethylarginine as an inhibitor of nitric oxide synthesis. J Cardiovasc Pharmacol 20(Suppl 12):S60–S62PubMedGoogle Scholar
  112. van Solingen C, de Boer HC, Bijkerk R, Monge M, van Oeveren-Rietdijk AM, Seghers L, de Vries MR, van der Veer EP, Quax PH, Rabelink TJ, van Zonneveld AJ (2011) MicroRNA-126 modulates endothelial SDF-1 expression and mobilization of Sca-1(+)/Lin(-) progenitor cells in ischaemia. Cardiovasc Res 92(3):449–455PubMedGoogle Scholar
  113. Verbeke FH, Pannier B, Guerin AP, Boutouyrie P, Laurent S, London GM (2011) Flow-mediated vasodilation in end-stage renal disease. Clin J Am Soc Nephrol 6(8):2009–2015PubMedPubMedCentralGoogle Scholar
  114. Von Offenberg Sweeney N, Cummins PM, Cotter EJ, Fitzpatrick PA, Birney YA, Redmond EM, Cahill PA (2005) Cyclic strain-mediated regulation of vascular endothelial cell migration and tube formation. Biochem Biophys Res Commun 329(2):573–582PubMedGoogle Scholar
  115. Wallerath T, Godecke A, Molojavyi A, Li H, Schrader J, Forstermann U (2004) Dexamethasone lacks effect on blood pressure in mice with a disrupted endothelial NO synthase gene. Nitric Oxide 10(1):36–41PubMedGoogle Scholar
  116. Wang ZV, Scherer PE (2008) Adiponectin, cardiovascular function, and hypertension. Hypertension 51(1):8–14PubMedGoogle Scholar
  117. Williams J, Bogwu J, Oyekan A (2006) The role of the RhoA/Rho-kinase signaling pathway in renal vascular reactivity in endothelial nitric oxide synthase null mice. J Hypertens 24(7):1429–1436PubMedGoogle Scholar
  118. Wu F, Park F, Cowley AW Jr, Mattson DL (1999) Quantification of nitric oxide synthase activity in microdissected segments of the rat kidney. Am J Phys 276(6 Pt 2):F874–F881Google Scholar
  119. Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332(6163):411–415PubMedGoogle Scholar
  120. Zernecke A, Bidzhekov K, Noels H, Shagdarsuren E, Gan L, Denecke B, Hristov M, Koppel T, Jahantigh MN, Lutgens E, Wang S, Olson EN, Schober A, Weber C (2009) Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal 2(100):ra81PubMedGoogle Scholar
  121. Zhang W, Zhou C, Xie J, Chen B, Chang L (2009) Serum asymmetric dimethylarginine and endothelial function after renal transplantation. Zhong Nan Da Xue Xue Bao Yi Xue Ban 34(4):289–294PubMedGoogle Scholar
  122. Zhu N, Zhang D, Chen S, Liu X, Lin L, Huang X, Guo Z, Liu J, Wang Y, Yuan W, Qin Y (2011) Endothelial enriched microRNAs regulate angiotensin II-induced endothelial inflammation and migration. Atherosclerosis 215(2):286–293PubMedGoogle Scholar
  123. Zou AP, Wu F, Cowley AW Jr (1998) Protective effect of angiotensin II-induced increase in nitric oxide in the renal medullary circulation. Hypertension 31(1 Pt 2):271–276PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of PediatricsYale University School of MedicineNew HavenUSA

Section editors and affiliations

  • Julie R. Ingelfinger
    • 1
  1. 1.Pediatric Nephrology UnitMassGeneral Hospital for Children at MGH, Harvard Medical SchoolBostonUSA

Personalised recommendations