Neonatology pp 2323-2335 | Cite as

Neuromuscular Disorders in Newborns

  • Salvatore GrossoEmail author
  • Silvia Ferranti
Reference work entry


Neuromuscular disorders (NDs) are important causes of neonatal weakness and hypotonia. They are pathogenetically related to primitive disorders of the motor unit. They can be acquired or genetically determined, and inherited according to various models of inheritance. NDs with neonatal onset have great clinical variability in severity ranging from fatal to mild pictures. Weakness, generalized or localized to a peculiar district (i.e., facial muscles), and hypotonia are cardinal features. Diagnostic workup includes serum creatine kinase level analysis, motor nerve conduction investigation, electromyography, and muscle biopsy. In neonates indications for muscle biopsy should be carefully evaluated as several limitations there exist. It could be considered in those patients in whom diagnosis is still lacking in spite of several laboratory investigations.


  1. Barth PG (1993) Pontocerebellar hypoplasia. An overview of a group of inherited neurodegenerative disorders with fetal onset. Brain Dev 15:411–422CrossRefGoogle Scholar
  2. Beytía Mde L, Dekomien G, Hoffjan S, Haug V, Anastasopoulos C, Kirschner J (2014) High creatine kinase levels and white matter changes: clinical and genetic spectrum of congenital muscular dystrophies with laminin alpha-2 deficiency. Mol Cell Probes 28(4):118–122CrossRefGoogle Scholar
  3. Bönnemann CG, Wang CH, Quijano-Roy S, Deconinck N, Bertini E, Ferreiro A, Muntoni F, Sewry C, Béroud C, Mathews KD, Moore SA, Bellini J, Rutkowski A, North KN (2014) Members of international standard of care committee for congenital muscular dystrophies. Diagnostic approach to the congenital muscular dystrophies. Neuromuscul Disord 24(4):289–311CrossRefGoogle Scholar
  4. Buonocore G, Balestri P, Toti P et al (1993) A new case of severe congenital nemaline myopathy. Acta Paediatr 82:1082–1084CrossRefGoogle Scholar
  5. Carré A, Empey C (2016) Review of Spinal Muscular Atrophy (SMA) for prenatal and pediatric genetic counselors. J Genet Couns 25(1):32–43CrossRefGoogle Scholar
  6. D’Amico A, Mercuri E, Tiziano FD, Bertini E (2011) Spinal muscular atrophy. Orphanet J Rare Dis 6:71CrossRefGoogle Scholar
  7. Deymeer F, Serdaroglu R, Ozdemir C (1999) Familial infantile myasthenia: confusion in terminology. Neuromuscul Disord 9:129–130CrossRefGoogle Scholar
  8. Dubowitz V (1995) Muscle disorders in childhood. Saunders, LondonGoogle Scholar
  9. Engel AG, Shen XM, Selcen D, Sine SM (2015) Congenital myasthenic syndromes: pathogenesis, diagnosis, and treatment. Lancet Neurol 14(4):420–434CrossRefGoogle Scholar
  10. Fenichel GM (2009) Clinical pediatric neurology. A signs and symptoms approach, Chapter 6. Saunder Elservier, PhiladelphiaGoogle Scholar
  11. Godfrey C, Foley AR, Clement E, Muntoni F (2011) Dystroglycanopathies: coming into focus. Curr Opin Genet Dev 21(3):278–285CrossRefGoogle Scholar
  12. Guillot N, Cuisset JM, Cuvellier JC, Hurtevent JF, Joriot S, Vallee L (2008) Unusual clinical features in infantile Spinal Muscular Atrophies. Brain Dev 30(3):169–178CrossRefGoogle Scholar
  13. Hacohen Y, Jacobson LW, Byrne S, Norwood F, Lall A, Robb S, Dilena R, Fumagalli M, Born AP, Clarke D, Lim M, Vincent A, Jungbluth H (2014) Fetal acetylcholine receptor inactivation syndrome: a myopathy due to maternal antibodies. Neurol Neuroimmunol Neuroinflamm 2(1):e57CrossRefGoogle Scholar
  14. Jungbluth H, Davis MR, Muller C et al (2004) Magnetic resonance imaging of muscle in congenital myopathies associated with RYR1 mutations. Neuromuscul Disord 14:785–790CrossRefGoogle Scholar
  15. Jungbluth H, Wallgren-Pettersson C, Laporte J (2008) Centronuclear (myotubular) myopathy. Orphanet J Rare Dis 3:26CrossRefGoogle Scholar
  16. Jungbluth H, Sewry CA, Muntoni F (2011) Core myopathies. Semin Pediatr Neurol 18(4):239–249. ReviewCrossRefGoogle Scholar
  17. Kaindl AM, Ruschendorf F, Krause S et al (2004) Missense mutations of ACTA1 cause dominant congenital myopathy with cores. J Med Genet 41:842–848CrossRefGoogle Scholar
  18. Kaindl AM, Guenther UP, Rudnik-Schöneborn S et al (2008) Spinal muscular atrophy with respiratory distress type 1 (SMARD1). J Child Neurol 23:199–204CrossRefGoogle Scholar
  19. Kirschner J (2013) Congenital muscular dystrophies. Handb Clin Neurol 113:1377–1385CrossRefGoogle Scholar
  20. Kissiedu J, Prayson RA (2016) Congenital fiber type disproportion. J Clin Neurosci 26:136–7CrossRefGoogle Scholar
  21. Laing NG, Sewry CA, Lamont P (2007) Congenital myopathies. Handb Clin Neurol 86:1–33CrossRefGoogle Scholar
  22. Lee CY (2014) Walker-Warburg syndrome: rare congenital muscular dystrophy associated with brain and eye abnormalities. Hong Kong Med J 20(6):556.e4–556.e5CrossRefGoogle Scholar
  23. Lefebvre S, Biirglen L, Reboullet S et al (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 13(80):1–5Google Scholar
  24. Lim JA, Li L, Raben N (2014) Pompe disease: from pathophysiology to therapy and back again. Front Aging Neurosci 6:177CrossRefGoogle Scholar
  25. MacLeod MJ, Taylor JE, Lunt PW et al (1999) Prenatal onset spinal muscular atrophy. Eur J Paediatr Neurol 3:65–72CrossRefGoogle Scholar
  26. Meola G, Cardani R (2015) Myotonic dystrophies: an update on clinical aspects, genetic, pathology, and molecular pathomechanisms. Biochim Biophys Acta 1852(4):594–606CrossRefGoogle Scholar
  27. Mercuri E, Dubowitz V (2008) Neuromuscular disorders. In: Levine MI, Chervenak FA (eds) Fetal and neonatal neurology and neurosurgery. Churchill Livingston Elsevier, Philadelphia, pp 792–809Google Scholar
  28. Mercuri E, Longman C (2005) Congenital muscular dystrophy. Pediatr Ann 34:564–568CrossRefGoogle Scholar
  29. Messina MF, Messina S, Gaeta M, Rodolico C, Salpietro Damiano AM, Lombardo F, Crisafulli G, De Luca F (2012) Infantile spinal muscular atrophy with respiratory distress type I (SMARD 1): an atypical phenotype and review of the literature. Eur J Paediatr Neurol 16(1):90–94CrossRefGoogle Scholar
  30. Middleton LT (1995) Report on the 34th ENMC international workshop – congenital myasthenia syndromes. Neuromuscul Disord 6:133–136CrossRefGoogle Scholar
  31. Midelfart Hoff J, Midelfart A (2015) Maternal myasthenia gravis: a cause for arthrogryposis multiplex congenita. J Child Orthop 9(6):433–5CrossRefGoogle Scholar
  32. Muntoni F, Voit T (2005) 133rd ENMC international workshop on congenital muscular dystrophy (IXth international CMD workshop) 21–23 January 2005, Naarden. The Netherlands. Neuromuscul Disord 15:794–801CrossRefGoogle Scholar
  33. Muntoni F, Torelli S, Brockington M (2008) Muscular dystrophies due to glycosylation defects. Neurotherapeutics 5:627–632CrossRefGoogle Scholar
  34. Nogajski JH, Kiernan MC, Ouvrier RA, Andrews PI et al (2009) Congenital myasthenic syndromes. J Clin Neurosci 16:1–11CrossRefGoogle Scholar
  35. North K (2008) What’s new in congenital myopathies? Neuromuscul Disord 18:433–442CrossRefGoogle Scholar
  36. North KN, Wang CH, Clarke N, Jungbluth H, Vainzof M, Dowling JJ, Amburgey K, Quijano-Roy S, Beggs AH, Sewry C, Laing NG, Bönnemann CG (2014) International standard of care committee for congenital myopathies. Approach to the diagnosis of congenital myopathies. Neuromuscul Disord 24(2):97–116CrossRefGoogle Scholar
  37. Ohno K, Anlar B, Engel AG (1999) Congenital myasthenic syndrome caused by a mutation in the Ets binding site of the promoter region of the acetylcoline receptor e subunit gene. Neuromuscul Disord 9:131–135CrossRefGoogle Scholar
  38. Ravenscroft G, Miyatake S, Lehtokari VL et al (2013) Mutations in KLHL40 are a frequent cause of severe autosomal-recessive nemaline myopathy. Am J Hum Genet 93(1):6–18CrossRefGoogle Scholar
  39. Reed UC (2009a) Congenital muscular dystrophy. Part I: a review of phenotypical and diagnostic aspects. Arq Neuropsiquiatr 67:144–168CrossRefGoogle Scholar
  40. Reed UC (2009b) Congenital muscular dystrophy. Part II: a review of pathogenesis and therapeutic perspectives. Arq Neuropsiquiatr 67:343–362CrossRefGoogle Scholar
  41. Romero NB, Clarke NF (2013) Congenital myopathies. Handb Clin Neurol 113:1321–1336. ReviewCrossRefGoogle Scholar
  42. Rudnick-Schoneborn FR, Hahnen E et al (1996) Clinical spectrum and diagnostic criteria of infantile spinal muscular atrophy: further delineation on the basis of 5MN deletion findings. Neuropediatrics 27:8–15CrossRefGoogle Scholar
  43. Rudnik-Schöneborn S, Sztriha L, Aithala GR, Houge G, Laegreid LM, Seeger J, Huppke M, Wirth B, Zerres K (2003) Extended phenotype of pontocerebellar hypoplasia with infantile spinal muscular atrophy. Am J Med Genet A 117A(1):10–17CrossRefGoogle Scholar
  44. Ryan MM, Schnell C, Strickland CD et al (2001) Nemaline myopathy: a clinical study of 143 cases. Ann Neurol 50:312–320CrossRefGoogle Scholar
  45. Sharma MC, Jain D, Sarkar C et al (2009) Congenital myopathies-a comprehensive update of recent advancements. Acta Neurol Scand 119:281–292CrossRefGoogle Scholar
  46. Tanner SM, Laporte J, Guiraurd-Chaumeil C et al (1998) Confirmation of prenatal diagnosis results of X-linked recessive myotubular myopathy by mutational screening and description of three new mutations in the MTM1 gene. Hum Mutat 11:62–68CrossRefGoogle Scholar
  47. Voit T (1998) Congenital muscular dystrophies: 1997 update. Brain Dev 20:65–74CrossRefGoogle Scholar
  48. Volpe J (2008a) Neuromuscular disorders: levels above the lower motor neuron to the neuromuscular junction. In: Volpe J (ed) Neurology of the newborn. Saunders Elsevier, Philadelphia, pp 767–800Google Scholar
  49. Volpe J (2008b) Neuromuscular disorders: muscle involvement and restricted disorders. In: Volpe J (ed) Neurology of the newborn. Saunders Elsevier, Philadelphia, pp 801–840Google Scholar
  50. Wallgren-Pettersson C, Laing NG (1996) Nemaline myopathy. Neuromuscul Disord 6:389–391CrossRefGoogle Scholar
  51. Wallgren-Pettersson C (2000) 72nd ENMC international workshop: myotubular myopathy 1–3 October 1999, Hilversum, The Netherlands. Neuromuscul Disord 10:525–529CrossRefGoogle Scholar
  52. Wallgren-Pettersson C, Laing NG (2006) 138th ENMC workshop: nemaline myopathy, 20–22 May 2005, Naarden. The Netherlands. Neuromuscul Disord 16:54–60Google Scholar
  53. Wallgren-Pettersson C, Pelin K, Nowack KJ et al (2004) ENMC international consortium on Nemaline myopathy. Genotype-phenotype correlations in nemaline myopathy caused by mutations in the genes for nebulin and skeletal muscle alpha-actin. Neuromuscul Disord 14:461–470CrossRefGoogle Scholar
  54. Wallgren-Pettersson C, Sewry CA, Nowak KJ, Laing NG (2011) Nemaline myopathies. Semin Pediatr Neurol 18(4):230–238CrossRefGoogle Scholar
  55. Yiş U, Uyanik G, Rosendahl DM, Carman KB, Bayram E, Heise M, Cömertpay G, Kurul SH (2014) Clinical, radiological, and genetic survey of patients with muscle-eye-brain disease caused by mutations in POMGNT1. Pediatr Neurol 50(5):491–497CrossRefGoogle Scholar
  56. Yoshioka M, Saiwai S, Kuroki S (1991) MR imaging of the brain in Fukuyama-type congenital muscular dystrophy. AJNR Am J Neuroradiol 12:63–65PubMedGoogle Scholar
  57. Zeesman S, Carson N, Whelan DT (2002) Paternal transmission of the congenital form of myotonic dystrophy type 1: a new case and review of the literature. Am J Med Genet 107:222–226CrossRefGoogle Scholar
  58. Zhou H, Yamaguchi N, Xu L et al (2006) Characterization of recessiveRYR1mutations in core myopathies. Hum Mol Genet 15:2791–2803CrossRefGoogle Scholar
  59. Zhou H, Jungbluth H, Sewry CA et al (2007) Molecular mechanisms and phenotypic variation in RYR1-related congenital myopathies. Brain 130:2024–2036CrossRefGoogle Scholar
  60. Zuccotti GV, Giovannini M (2012) Manuale di Pediatria- la pratica clinica, Chapter 22. Societa’ editrice Esculapio, BolognaGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Molecular Medicine and DevelopmentUniversity of SienaSienaItaly

Personalised recommendations