Variability of Brown Dwarfs

Living reference work entry

Abstract

Brown dwarfs constitute a missing link between low-mass stars and giant planets. Their atmospheres display chemical species typical of planets, and one could wonder whether they also have weather-like patterns. While brown dwarf surface features cannot be directly resolved, the photometric and spectroscopic modulations induced by these features, as they rotate in and out of view, provide a wealth of information on the evolution of their atmosphere. A review of brown dwarf variability through the L, T, and Y spectral type sequence is presented, as well as the constraints that they set on the nature of weather-like patterns on their surface.

Keywords

L dwarf T dwarf Y dwarf Brown dwarf Photometry Variability Clouds Dust Lightcurve 

References

  1. Apai D, Radigan J, Buenzli E, Burrows A, Reid IN, Jayawardhana R (2013) HST spectral mapping of L/T transition brown dwarfs reveals cloud thickness variations. ApJ 768:121ADSCrossRefGoogle Scholar
  2. Apai D et al (2017) Zones, spots, and planetary-scale waves beating in brown dwarf atmospheres. Science 357:683ADSMathSciNetCrossRefGoogle Scholar
  3. Artigau É, Doyon R, Lafrenière D, Nadeau D, Robert J, Albert L (2006) Discovery of the brightest T dwarf in the northern hemisphere. ApJ 651:L57ADSCrossRefGoogle Scholar
  4. Artigau E, Bouchard S, Doyon R, Lafrenière D (2009) Photometric variability of the T2.5 brown dwarf SIMP J013656.5+093347: evidence for evolving weather patterns. ApJ 701:1534ADSCrossRefGoogle Scholar
  5. Artigau, É et al (2014) SPIRou: the near-infrared spectropolarimeter/high-precision velocimeter for the Canada-France-Hawaii telescope. In: Society of photo-optical instrumentation engineers (SPIE) conference series, vol 9147, p 15Google Scholar
  6. Bailer-Jones CAL, Mundt R (1999) A search for variability in brown dwarfs and L dwarfs. A&A 348:800ADSGoogle Scholar
  7. Bailer-Jones CAL, Mundt R (2001) Variability in ultra cool dwarfs: evidence for the evolution of surface features. A&A 367:218ADSCrossRefGoogle Scholar
  8. Barnes JR, Collier Cameron A (2001) Starspot patterns on the M dwarfs HK Aqr and RE 1816 +541. MNRAS 326:950ADSCrossRefGoogle Scholar
  9. Belu AR et al (2013) Habitable planets eclipsing brown dwarfs: strategies for detection and characterization. ApJ 768:125ADSCrossRefGoogle Scholar
  10. Biller BA et al (2013) Weather on the nearest brown dwarfs: resolved simultaneous multi-wavelength variability monitoring of WISE J104915.57-531906.1AB. ApJ 778:L10Google Scholar
  11. Biller BA et al (2015) Variability in a young, L/T transition planetary-mass object. ApJ 813:L23ADSCrossRefGoogle Scholar
  12. Boisse I, Bouchy F, Hébrard G, Bonfils X, Santos N, Vauclair S (2011) Disentangling between stellar activity and planetary signals. In: IAU symposium, vol 273, pp 281–285ADSGoogle Scholar
  13. Bouchy F et al (2017) Near-infrared planet searcher to join HARPS on the ESO 3.6-metre telescope. The messenger 169:21Google Scholar
  14. Boyajian TS et al (2012) Stellar diameters and temperatures. II. Main-sequence K- and M-stars. ApJ 757:112Google Scholar
  15. Buenzli E et al (2012) Vertical atmospheric structure in a variable brown dwarf: pressure-dependent phase shifts in simultaneous Hubble Space Telescope-Spitzer light curves. ApJ 760:L31ADSCrossRefGoogle Scholar
  16. Buenzli E, Marley MS, Apai D, Saumon D, Biller BA, Crossfield IJM, Radigan J (2015) Cloud structure of the nearest brown dwarfs. II. High-amplitude variability for Luhman 16 A and B in and out of the 0.99 μm FeH feature. ApJ 812:163ADSCrossRefGoogle Scholar
  17. Burgasser AJ et al (1999) Discovery of four field methane (T-type) dwarfs with the two micron all-sky survey. ApJ 522:L65ADSCrossRefGoogle Scholar
  18. Burgasser AJ, Liebert J, Kirkpatrick JD, Gizis JE (2002) A search for variability in the active T dwarf 2MASS 1237+6526. AJ 123:2744ADSCrossRefGoogle Scholar
  19. Chabrier G, Baraffe I (2000) Theory of low-mass stars and substellar objects. ARA&A 38:337ADSCrossRefGoogle Scholar
  20. Chauvin G, Lagrange A-M, Dumas C, Zuckerman B, Mouillet D, Song I, Beuzit J-L, Lowrance P (2005) Giant planet companion to 2MASSW J1207334-393254. A&A 438:L25ADSCrossRefGoogle Scholar
  21. Clarke FJ, Tinney CG, Covey KR (2002) Periodic photometric variability of the brown dwarf Kelu-1. MNRAS 332:361ADSCrossRefGoogle Scholar
  22. Clarke FJ, Tinney CG, Hodgkin ST (2003) Time-resolved spectroscopy of the variable brown dwarf Kelu-1. MNRAS 341:239ADSCrossRefGoogle Scholar
  23. Clarke FJ, Hodgkin ST, Oppenheimer BR, Robertson J, Haubois X (2008) A search for J-band variability from late-L and T brown dwarfs. MNRAS 386:2009ADSCrossRefGoogle Scholar
  24. Crossfield IJM (2014) Doppler imaging of exoplanets and brown dwarfs. A&A 566:A130ADSCrossRefGoogle Scholar
  25. Crossfield IJM et al (2014) A global cloud map of the nearest known brown dwarf. Nature 505:654ADSCrossRefGoogle Scholar
  26. Cushing MC et al (2011) The discovery of Y dwarfs using data from the wide-field infrared survey explorer (WISE). ApJ 743:50ADSCrossRefGoogle Scholar
  27. Cushing MC et al (2016) The first detection of photometric variability in a Y dwarf: WISE J140518.39+553421.3. ApJ 823:152ADSCrossRefGoogle Scholar
  28. Enoch ML, Brown ME, Burgasser AJ (2003) Photometric variability at the L/T dwarf boundary. AJ 126:1006ADSCrossRefGoogle Scholar
  29. Esplin TL, Luhman KL, Cushing MC, Hardegree-Ullman KK, Trucks JL, Burgasser AJ, Schneider AC (2016) Photometric monitoring of the coldest known brown dwarf with the Spitzer space telescope. ApJ 832:58ADSCrossRefGoogle Scholar
  30. Gagné J et al (2015) BANYAN. VII. A new population of young substellar candidate members of nearby moving groups from the BASS survey. ApJS 219:33ADSCrossRefGoogle Scholar
  31. Gelino C, Marley M (2000) Variability in an unresolved Jupiter. In: Griffith CA, Marley MS (eds) From giant planets to cool stars. Astronomical society of the Pacific conference series, vol 212, p 322Google Scholar
  32. Gelino CR, Marley MS, Holtzman JA, Ackerman AS, Lodders K (2002) L dwarf variability: I-band observations. ApJ 577:433ADSCrossRefGoogle Scholar
  33. Girardin F, Artigau É, Doyon R (2013) In search of dust clouds: photometric monitoring of a sample of late L and T dwarfs. ApJ 767:61ADSCrossRefGoogle Scholar
  34. Kaeufl H-U et al (2004) CRIRES: a high-resolution infrared spectrograph for ESO’s VLT. In: Moorwood AFM, Iye M (eds) Ground-based instrumentation for astronomy. Proceedings of the SPIE, vol 5492, pp 1218–1227Google Scholar
  35. Kirkpatrick JD et al (2012) Further defining spectral type “Y” and exploring the low-mass end of the field brown dwarf mass function. ApJ 753:156ADSCrossRefGoogle Scholar
  36. Koen C, Matsunaga N, Menzies J (2004) A search for short time-scale JHK variability in ultracool dwarfs. MNRAS 354:466ADSCrossRefGoogle Scholar
  37. Koen C, Tanabé T, Tamura M, Kusakabe N (2005) JHK time-series observations of a few ultracool dwarfs. MNRAS 362:727ADSCrossRefGoogle Scholar
  38. Leggett SK et al (2000) The missing link: early methane (“T”) dwarfs in the Sloan digital sky survey. ApJ 536:L35ADSCrossRefGoogle Scholar
  39. Leggett SK, Morley CV, Marley MS, Saumon D (2015) Near-infrared photometry of Y dwarfs: low ammonia abundance and the onset of water clouds. ApJ 799:37ADSCrossRefGoogle Scholar
  40. Leggett SK et al (2016) Observed variability at 1 and 4 μm in the Y0 brown dwarf WISEP J173835.52+273258.9. ApJ 830:141Google Scholar
  41. Lew BWP et al (2016) Cloud atlas: discovery of patchy clouds and high-amplitude rotational modulations in a young, extremely red L-type brown dwarf. ApJ 829:L32ADSCrossRefGoogle Scholar
  42. Liu MC, Leggett SK (2005) Kelu-1 is a binary L dwarf: first brown dwarf science from laser guide star adaptive optics. ApJ 634:616ADSCrossRefGoogle Scholar
  43. Luhman KL (2013) Discovery of a binary brown dwarf at 2 pc from the sun. ApJ 767:L1ADSCrossRefGoogle Scholar
  44. Luhman KL (2014) Discovery of a ∼250 K brown dwarf at 2 pc from the sun. ApJ 786:L18ADSCrossRefGoogle Scholar
  45. Luhman KL, Esplin TL (2016) Photometric monitoring of the coldest known brown dwarf with the Spitzer space telescope. AJ 152:78ADSCrossRefGoogle Scholar
  46. Luhman KL et al (2005) The disk fractions of brown dwarfs in IC 348 and Chamaeleon I. ApJ 631:L69ADSCrossRefGoogle Scholar
  47. MacKenty JW, Kimble RA, O’Connell RW, Townsend JA (2010) On-orbit performance of HST wide field camera 3. In: Space telescopes and instrumentation 2010: optical, infrared, and millimeter wave. Proceedings of the SPIE, vol 7731, p 77310ZGoogle Scholar
  48. Marley MS, Ackerman AS, Burgasser AJ, Saumon D, Lodders K, Freedman R (2003) Clouds and clearings in the atmospheres of the L and T dwarfs. In: Martín E (ed) Brown dwarfs. IAU symposium, vol 211, p 333Google Scholar
  49. Metchev S et al (2013) Clouds in brown dwarfs and giant planets. Astron Nachr 334:40ADSCrossRefGoogle Scholar
  50. Metchev SA et al (2015) Weather on other worlds. II. Survey results: spots are ubiquitous on L and T dwarfs. ApJ 799:154ADSCrossRefGoogle Scholar
  51. Mohanty S, Basri G (2003) Rotation and activity in mid-M to L field dwarfs. ApJ 583:451ADSCrossRefGoogle Scholar
  52. Morales-Calderón M et al (2006) A sensitive search for variability in late L dwarfs: the quest for weather. ApJ 653:1454ADSGoogle Scholar
  53. Morley CV, Fortney JJ, Marley MS, Visscher C, Saumon D, Leggett SK (2012) Neglected clouds in T and Y dwarf atmospheres. ApJ 756:172ADSCrossRefGoogle Scholar
  54. Nakajima T, Oppenheimer BR, Kulkarni SR, Golimowski DA, Matthews K, Durrance ST (1995) Discovery of a cool brown dwarf. Nature 378:463ADSCrossRefGoogle Scholar
  55. Quirrenbach A et al (2014) CARMENES: blue planets orbiting red dwarfs. In: IAU symposium, vol 299, pp 395–396ADSGoogle Scholar
  56. Racine R (1978) The Mont Megantic astronomical observatory – a new major observatory for Canada. JRASC 72:324ADSGoogle Scholar
  57. Radigan J (2014) Strong brightness variations signal cloudy-to-clear transition of brown dwarfs. ApJ 797:120ADSCrossRefGoogle Scholar
  58. Radigan J, Jayawardhana R, Lafrenière D, Artigau É, Marley M, Saumon D (2012) Large-amplitude variations of an L/T transition brown dwarf: multi-wavelength observations of patchy, high-contrast cloud features. ApJ 750:105ADSCrossRefGoogle Scholar
  59. Radigan J, Lafrenière D, Jayawardhana R, Artigau E (2014) Strong brightness variations signal cloudy-to-clear transition of brown dwarfs. ApJ 793:75ADSCrossRefGoogle Scholar
  60. Rebolo R, Zapatero Osorio MR, Martín EL (1995) Discovery of a brown dwarf in the Pleiades star cluster. Nature 377:129ADSCrossRefGoogle Scholar
  61. Reiners A, Bean JL, Huber KF, Dreizler S, Seifahrt A, Czesla S (2010) Detecting planets around very low mass stars with the radial velocity method. ApJ 710:432ADSCrossRefGoogle Scholar
  62. Simon AA et al (2016) Neptune’s dynamic atmosphere from Kepler K2 observations: implications for brown dwarf light curve analyses. ApJ 817:162ADSCrossRefGoogle Scholar
  63. Skemer A et al (2016) The first spectrum of the coldest brown dwarf. ApJ 826:L17ADSCrossRefGoogle Scholar
  64. Stevenson KB et al (2014) Thermal structure of an exoplanet atmosphere from phase-resolved emission spectroscopy. Science 346:838ADSCrossRefGoogle Scholar
  65. Tamura M et al (2012) Infrared Doppler instrument for the Subaru telescope (IRD). In: Proceedings of the SPIE, vol 8446. SPIEGoogle Scholar
  66. Tinney CG, Tolley AJ (1999) Searching for weather in brown dwarfs. MNRAS 304:119ADSCrossRefGoogle Scholar
  67. Vogt SS, Penrod GD (1983) Doppler imaging of spotted stars – application to the RS Canum Venaticorum star HR 1099. PASP 95:565ADSCrossRefGoogle Scholar
  68. Vos JM, Allers KN, Biller BA (2017) The viewing geometry of brown dwarfs influences their observed colours and variability properties. ApJ 842:78ADSCrossRefGoogle Scholar
  69. Wilson PA, Rajan A, Patience J (2014) The brown dwarf atmosphere monitoring (BAM) project. I. The largest near-IR monitoring survey of L and T dwarfs. A&A 566:A111ADSCrossRefGoogle Scholar
  70. Wright EL et al (2010) The wide-field infrared survey explorer (WISE): mission description and initial on-orbit performance. AJ 140:1868ADSCrossRefGoogle Scholar
  71. Yang H et al (2015) HST rotational spectral mapping of two L-type brown dwarfs: variability in and out of water bands indicates high-altitude haze layers. ApJ 798:L13ADSCrossRefGoogle Scholar
  72. Yang H et al (2016) Extrasolar storms: pressure-dependent changes in light-curve phase in brown dwarfs from simultaneous HST and Spitzer observations. ApJ 826:8ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institut de Recherche sur les Exoplanètes, Département de PhysiqueUniversité de MontréalMontréalCanada

Section editors and affiliations

  • María Rosa Zapatero-Osorio
    • 1
  1. 1.Centro de AstrobiologíaMadridSpain

Personalised recommendations