Brown Dwarf Formation: Theory

Living reference work entry

Abstract

We rehearse the physical and theoretical considerations that define the nature of brown dwarfs, in particular the maximum mass for a brown dwarf (set by the hydrogen-burning limit) and the minimum mass for a brown dwarf (set by the opacity limit). We then review the range of mechanisms that have been invoked to explain the formation of brown dwarfs and their statistical properties. These include turbulent fragmentation, fragmentation of filaments and discs, dynamical ejection of stellar embryos, and photoerosion. The primary contenders would seem to be turbulent fragmentation and disc fragmentation, and the observations needed to evaluate their relative importance may soon be available.

Keywords

Brown dwarfs: formation Gravitational collapse Gravitational fragmentation Protostellar discs Stars: binary systems Stars: formation 

Notes

Acknowledgements

APW gratefully acknowledges the support of the UK’s Science and Technology Facilities Council, through Consolidated Grant ST/K00926/1.

References

  1. André P, Belloche A, Motte F, Peretto N (2007) The initial conditions of star formation in the Ophiuchus main cloud: kinematics of the protocluster condensations. A&A 472:519–535. https://doi.org/10.1051/0004-6361:20077422, 0706.1535
  2. André P, Ward-Thompson D, Greaves J (2012) Interferometric identification of a pre-Brown Dwarf. Science 337:69. https://doi.org/10.1126/science.1222602, 1207.1220ADSCrossRefGoogle Scholar
  3. Balfour SK, Whitworth AP, Hubber DA, Jaffa SE (2015) Star formation triggered by cloud-cloud collisions. MNRAS 453:2471–2479. https://doi.org/10.1093/mnras/stv1772ADSCrossRefGoogle Scholar
  4. Balfour SK, Whitworth AP, Hubber DA (2017) Star formation triggered by non-head-on cloud-cloud collisions, and clouds with pre-collision sub-structure. MNRAS 465:3483–3494. https://doi.org/10.1093/mnras/stw2956ADSCrossRefGoogle Scholar
  5. Bate MR (1998) Collapse of a molecular cloud core to stellar densities: the first three-dimensional calculations. ApJ 508:L95–L98. https://doi.org/10.1086/311719, astro-ph/9810397
  6. Bate MR, Bonnell IA, Bromm V (2002) The formation mechanism of brown dwarfs. MNRAS 332:L65–L68. https://doi.org/10.1046/j.1365-8711.2002.05539.x, astro-ph/0206365ADSCrossRefGoogle Scholar
  7. Bonnell IA, Bate MR, Clarke CJ, Pringle JE (1997) Accretion and the stellar mass spectrum in small clusters. MNRAS 285:201–208. https://doi.org/10.1093/mnras/285.1.201ADSCrossRefGoogle Scholar
  8. Chabrier G (2003) Galactic stellar and substellar initial mass function. PASP 115:763–795. https://doi.org/10.1086/376392, astro-ph/0304382ADSCrossRefGoogle Scholar
  9. Clarke SD, Whitworth AP, Hubber DA (2016) Perturbation growth in accreting filaments. MNRAS 458:319–324. https://doi.org/10.1093/mnras/stw407, 1602.07651ADSCrossRefGoogle Scholar
  10. Gahm GF, Grenman T, Fredriksson S, Kristen H (2007) Globulettes as seeds of Brown Dwarfs and free-floating planetary-mass objects. AJ 133:1795–1809. https://doi.org/10.1086/512036ADSCrossRefGoogle Scholar
  11. Hester JJ, Scowen PA, Sankrit R et al (1996) Hubble space telescope WFPC2 imaging of M16: photoevaporation and emerging young stellar objects. AJ 111:2349. https://doi.org/10.1086/117968ADSCrossRefGoogle Scholar
  12. Kroupa P (2002) The initial mass function of stars: evidence for uniformity in variable systems. Science 295:82–91. https://doi.org/10.1126/science.1067524, astro-ph/0201098ADSCrossRefGoogle Scholar
  13. Kumar SS (1963) The structure of stars of very low mass. ApJ 137:1121. https://doi.org/10.1086/147589ADSCrossRefGoogle Scholar
  14. Lomax O, Whitworth AP, Hubber DA, Stamatellos D, Walch S (2014) Simulating star formation in Ophiuchus. MNRAS 439:3039–3050. https://doi.org/10.1093/mnras/stu177, 1401.7237ADSCrossRefGoogle Scholar
  15. Lomax O, Whitworth AP, Hubber DA, Stamatellos D, Walch S (2015) Simulations of star formation in Ophiuchus – II. Multiplicity. MNRAS 447:1550–1564. https://doi.org/10.1093/mnras/stu2530, 1411.7943
  16. Lomax O, Whitworth AP, Hubber DA (2016) Forming isolated Brown Dwarfs by turbulent fragmentation. MNRAS 458:1242–1252. https://doi.org/10.1093/mnras/stw406, 1602.05789ADSCrossRefGoogle Scholar
  17. McDonald JM, Clarke CJ (1993) Dynamical biasing in binary star formation – implications for Brown Dwarfs in binaries. MNRAS 262:800–804. https://doi.org/10.1093/mnras/262.3.800ADSCrossRefGoogle Scholar
  18. McDonald JM, Clarke CJ (1995) The effect of star-disc interactions on the binary mass-ratio distribution. MNRAS 275:671–684. https://doi.org/10.1093/mnras/275.3.671ADSCrossRefGoogle Scholar
  19. Motte F, Andre P, Neri R (1998) The initial conditions of star formation in the rho Ophiuchi main cloud: wide-field millimeter continuum mapping. A&A 336:150–172ADSGoogle Scholar
  20. Padoan P, Nordlund Å (2002) The stellar initial Mass function from turbulent fragmentation. ApJ 576:870–879. https://doi.org/10.1086/341790, astro-ph/0011465ADSCrossRefGoogle Scholar
  21. Padoan P, Nordlund Å (2004) The “Mysterious” origin of Brown Dwarfs. ApJ 617:559–564. https://doi.org/10.1086/345413, astro-ph/0205019ADSCrossRefGoogle Scholar
  22. Peretto N, Fuller GA, Duarte-Cabral A et al (2013) Global collapse of molecular clouds as a formation mechanism for the most massive stars. A&A 555:A112. https://doi.org/10.1051/0004-6361/201321318, 1307.2590ADSCrossRefGoogle Scholar
  23. Rees MJ (1976) Opacity-limited hierarchical fragmentation and the masses of protostars. MNRAS 176:483–486. https://doi.org/10.1093/mnras/176.3.483ADSCrossRefGoogle Scholar
  24. Reipurth B, Clarke C (2001) The formation of Brown Dwarfs as ejected stellar embryos. AJ 122:432–439. https://doi.org/10.1086/321121, astro-ph/0103019ADSCrossRefGoogle Scholar
  25. Scholz A, Froebrich D, Wood K (2013) A systematic survey for eruptive young stellar objects using mid-infrared photometry. MNRAS 430:2910–2922. https://doi.org/10.1093/mnras/stt091, 1301.3152ADSCrossRefGoogle Scholar
  26. Stamatellos D, Whitworth AP (2009) The properties of Brown Dwarfs and low-mass hydrogen-burning stars formed by disc fragmentation. MNRAS 392:413–427. https://doi.org/10.1111/j.1365-2966.2008.14069.x, 0810.1687ADSCrossRefGoogle Scholar
  27. Stamatellos D, Hubber DA, Whitworth AP (2007) Brown Dwarf formation by gravitational fragmentation of massive, extended protostellar discs. MNRAS 382:L30–L34. https://doi.org/10.1111/j.1745-3933.2007.00383.x, 0708.2827
  28. Stamatellos D, Whitworth AP, Hubber DA (2011) The importance of episodic accretion for low-mass star formation. ApJ 730:32. https://doi.org/10.1088/0004-637X/730/1/32, 1103.1378ADSCrossRefGoogle Scholar
  29. Stone ME (1970a) Collisions between HI clouds. I. One-dimensional model. ApJ 159:277. https://doi.org/10.1086/150309Google Scholar
  30. Stone ME (1970b) Collisions between HI clouds. II. Two-dimensional model. ApJ 159:293. https://doi.org/10.1086/150310Google Scholar
  31. Tobin JJ, Kratter KM, Persson MV et al (2016) A triple protostar system formed via fragmentation of a gravitationally unstable disk. Nature 538:483–486. https://doi.org/10.1038/nature20094, 1610.08524
  32. Toomre A (1964) On the gravitational stability of a disk of stars. ApJ 139:1217–1238. https://doi.org/10.1086/147861ADSCrossRefGoogle Scholar
  33. Whitworth AP (2016) A ram-pressure threshold for star formation. MNRAS 458:1815–1832. https://doi.org/10.1093/mnras/stw442, 1605.05728
  34. Whitworth AP, Stamatellos D (2006) The minimum mass for star formation, and the origin of binary Brown Dwarfs. A&A 458:817–829. https://doi.org/10.1051/0004-6361:20065806, astro-ph/0610039ADSCrossRefGoogle Scholar
  35. Whitworth AP, Zinnecker H (2004) The formation of free-floating brown dwarves and planetary-mass objects by photo-erosion of prestellar cores. A&A 427:299–306. https://doi.org/10.1051/0004-6361:20041131, astro-ph/0408522ADSCrossRefGoogle Scholar
  36. Zhu Z, Hartmann L, Gammie CF et al (2010) Long-term evolution of protostellar and protoplanetary disks. I. Outbursts. ApJ 713:1134–1142. https://doi.org/10.1088/0004-637X/713/2/1134, 1003.1759ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.School of Physics and AstronomyCardiff UniversityWalesUK

Section editors and affiliations

  • María Rosa Zapatero-Osorio
    • 1
  1. 1.Centro de AstrobiologíaMadridSpain

Personalised recommendations