Neonatology pp 823-842 | Cite as

Respiratory Distress Syndrome: Predisposing Factors, Pathophysiology, and Diagnosis

  • Mikko HallmanEmail author
  • Timo Saarela
  • Luc J. I. Zimmermann
Reference work entry


Due to increased survival and new treatment strategies, new phenotypes of respiratory distress syndrome (RDS) have emerged. RDS in near-term to term infants is characterized by seemingly effortless breathing and tendency to pulmonary hypertension that can be avoided by expectant management. Common preventable cause is elective delivery before full 40 weeks of pregnancy. Sometimes these infants possess rare alleles retarding lung development. Extremely preterm infants are often affected by intrauterine inflammation, accelerating surfactant maturity. Despite new noninvasive treatment practices, initially mild RDS tends to become prolonged and develops to BPD. This is due to deficient antioxidant, anti-inflammatory, and antimicrobial capacity; predisposition to airway injury, alveolar flooding, and surfactant inactivation by multiple mechanisms are discussed. Genetic factors predisposing very preterm infants to RDS are intertwined with acquired risks: lack of labor, non-presenting twin, and adverse metabolic environment (e.g., hyperinsulinemia). Antenatal steroid, inducing structural maturity and stimulating functional maturity, is the cornerstone of prevention of RDS and the developmental diseases prior to week 34. Currently steroid supplementation in RDS is not recommended.


  1. Aikio O, Metsola J, Vuolteenaho R et al (2012) Transient defect in nitric oxide generation after rupture of fetal membranes and responsiveness to inhaled nitric oxide in very preterm infants with hypoxic respiratory failure. J Pediatr 161:397–403CrossRefGoogle Scholar
  2. Avery ME, Mead J (1959) Surface properties in relation to atelectasis and hyaline membrane disease. AMA Am J Dis Child 97(5 Part 1):517–523Google Scholar
  3. Avery ME, Fletcher BD, Williams RG (1981) The lung and its disorders in the newborn infant, Major problems in clinical pediatrics, vol 1, 4th edn. Saunders, Philadelphia, pp 1–367Google Scholar
  4. Baldwin DN, Pillow JJ, Stocks J, Frey U (2006) Lung-function tests in neonates and infants with chronic lung disease: tidal breathing and respiratory control. Pediatr Pulmonol 41:391–419CrossRefGoogle Scholar
  5. Bassler D, Plavka R, Shinwell ES et al (2015) Early inhaled budesonide for the prevention of bronchopulmonary dysplasia. N Engl J Med 373:1497–1506CrossRefGoogle Scholar
  6. Bird AD, McDougall AR, Seow B et al (2015) Glucocorticoid regulation of lung development: lessons learned from conditional GR knockout mice. Mol Endocrinol 29:158–171CrossRefGoogle Scholar
  7. Bishop NB, Stankiewicz P, Steinhorn RH (2011) Alveolar capillary dysplasia. Am J Respir Crit Care Med 184:172–179CrossRefGoogle Scholar
  8. Bland R (2001) Loss of liquid from the lung lumen in labor: more than a simple “squeeze”. Am J Physiol Lung Cell Mol Physiol 280:L602–L605CrossRefGoogle Scholar
  9. Bry K, Lappalainen U, Hallman M (1997) Intraamniotic interleukin- 1 accelerates surfactant protein synthesis in fetal rabbits and improves lung stability after premature birth. J Clin Invest 99:2992–2999CrossRefGoogle Scholar
  10. Burri PH (2006) Structural aspects of postnatal lung development – alveolar formation and growth. Biol Neonate 89:313–322CrossRefGoogle Scholar
  11. Carnielli VP, Zimmermann LJ, Hamvas A, Cogo PE (2009) Pulmonary surfactant kinetics of the newborn infant: novel insights from studies with stable isotopes. J Perinatol 29(Suppl 2):S29–S37CrossRefGoogle Scholar
  12. Chu J, Clements JA, Cotton EK et al (1967) Neonatal pulmonary ischemia. I. Clinical and physiological studies. Pediatrics 40:709–782Google Scholar
  13. Dalziel SR, Walker NK, Parag V et al (2005) Cardiovascular risk factors after antenatal exposure to betamethasone: 30-year follow-up of a randomised controlled trial. Lancet 365:1856–1862CrossRefGoogle Scholar
  14. Gerten KA, Coonrod DV, Bay RC, Chambliss LR (2005) Cesarean delivery and respiratory distress syndrome: does labor make a difference? Am J Obstet Gynecol 193:1061–1064CrossRefGoogle Scholar
  15. Gilbert WM (2006) The cost of preterm birth: the low cost versus high value of tocolysis. BJOG 113(Suppl 3):4–9CrossRefGoogle Scholar
  16. Hallman M (1992) Antenatal diagnosis of lung maturity. In: Robertson B, Van Golde LMG, Batenburg JJ (eds) Pulmonary surfactant. From molecular biology to clinical practice. Elsevier, Amsterdam, pp 425–445Google Scholar
  17. Hallman M, Haataja R (2007) Genetic basis of respiratory distress syndrome. Front Biosci 12:2670–2682CrossRefGoogle Scholar
  18. Hallman M, Arjomaa P, Romu M, Tahvanainen J (1986) The lung profile in diagnosis of fetal and neonatal surfactant defects. In: Vignali M, Cosmi EV, Luerti M (eds) Diagnosis and treatment of fetal lung immaturity. Masson, Milan, pp 41–49Google Scholar
  19. Hallman M, Merritt TA, Akino T, Bry K (1991) Surfactant protein A, phosphatidylcholine, and surfactant inhibitors in epithelial lining fluid. Correlation with surface activity, severity of respiratory distress syndrome, and outcome in small premature infants. Am Rev Respir Dis 144:1376–1384CrossRefGoogle Scholar
  20. Hallman M, Merritt TA, Bry K (1994) The fate of exogenous surfactant in neonates with respiratory distress syndrome. Clin Pharmacokinet 26:215–232CrossRefGoogle Scholar
  21. Hallman M, Peltoniemi O, Kari MA (2010) Enhancing functional maturity before preterm birth. Neonatology 97:373–378CrossRefGoogle Scholar
  22. Hamrick SE, Hansmann G (2010) Patent ductus arteriosus of the preterm infant. Pediatrics 125:1020–1030CrossRefGoogle Scholar
  23. Helve O, Pitkänen O, Janér C, Andersson S (2009) Pulmonary fluid balance in the human newborn infant. Neonatology 95:347–352CrossRefGoogle Scholar
  24. Hillman NH, Moss TJ, Kallapur SG et al (2007) Brief, large tidal volume ventilation initiates lung injury and a systemic response in fetal sheep. Am J Respir Crit Care Med 176:575–581CrossRefGoogle Scholar
  25. Hjalmarson O, Brynjarsson H, Nilsson S, Sandberg KL (2014) Persisting hypoxaemia is an insufficient measure of adverse lung function in very immature infants. Arch Dis Child Fetal Neonatal Ed 99:F257–F262CrossRefGoogle Scholar
  26. Hoepker A, Seear M, Petrocheilou A et al (2008) Wilson-Mikity syndrome: updated diagnostic criteria based on nine cases and a review of the literature. Pediatr Pulmonol 43:1004–1012CrossRefGoogle Scholar
  27. Idell S, Kumar A, Koenig KB, Coalson JJ (1994) Pathways of fibrin turnover in lavage of premature baboons with hyperoxic lung injury. Am J Respir Crit Care Med 149:767–775CrossRefGoogle Scholar
  28. Jones M (2009) Effect of preterm birth on airway function and lung growth. Paediatr Respir Rev 10(Suppl 1):9–11CrossRefGoogle Scholar
  29. Kallapur SG, Presicce P, Rueda CM, Jobe AH, Chougnet CA (2014) Fetal immune response to chorioamnionitis. Semin Reprod Med 32:56–67CrossRefGoogle Scholar
  30. Karjalainen MK, Huusko JM, Tuohimaa A et al (2012) A study of collecting genes in spontaneous preterm birth reveals an association with a common surfactant protein D gene polymorphism. Pediatr Res 71:93–99CrossRefGoogle Scholar
  31. Kaukola T, Tuimala J, Herva R et al (2009) Cord immunoproteins as predictors of respiratory outcome in preterm infants. Am J Obstet Gynecol 200(100):e1–e8Google Scholar
  32. Koivisto M, Marttila R, Saarela T et al (2005) Wheezing illness and re-hospitalization in the first two years of life after neonatal respiratory distress syndrome. J Pediatr 147:486–492CrossRefGoogle Scholar
  33. Kotecha SJ, Edwards MO, Watkins WJ (2013) Effect of preterm birth on later FEV1: a systematic review and meta-analysis. Thorax 68:760–766CrossRefGoogle Scholar
  34. Liggins GC, Howie RN (1972) A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infants. Pediatrics 50:515–525PubMedGoogle Scholar
  35. Marttila R, Haataja R, Rämet M et al (2003) Surfactant protein B polymorphism and respiratory distress syndrome in premature twins. Hum Genet 112:18–23CrossRefGoogle Scholar
  36. Marttila R, Kaprio J, Hallman M (2004) Respiratory distress syndrome in twin infants compared with singletons. Am J Obstet Gynecol 191:271–276CrossRefGoogle Scholar
  37. Morley CJ, Davis PG, Doyle LW et al (2008) Nasal CPAP or intubation at birth for very preterm infants. N Engl J Med 358:700–708CrossRefGoogle Scholar
  38. Mulugeta S, Nureki S, Beers MF (2015) Lost after translation: insights from pulmonary surfactant for understanding the role of alveolar epithelial dysfunction and cellular quality control in fibrotic lung disease. Am J Physiol Lung Cell Mol Physiol 309:L507–L525CrossRefGoogle Scholar
  39. O’Brodovich H (2005) Pulmonary edema in infants and children. Curr Opin Pediatr 17:381–384CrossRefGoogle Scholar
  40. Obladen M (1992) History of surfactant research. In: Robertson B, Van Golde LMG, Batenburg JJ (eds) Pulmonary surfactant. From molecular biology to clinical practice. Elsevier, Amsterdam, pp 1–18Google Scholar
  41. Olver RE, Walters DV, Wilson SM (2004) Developmental regulation of lung liquid transport. Annu Rev Physiol 66:77–101CrossRefGoogle Scholar
  42. Peltoniemi OM, Kari MA, Hallman M (2011) Repeated antenatal corticosteroid treatment: a systematic review and meta-analysis. Acta Obstet Gynecol Scand 90:719–727CrossRefGoogle Scholar
  43. Ramachandrappa A, Jain L (2008) Elective cesarean section: its impact on neonatal respiratory outcome. Clin Perinatol 35:373–393CrossRefGoogle Scholar
  44. Ramachandrappa A, Jain L (2009) Health issues of the late preterm infant. Pediatr Clin North Am 56:565–577CrossRefGoogle Scholar
  45. Roberts D, Dalziel S (2006) Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev 3:CD004454Google Scholar
  46. Robertson B, Taeusch HW (1995) Surfactant therapy for lung disease. In: Lefant C (ed) Lung biology in health and disease, vol 84. Marcel Dekker, New YorkGoogle Scholar
  47. Ronkainen E, Dunder T, Peltoniemi O, Kaukola T, Marttila R, Hallman M (2015) New BPD predicts lung function at school age: follow-up study and meta-analysis. Pediatr Pulmonol 50:1090–1098CrossRefGoogle Scholar
  48. Sáenz A, López-Sánchez A, Mojica-Lázaro J et al (2010) Fluidizing effects of C-reactive protein on lung surfactant membranes: protective role of surfactant protein A. FASEB J 24:3662–3673CrossRefGoogle Scholar
  49. Sandri F, Plavka R, Ancora G et al (2010) Prophylactic or early selective surfactant combined with nCPAP in very preterm infants. Pediatrics 125:e1402–e1409CrossRefGoogle Scholar
  50. Schmidt B, Roberts R, Millar D, Kirpalani H (2008) Evidence based neonatal drug therapy for prevention of bronchopulmonary dysplasia in very-low-birth-weight infants. Neonatology 93:284–287CrossRefGoogle Scholar
  51. Schürch S, Bachofen H, Possmayer F (2001) Surface activity in situ, in vivo, and in the captive bubble surfactometer. Comp Biochem Physiol A Mol Integr Physiol 129:195–207CrossRefGoogle Scholar
  52. Steinhorn RH (2010) Neonatal pulmonary hypertension. Pediatr Crit Care Med 11(2 Suppl):S79–S84CrossRefGoogle Scholar
  53. Sundell H, Garrott J, Blankenship W et al (1971) Studies on infants with type II respiratory distress syndrome. J Pediatr 78:754–764CrossRefGoogle Scholar
  54. Tita AT, Landon MB, Spong CY et al (2009) Timing of elective repeat cesarean delivery at term and neonatal outcomes. N Engl J Med 360:111–120CrossRefGoogle Scholar
  55. Torday JS, Rehan VK (2015) On the evolution of the pulmonary alveolar lipofibroblast. Exp Cell Res 340:215. pii: S0014-4827(15)30174-9CrossRefGoogle Scholar
  56. Van Driessche W, Kreindler JL, Malik AB et al (2007) Interrelations/cross talk between transcellular transport function and paracellular tight junctional properties in lung epithelial and endothelial barriers. Am J Physiol Lung Cell Mol Physiol 293:L520–L524CrossRefGoogle Scholar
  57. Verder H, Ebbesen F, Linderholm B et al (2003) Prediction of respiratory distress syndrome by the microbubble stability test on gastric aspirates in newborns of less than 32 weeks’ estation. Acta Paediatr 92:728–733CrossRefGoogle Scholar
  58. Vergine M, Copetti R, Brusa G, Cattarossi L (2014) Lung ultrasound accuracy in respiratory distress syndrome and transient tachypnea of the newborn. Neonatology 106:87–93CrossRefGoogle Scholar
  59. Watterberg KL, Demers LM, Scott SM, Murphy S (1996) Chorioamnionitis and early lung inflammation in infants in whom bronchopulmonary dysplasia develops. Pediatrics 97:210–215PubMedPubMedCentralGoogle Scholar
  60. Wert SE, Whitsett JA, Nogee LM (2009) Genetic disorders of surfactant dysfunction. Pediatr Dev Pathol 12:253–274CrossRefGoogle Scholar
  61. Whitsett JA, Wert SE, Weaver TE (2010) Alveolar surfactant homeostasis and the pathogenesis of pulmonary disease. Annu Rev Med 61:105–119CrossRefGoogle Scholar
  62. WHO (2015) WHO recommendations on interventions to improve preterm birth outcomes. ISBN 978 924 1508988Google Scholar
  63. Wright JR (2005) Immunoregulatory functions of surfactant proteins. Nat Rev Immunol 5:58–68CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mikko Hallman
    • 1
    Email author
  • Timo Saarela
    • 2
  • Luc J. I. Zimmermann
    • 3
  1. 1.Department of Children and AdolescentsOulu University Hospital, and PEDEGO Research Unit, Medical Research Center Oulu, University of OuluOuluFinland
  2. 2.Department of Children and AdolescentsOulu University HospitalOuluFinland
  3. 3.Department of Pediatrics and NeonatologySchool for Oncology and Developmental Biology (GROW), Maastricht University Medical CenterMaastrichtThe Netherlands

Personalised recommendations