HR8799: Imaging a System of Exoplanets

  • Quinn M. Konopacky
  • T S. Barman
Living reference work entry


The HR 8799 planetary system is the most intriguing and spectacular system yet discovered by direct imaging. With four gas giant planets (5–7 MJup) orbiting at wide separations (15–70 AU) from an unusual, young A star, HR 8799 serves as a Rosetta Stone for atmospheric and planet formation physics. With direct access to the light from the planets themselves, extensive photometric and spectroscopic studies of the system have been undertaken, painting a fascinating picture of cloud formation, nonequilibrium chemistry, and potential elemental abundance measurements that can constrain formation pathways. The dynamical structure of the system is complex, with the four massive planets likely stabilized through participation in mean-motion resonances. Two belts of debris flank the planets, with a warm belt analogous to the solar system asteroid belt and a wide, cold ring comparable to the Kuiper belt. HR 8799 will continue to be studied extensively from the ground and space in the coming years, with the exciting possibility that additional planets remain to be discovered in the system.



The authors wish to acknowledge Christian Marois, whose persistence made HR 8799 the system that keeps on giving.


  1. Ali-Dib, M (2017) Disentangling hot Jupiters formation location from their chemical composition. MNRAS 476:2845ADSCrossRefGoogle Scholar
  2. Apai D, Kasper M, Skemer A et al (2016) High-cadence, High-contrast Imaging for Exoplanet Mapping: Observations of the HR 8799 Planets with VLT/SPHERE Satellite-spot-corrected Relative Photometry. ApJ 820:40ADSCrossRefGoogle Scholar
  3. Baines EK, White RJ, Huber D et al (2012) The CHARA Array Angular Diameter of HR 8799 Favors Planetary Masses for its Imaged Companions. ApJ 761:57ADSCrossRefGoogle Scholar
  4. Baraffe I, Chabrier G, Barman TS, Allard F, Hauschildt PH (2003) Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458. A&A 402:701ADSCrossRefGoogle Scholar
  5. Barman TS, Macintosh B, Konopacky QM, Marois C (2011) Clouds and Chemistry in the Atmosphere of Extrasolar Planet HR8799b. ApJ 733:65ADSCrossRefGoogle Scholar
  6. Barman TS, Konopacky QM, Macintosh B, Marois C (2015) Simultaneous Detection of Water, Methane, and Carbon Monoxide in the Atmosphere of Exoplanet HR8799b. ApJ 804:61ADSCrossRefGoogle Scholar
  7. Barrado y Navascués D, Stauffer JR, Song I, Caillault J-P (1999) The Age of β Pictoris. ApJ 520:L123Google Scholar
  8. Barry DC (1970) Spectral Classification of A and F Stars. ApJS 19:281ADSCrossRefGoogle Scholar
  9. Becklin EE, Zuckerman B (1988) A low-temperature companion to a white dwarf star. Nature 336:656ADSCrossRefGoogle Scholar
  10. Beuzit J-L, Feldt M, Dohlen K et al (2008) SPHERE: a ‘Planet Finder’ instrument for the VLT. Proc SPIE 7014:701418CrossRefGoogle Scholar
  11. Bergfors C, Brandner W, Janson M, Köhler R, Henning T (2011) VLT/NACO astrometry of the HR 8799 planetary system. L’-band observations of the three outer planets. A&A 528:A134ADSCrossRefGoogle Scholar
  12. Biller BA, Liu MC, Wahhaj Z et al (2013) The Gemini/NICI Planet-Finding Campaign: The Frequency of Planets around Young Moving Group Stars. ApJ 777:160ADSCrossRefGoogle Scholar
  13. Bonnefoy M, Zurlo A, Baudino JL et al (2016) First light of the VLT planet finder SPHERE. IV. Physical and chemical properties of the planets around HR8799. A&A 587:A58CrossRefGoogle Scholar
  14. Booth M, Jordán A, Casassus S et al (2016) Resolving the planetesimal belt of HR 8799 with ALMA. MNRAS 460:L10ADSCrossRefGoogle Scholar
  15. Bowler BP, Liu MC, Dupuy TJ, Cushing MC (2010) Near-infrared Spectroscopy of the Extrasolar Planet HR 8799 b. ApJ 723:850ADSCrossRefGoogle Scholar
  16. Brandt TD, McElwain MW, Turner EL et al (2014) A Statistical Analysis of SEEDS and Other High-contrast Exoplanet Surveys: Massive Planets or Low-mass Brown Dwarfs? ApJ 794:159ADSCrossRefGoogle Scholar
  17. Burgasser AJ, Kirkpatrick JD, Brown ME et al (2002) The Spectra of T Dwarfs. I. Near-Infrared Data and Spectral Classification. ApJ 564:421ADSCrossRefGoogle Scholar
  18. Casewell SL, Dobbie PD, Hodgkin ST et al (2007) Proper motion L and T dwarf candidate members of the Pleiades. MNRAS 378:1131ADSCrossRefGoogle Scholar
  19. Chabrier G, Baraffe I, Allard F, Hauschildt P (2000) Evolutionary Models for Very Low-Mass Stars and Brown Dwarfs with Dusty Atmospheres. ApJ 542:464ADSCrossRefGoogle Scholar
  20. Chauvin G, Lagrange A-M, Dumas C et al (2004) A giant planet candidate near a young brown dwarf. Direct VLT/NACO observations using IR wavefront sensing. A&A 425:L29ADSCrossRefGoogle Scholar
  21. Chauvin G, Vigan A, Bonnefoy M et al (2015) The VLT/NaCo large program to probe the occurrence of exoplanets and brown dwarfs at wide orbits. II. Survey description, results, and performances. A&A 573:A127CrossRefGoogle Scholar
  22. Chen CH, Sargent BA, Bohac C et al (2006) Spitzer IRS Spectroscopy of IRAS-discovered Debris Disks. ApJS 166:351ADSCrossRefGoogle Scholar
  23. Clanton C, Gaudi BS (2017) Constraining the Frequency of Free-floating Planets from a Synthesis of Microlensing, Radial Velocity, and Direct Imaging Survey Results. ApJ 834:46ADSCrossRefGoogle Scholar
  24. Close LM, Males JR (2010) A Search for Wide Companions to the Extrasolar Planetary System HR 8799. ApJ 709:342ADSCrossRefGoogle Scholar
  25. Contro B, Horner J, Wittenmyer RA, Marshall JP, Hinse TC (2016) Modelling the inner debris disc of HR 8799. MNRAS 463:191ADSCrossRefGoogle Scholar
  26. Currie T, Burrows A, Itoh Y et al (2011) A Combined Subaru/VLT/MMT 1-5 μm Study of Planets Orbiting HR 8799: Implications for Atmospheric Properties, Masses, and Formation.ApJ 729:128ADSCrossRefGoogle Scholar
  27. Currie T, Fukagawa M, Thalmann C, Matsumura S, Plavchan P (2012) Direct Detection and Orbital Analysis of the Exoplanets HR 8799 bcd from Archival 2005 Keck/NIRC2 Data. ApJ 755:L34ADSCrossRefGoogle Scholar
  28. Currie T, Burrows A, Girard JH et al (2014) Deep Thermal Infrared Imaging of HR 8799 bcde: New Atmospheric Constraints and Limits on a Fifth Planet. ApJ 795:133ADSCrossRefGoogle Scholar
  29. Esposito S, Mesa D, Skemer A et al (2013) LBT observations of the HR 8799 planetary system. First detection of HR 8799e in H band. A&A 549:A52Google Scholar
  30. Fabrycky DC, Murray-Clay RA (2010) Stability of the Directly Imaged Multiplanet System HR 8799: Resonance and Masses. ApJ 710:1408ADSCrossRefGoogle Scholar
  31. Filippazzo JC, Rice EL, Faherty J et al (2015) Fundamental Parameters and Spectral Energy Distributions of Young and Field Age Objects with Masses Spanning the Stellar to Planetary Regime. ApJ 810:158ADSCrossRefGoogle Scholar
  32. Ford EB (2005) Quantifying the Uncertainty in the Orbits of Extrasolar Planets. AJ 129:1706ADSCrossRefGoogle Scholar
  33. Fukagawa M, Itoh Y, Tamura M et al (2009) H-Band Image of a Planetary Companion Around HR 8799 in 2002. ApJ 696:L1ADSCrossRefGoogle Scholar
  34. Galicher R, Marois C, Macintosh B, Barman T, Konopacky Q (2011) M-band Imaging of the HR 8799 Planetary System Using an Innovative LOCI-based Background Subtraction Technique. ApJ 739:L41ADSCrossRefGoogle Scholar
  35. Galicher R, Marois C, Macintosh B et al (2016) The International Deep Planet Survey. II. The frequency of directly imaged giant exoplanets with stellar mass. A&A 594:A63ADSCrossRefGoogle Scholar
  36. Gehren T (1977) Model atmosphere analysis of HR 8799. A&A 59:303ADSGoogle Scholar
  37. Gray RO, Kaye AB (1999) HR 8799: A Link between γ Doradus Variables and λ Bootis Stars. AJ 118:2993ADSCrossRefGoogle Scholar
  38. Götberg Y, Davies MB, Mustill AJ, Johansen A, Church RP (2016) Long-term stability of the HR 8799 planetary system without resonant lock. A&A 592:A147ADSCrossRefGoogle Scholar
  39. Goździewski K, Migaszewski C (2009) Is the HR8799 extrasolar system destined for planetary scattering?. MNRAS 397:L16ADSCrossRefGoogle Scholar
  40. Goździewski K, Migaszewski C (2014) Multiple mean motion resonances in the HR 8799 planetary system. MNRAS 440:3140ADSCrossRefGoogle Scholar
  41. Hinkley S, Carpenter JM, Ireland MJ, Kraus AL (2011) Observational Constraints on Companions Inside of 10 AU in the HR 8799 Planetary System. ApJ 730:L21ADSCrossRefGoogle Scholar
  42. Hinz PM, Rodigas TJ, Kenworthy MA et al (2010) Thermal Infrared MMTAO Observations of the HR 8799 Planetary System. ApJ 716:417ADSCrossRefGoogle Scholar
  43. Hughes AM, Wilner DJ, Andrews SM et al (2011) Resolved Submillimeter Observations of the HR 8799 and HD 107146 Debris Disks. ApJ 740:38ADSCrossRefGoogle Scholar
  44. Ingraham P, Marley MS, Saumon D et al (2014) Gemini Planet Imager Spectroscopy of the HR 8799 Planets c and d. ApJ 794:L15ADSCrossRefGoogle Scholar
  45. Kastner JH, Zuckerman B, Weintraub DA, Forveille T (1997) X-ray and molecular emission from the nearest region of recent star formation. Science 277:67ADSCrossRefGoogle Scholar
  46. Kaye AB, Strassmeier KG (1998) CA II H&K survey of Gamma Doradus candidates. MNRAS 294:L35ADSCrossRefGoogle Scholar
  47. Kaye AB, Handler G, Krisciunas K, Poretti E, Zerbi FM (1999) Gamma Doradus Stars: Defining a New Class of Pulsating Variables. PASP 111:840ADSCrossRefGoogle Scholar
  48. Konopacky QM, Barman TS, Macintosh BA, Marois C (2013) Detection of Carbon Monoxide and Water Absorption Lines in an Exoplanet Atmosphere. Science 339:1398ADSCrossRefGoogle Scholar
  49. Konopacky QM, Marois C, Macintosh BA et al (2016) Astrometric Monitoring of the HR 8799 Planets: Orbit Constraints from Self-consistent Measurements. AJ 152:28ADSCrossRefGoogle Scholar
  50. Lafrenière D, Doyon R, Marois C et al (2007) The Gemini Deep Planet Survey. ApJ 670:1367ADSCrossRefGoogle Scholar
  51. Lafrenière D, Marois C, Doyon R, Nadeau D, Artigau É (2007) A New Algorithm for Point-Spread Function Subtraction in High-Contrast Imaging: A Demonstration with Angular Differential Imaging. ApJ 660:770ADSCrossRefGoogle Scholar
  52. Lafrenière D, Marois C, Doyon R, Barman T (2009) HST/NICMOS Detection of HR 8799 b in 1998. ApJ 694:L148ADSCrossRefGoogle Scholar
  53. Lavie B, Mendonça JM, Mordasini C et al (2016) HELIOS-Retrieval: An Open-source, Nested Sampling Atmospheric Retrieval Code, Application to the HR 8799 Exoplanets and Inferred Constraints for Planet Formation. arXiv:1610.03216Google Scholar
  54. Liu MC, Wahhaj Z, Biller BA et al (2010) The Gemini NICI Planet-Finding Campaign. Proc SPIE 7736:77361KCrossRefGoogle Scholar
  55. Lowrance PJ, Becklin EE, Schneider G et al (2005) An Infrared Coronagraphic Survey for Substellar Companions. AJ 130:1845ADSCrossRefGoogle Scholar
  56. Macintosh BA, Becklin EE, Kaisler D, Konopacky Q, Zuckerman B (2003) Deep Keck Adaptive Optics Searches for Extrasolar Planets in the Dust of Eridani and Vega. ApJ 594:538ADSCrossRefGoogle Scholar
  57. Macintosh B, Graham JR, Ingraham P et al (2014) First light of the Gemini Planet Imager. Proc Natl Acad Sci 111:12661ADSCrossRefGoogle Scholar
  58. Maire A-L, Skemer AJ, Hinz PM et al (2015) The LEECH Exoplanet Imaging Survey. Further constraints on the planet architecture of the HR 8799 system. A&A 576:A133CrossRefGoogle Scholar
  59. Mamajek EE, Lawson WA, Feigelson ED (1999) The η Chamaeleontis Cluster: A Remarkable New Nearby Young Open Cluster. ApJ 516:L77ADSCrossRefGoogle Scholar
  60. Marley MS, Saumon D, Goldblatt C (2010) A Patchy Cloud Model for the L to T Dwarf Transition. ApJ 723:L117ADSCrossRefGoogle Scholar
  61. Marley MS, Saumon D, Cushing M et al (2012) Masses, Radii, and Cloud Properties of the HR 8799 Planets. ApJ 754:135ADSCrossRefGoogle Scholar
  62. Marois C, Lafrenière D, Doyon R, Macintosh B, Nadeau D (2006) Angular Differential Imaging: A Powerful High-Contrast Imaging Technique. ApJ 641:556ADSCrossRefGoogle Scholar
  63. Marois C, Macintosh B, Barman T et al (2008) Direct Imaging of Multiple Planets Orbiting the Star HR 8799. Science 322:1348ADSCrossRefGoogle Scholar
  64. Marois C, Zuckerman B, Konopacky QM, Macintosh B, Barman T (2010) Images of a fourth planet orbiting HR 8799. Nature 468:1080ADSCrossRefGoogle Scholar
  65. Matthews B, Kennedy G, Sibthorpe B et al (2014) Resolved Imaging of the HR 8799 Debris Disk with Herschel. ApJ 780:97ADSCrossRefGoogle Scholar
  66. Mawet D, Riaud P, Absil O, Surdej J (2005) Annular Groove Phase Mask Coronagraph. ApJ 633:1191ADSCrossRefGoogle Scholar
  67. McCarthy C, Zuckerman B (2004) The Brown Dwarf Desert at 75-1200 AU. AJ 127:2871ADSCrossRefGoogle Scholar
  68. Metchev SA, Hillenbrand LA (2004) Initial Results from the Palomar Adaptive Optics Survey of Young Solar-Type Stars: A Brown Dwarf and Three Stellar Companions. ApJ 617:1330ADSCrossRefGoogle Scholar
  69. Metchev S, Marois C, Zuckerman B (2009) Pre-Discovery 2007 Image of the HR 8799 Planetary System. ApJ 705:L204ADSCrossRefGoogle Scholar
  70. Moór A, Ábrahám P, Derekas A et al (2006) Nearby Debris Disk Systems with High Fractional Luminosity Reconsidered. ApJ 644:525ADSCrossRefGoogle Scholar
  71. Moro-Martín A, Rieke GH, Su KYL (2010) Could the Planets Around HR 8799 be Brown Dwarfs? ApJ 721:L199ADSCrossRefGoogle Scholar
  72. Moya A, Amado PJ, Barrado D et al (2010) Age determination of the HR8799 planetary system using asteroseismology. MNRAS 405:L81ADSCrossRefGoogle Scholar
  73. Nakajima T, Oppenheimer BR, Kulkarni SR et al (1995) Discovery of a cool brown dwarf. Nature 378:463ADSCrossRefGoogle Scholar
  74. Nielsen EL, Liu MC, Wahhaj Z et al (2013) The Gemini NICI Planet-Finding Campaign: The Frequency of Giant Planets around Young B and A Stars. ApJ 776:4ADSCrossRefGoogle Scholar
  75. Öberg KI, Murray-Clay R, Bergin EA (2011) The Effects of Snowlines on C/O in Planetary Atmospheres. ApJ 743:L16ADSCrossRefGoogle Scholar
  76. Oblak E, Considère S, Chareton M (1976) A&AS 24:69ADSGoogle Scholar
  77. Oppenheimer BR, Beichman C, Brenner D et al (2012) Project 1640: the world’s first ExAO coronagraphic hyperspectral imager for comparative planetary science. Proc SPIE 8447:844720CrossRefGoogle Scholar
  78. Oppenheimer BR, Baranec C, Beichman C et al (2013) Reconnaissance of the HR 8799 Exosolar System. I. Near-infrared Spectroscopy. ApJ 768:24Google Scholar
  79. Patience J, Bulger J, King RR et al (2011) Spatially resolved submillimeter imaging of the HR 8799 debris disk. A&A 531:L17ADSCrossRefGoogle Scholar
  80. Piso A-MA, Öberg KI, Birnstiel T, Murray-Clay RA (2015) C/O and Snowline Locations in Protoplanetary Disks: The Effect of Radial Drift and Viscous Gas Accretion. ApJ 815:109ADSCrossRefGoogle Scholar
  81. Pueyo L, Soummer R, Hoffmann J et al (2015) Reconnaissance of the HR 8799 Exosolar System. II. Astrometry and Orbital Motion. ApJ 803:31Google Scholar
  82. Rajan A, Barman T, Soummer R et al (2015) Characterizing the Atmospheres of the HR8799 Planets with HST/WFC3. ApJ 809:L33ADSCrossRefGoogle Scholar
  83. Reidemeister M, Krivov AV, Schmidt TOB et al (2009) A possible architecture of the planetary system HR 8799. A&A 503:247ADSCrossRefGoogle Scholar
  84. Roddier F, Roddier C (1997) Stellar Coronograph with Phase Mask. PASP 109:815ADSCrossRefGoogle Scholar
  85. Sadakane K, Nishida M (1986) Twelve additional ‘Vega-like’ stars. PASP 98:685ADSCrossRefGoogle Scholar
  86. Sadakane K (2006) λ Bootis-Like Abundances in the Vega-Like, γ Doradus Type-Pulsator HD 218396. PASJ 58:1023ADSCrossRefGoogle Scholar
  87. Skemer AJ, Hinz PM, Esposito S et al (2012) First Light LBT AO Images of HR 8799 bcde at 1.6 and 3.3 μm: New Discrepancies between Young Planets and Old Brown Dwarfs. ApJ 753:14ADSCrossRefGoogle Scholar
  88. Skemer AJ, Marley MS, Hinz PM et al (2014) Directly Imaged L-T Transition Exoplanets in the Mid-infrared. ApJ 792:17ADSCrossRefGoogle Scholar
  89. Sódor Á, Chené A-N, De Cat P et al (2014) MOST light-curve analysis of the γ Doradus pulsator HR 8799, showing resonances and amplitude variations. A&A 568:A106ADSCrossRefGoogle Scholar
  90. Soummer R (2005) Apodized Pupil Lyot Coronagraphs for Arbitrary Telescope Apertures. ApJ 618:L161ADSCrossRefGoogle Scholar
  91. Soummer R, Brendan Hagan J, Pueyo L et al (2011) Orbital Motion of HR 8799 b, c, d Using Hubble Space Telescope Data from 1998: Constraints on Inclination, Eccentricity, and Stability. ApJ 741:55ADSCrossRefGoogle Scholar
  92. Su KYL, Rieke GH, Stapelfeldt KR et al (2009) The Debris Disk Around HR 8799. ApJ 705:314ADSCrossRefGoogle Scholar
  93. Sudol JJ, Haghighipour N (2012) High-mass, Four-planet Configurations for HR 8799: Constraining the Orbital Inclination and Age of the System. ApJ 755:38ADSCrossRefGoogle Scholar
  94. Sylvester RJ, Skinner CJ, Barlow MJ, Mannings V (1996) Optical, infrared and millimetre-wave properties of Vega-like systems. MNRAS 279:915ADSCrossRefGoogle Scholar
  95. Tuthill PG, Monnier JD, Danchi WC, Wishnow EH, Haniff CA (2000) Michelson Interferometry with the Keck I Telescope. PASP 112:555ADSCrossRefGoogle Scholar
  96. Torres CAO, Quast GR, Melo CHF, Sterzik MF (2008) Young Nearby Loose Associations. Handbook of star forming regions, vol II, 5, 757. ASP Monograph Publications, San FranciscoGoogle Scholar
  97. van Leeuwen F (2007) Validation of the new Hipparcos reduction. A&A 474:653ADSCrossRefGoogle Scholar
  98. Wertz O, Absil O, Gómez González CA et al (2017) VLT/SPHERE robust astrometry of the HR8799 planets at milliarcsecond-level accuracy. Orbital architecture analysis with PyAstrOFit. A&A 598:A83ADSCrossRefGoogle Scholar
  99. Williams JP, Andrews SM (2006) The Dust Properties of Eight Debris Disk Candidates as Determined by Submillimeter Photometry. ApJ 653:1480ADSCrossRefGoogle Scholar
  100. Wright DJ, Chené A-N, De Cat P et al (2011) Determination of the Inclination of the Multi-planet Hosting Star HR 8799 Using Asteroseismology. ApJ 728:L20ADSCrossRefGoogle Scholar
  101. Zuckerman B, Song I (2004) Young Stars Near the Sun. ARA&A 42:685ADSCrossRefGoogle Scholar
  102. Zuckerman B, Rhee JH, Song I, Bessell MS (2011) The Tucana/Horologium, Columba, AB Doradus, and Argus Associations: New Members and Dusty Debris Disks. ApJ 732:61ADSCrossRefGoogle Scholar
  103. Zurlo A, Vigan A, Galicher R et al (2016) First light of the VLT planet finder SPHERE. III. New spectrophotometry and astrometry of the HR 8799 exoplanetary system. A&A 587:A57CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Center for Astrophysics and Space SciencesUniversity of California, San DiegoLa JollaUSA
  2. 2.Lunar and Planetary LabUniversity of ArizonaTucsonUSA

Personalised recommendations