Advertisement

Neonatology pp 2201-2224 | Cite as

Cerebral Hemorrhage in Newborns

  • Linda S. de Vries
  • Axel Heep
Reference work entry

Abstract

Hemorrhagic lesions of the central nervous system (CNS) occur during the fetal, perinatal, and postnatal period. Due to the timing of the hemorrhage and the vulnerability of the developing brain, hemorrhagic lesions are associated with specific morbidity and mortality.

Germinal matrix hemorrhage-intraventricular hemorrhage (GMH-IVH) is still a common and serious condition in premature infants. Especially a large GMH-IVH, often complicated by posthemorrhagic ventricular dilation or associated with a unilateral parenchymal hemorrhage, is associated with an increased risk of adverse neurologic sequelae.

The widespread use of cranial ultrasonography since the early 1980s has shown a gradual decrease in the incidence of GMH-IVH and has helped with the identification of risk factors and timing of the lesion. The increased use of magnetic resonance imaging (MRI) has contributed to better define the site and extent of the lesion and to visualize associated white matter (WM) damage as well as associated cerebellar hemorrhages.

Hemorrhagic lesions of the CNS in the fetal period are associated with vascular malformation, thrombophilic disorders, and rarely brain malignancies. Perinatally acquired hemorrhagic CNS lesions in the full-term infant are associated with sinovenous thrombosis or traumatic parenchymal hemorrhage related to assisted vaginal deliveries.

Abbreviations

CSF

Cerebrospinal fluid

CSVT

Cerebral sinovenous thrombosis

CT

Computed tomography

cUS

Cranial ultrasound

DQ

Developmental quotient

DRIFT

Drainage intervention fibrinolytic therapy

ECMO

Extracorporeal membrane oxygenation

GMH-IVH

Germinal matrix hemorrhage-intraventricular hemorrhage

HPI

Hemorrhagic parenchymal infarction

iNO

Inhaled nitric oxide

IPL

Intraparenchymal Lesion

MRI

Magnetic resonance imaging

NIRS

Near-infrared spectroscopy

NAITP

Neonatal alloimmune thrombocytopenia

PVHI

Periventricular hemorrhagic infarction

PVL

Periventricular leukomalacia

PLAI

Platelet surface antigen

PLIC

Posterior limb of the internal capsule

PHVD

Posthemorrhagic ventricular dilatation

VI

Venous infarction

VM

Ventriculomegaly

References

  1. Alderliesten T, Lemmers PM, Smarius JJ et al (2013) Cerebral oxygenation, extraction, and autoregulation in very preterm infants who develop peri-intraventricular hemorrhage. J Pediatr 162(4):698–704PubMedCrossRefGoogle Scholar
  2. Andre P, Thebaud B, Delavaucoupet J et al (2001) Late-onset cystic periventricular leukomalacia in premature infants: a threat until term. Am J Perinatol 18:79–86PubMedCrossRefGoogle Scholar
  3. Armstrong-Wells J, Johnston SC, Wu YW et al (2009) Prevalence and predictors of perinatal hemorrhagic stroke: results from the Kaiser pediatric stroke study. Pediatrics 123:823–828PubMedCrossRefGoogle Scholar
  4. Barnette AR, Myers BJ, Berg CS, Inder TE (2010) Sodium intake and intraventricular hemorrhage in the preterm infant. Ann Neurol 67(6):817–823PubMedGoogle Scholar
  5. Barrington KJ, Finer NN (2010) Inhaled nitric oxide for respiratory failure in preterm infants. Cochrane Database Syst Rev CD000509Google Scholar
  6. Bassan H, Benson CB, Limperopoulos C et al (2006) Ultrasonographic features and severity scoring of periventricular hemorrhagic infarction in relation to risk factors and outcome. Pediatrics 117:2111–2118PubMedCrossRefGoogle Scholar
  7. Bassan H, Limperopoulos C, Visconti K et al (2007) Neurodevelopmental outcome in survivors of periventricular hemorrhagic infarction. Pediatrics 120:785–792PubMedCrossRefGoogle Scholar
  8. Bassan H, Eshel R, Golan I, External Ventricular Drainage Study Investigators et al (2012) Timing of external ventricular drainage and neurodevelopmental outcome in preterm infants with posthemorrhagic hydrocephalus. Eur J Paediatr Neurol 16(6):662–670PubMedCrossRefGoogle Scholar
  9. Bates S, Odd D, Luyt K et al (2015) Superior vena cava flow and intraventricular haemorrhage in extremely preterm infants. J Matern Fetal Neonatal Med 30:1–7Google Scholar
  10. Batton DG, Holtrop P, Dewitte D et al (1994) Current gestational age-related incidence of major intraventricular hemorrhage. J Pediatr 125:623–625PubMedCrossRefGoogle Scholar
  11. Baud O, Foix-L’Helias L, Kaminski M et al (1999) Antenatal glucocorticoid treatment and cystic periventricular leukomalacia in very premature infants. N Engl J Med 341:1190–1196PubMedCrossRefGoogle Scholar
  12. Beaino G, Khoshnood B, Kaminski M et al (2011) Predictors of the risk of cognitive deficiency in very preterm infants: the EPIPAGE prospective cohort. Acta Paediatr 100:370–378PubMedCrossRefPubMedCentralGoogle Scholar
  13. Beecher DJ (2002) The Bacillus cereus group. In: Sussman M (ed) Molecular medical microbiology. Academic, San Diego, pp 1161–1181CrossRefGoogle Scholar
  14. Benavente-Fernández I, Lubián-López SP, Jiménez-Gómez G et al (2015) Low-voltage pattern and absence of sleep-wake cycles are associated with severe hemorrhage and death in very preterm infants. Eur J Pediatr 174(1):85–90PubMedCrossRefGoogle Scholar
  15. Beverley D, Pitts-Tucker T, Congdon P et al (1985) Prevention of intraventricular haemorrhage by fresh frozen plasma. Arch Dis Child 60(8):710–713PubMedCrossRefPubMedCentralGoogle Scholar
  16. Bolisetty S, Dhawan A, Abdel-Latif M, New South Wales and Australian Capital Territory Neonatal Intensive Care Units’ Data Collection et al (2014) Intraventricular hemorrhage and neurodevelopmental outcomes in extreme preterm infants. Pediatrics 133:55–62PubMedCrossRefGoogle Scholar
  17. Braun V, Hobbie S, Ondraczek R (1992) Serratia marcescens forms a new type of cytolysin. FEMS Microbiol Lett 100(1–3):299–305PubMedCrossRefGoogle Scholar
  18. Brouwer AJ, Groenendaal F, van Haastert IC et al (2008) Neurodevelopmental outcome of preterm infants with severe intraventricular hemorrhage and therapy for post-hemorrhagic ventricular dilatation. J Pediatr 152:648–654PubMedCrossRefGoogle Scholar
  19. Brouwer MJ, de Vries LS, Groenendaal F et al (2012) New reference values for the neonatal cerebral ventricles. Radiology 262(1):224–233PubMedCrossRefGoogle Scholar
  20. Bulas D, Glass P (2005) Neonatal ECMO: neuroimaging and neurodevelopmental outcome. Semin Perinatol 29:58–65PubMedCrossRefGoogle Scholar
  21. Bulas DI, Glass P, O’Donnell RM (1995) Neonates treated with ECMO: predictive value of early CT and US neuroimaging findings on short-term neurodevelopmental outcome. Radiology 195:407–412PubMedCrossRefGoogle Scholar
  22. Burstein J, Papile L, Burstein R (1979) Intraventricular hemorrhage in premature newborns: a prospective study with CT. Am J Radiol 132:631–635Google Scholar
  23. Bussel JB, Sola-Visner M (2009) Current approaches to the evaluation and management of the fetus and neonate with immune thrombocytopenia. Semin Perinatol 33:35–42PubMedCrossRefGoogle Scholar
  24. Bussel JB, Zavusky MR, Berkowitz RL, McFarland JG (1997) Fetal alloimmune thrombocytopenia. N Engl J Med 337:22–26PubMedCrossRefGoogle Scholar
  25. Chadwick LM, Pemberton PJ, Kurinczuk JJ (1996) Neonatal subgaleal haematoma: associated risk factors, complications and outcome. J Paediatr Child Health 32:228–232PubMedCrossRefGoogle Scholar
  26. Chalak LF, Sikes NC, Mason MJ, Kaiser JR (2011) Low-voltage aEEG as predictor of intracranial hemorrhage in preterm infants. Pediatr Neurol 44(5):364–369PubMedCrossRefPubMedCentralGoogle Scholar
  27. Chamnanvanakij S, Rollins N, Perlman JM (2002) Subdural hematoma in term infants. Pediatr Neurol 26:301–314PubMedCrossRefGoogle Scholar
  28. Chang HY, Peng CC, Kao HA et al (2007) Neonatal subgaleal hemorrhage: clinical presentation, treatment, and predictors of poor prognosis. Pediatr Int 49:903–907PubMedCrossRefGoogle Scholar
  29. Correa F, Enríquez G, Rosselló J et al (2004) Posterior fontanelle sonography: an acoustic window into the neonatal brain. AJNR Am J Neuroradiol 25:1274–1282PubMedGoogle Scholar
  30. Counsell SJ, Dyet LE, Larkman DJ et al (2007) Thalamo-cortical connectivity in children born preterm mapped using probabilistic magnetic resonance tractography. Neuroimage 34:896–904PubMedCrossRefGoogle Scholar
  31. Cowan FM, de Vries LS (2005) The internal capsule in neonatal imaging. Semin Fetal Neonatal Med 10:461–474PubMedCrossRefGoogle Scholar
  32. Crowther CA, Harding JE (2007) Repeat doses of prenatal corticosteroids for women at risk of preterm birth for preventing neonatal respiratory disease. Cochrane Database Syst Rev 18(3):CD003935Google Scholar
  33. Crowther CA, Hiller JE, Doyle LW et al (2003) Effect of magnesium sulfate given for neuroprotection before preterm birth. JAMA 290:2669–2676PubMedCrossRefGoogle Scholar
  34. Crowther CA, Crosby DD, Henderson-Smart DJ (2010) Cochrane Database Syst Rev 20(1), CD000229.  https://doi.org/10.1002/14651858.CD000229.pub2CrossRefGoogle Scholar
  35. Dale ST, Coleman LT (2002) Neonatal alloimmune thrombocytopenia: antenatal and postnatal imaging findings in the pediatric brain. AJNR Am J Neuroradiol 23:1457–1465PubMedGoogle Scholar
  36. Dalton J, Dechert RE, Sarkar S (2015) Assessment of association between rapid fluctuations in serum sodium and intraventricular hemorrhage in hypernatremic preterm infants. Am J Perinatol 32(8):795–802PubMedCrossRefGoogle Scholar
  37. Dani C, Bertini G, Pezzati M, IntraVentricular Ibuprofen Study Group et al (2005) Prophylactic ibuprofen for the prevention of intraventricular hemorrhage among preterm infants: a multicenter, randomized study. Pediatrics 115:1529–1535PubMedCrossRefGoogle Scholar
  38. Dani C, Poggi C, Ceciarini F et al (2009) Coagulopathy screening and early plasma treatment for the prevention of intraventricular hemorrhage in preterm infants. Transfusion 49(12):2637–2644PubMedCrossRefGoogle Scholar
  39. Davies MW, Swaminathan M, Chuang SI, Betheras FR (2001) Reference ranges for the linear dimensions of the intracranial ventricles in preterm neonates. Arch Dis Child Fetal Neonatol Ed 82:F219–F223Google Scholar
  40. de Mol AC, Gerrits LC, van Heijst AF, Straatman H (2008) Intravascular volume administration: a contributing risk factor for intracranial hemorrhage during extracorporeal membrane oxygenation? Pediatrics 121:e1599–e1603PubMedCrossRefGoogle Scholar
  41. De Vries LS, Groenendaal F, Eken P et al (1999) Asymmetrical myelination of the posterior limb of the internal capsule: an early predictor of hemiplegia. Neuropediatrics 30:314–319PubMedCrossRefGoogle Scholar
  42. de Vries LS, Rademaker KJ, Roelants-van Rijn AM (2001) Unilateral haemorrhagic parenchymal infarction in the preterm infant. Eur J Pediatr Neurol 5:139–149CrossRefGoogle Scholar
  43. de Vries LS, Liem KD, van Dijk K et al (2002) Early versus late treatment of posthaemorrhagic ventricular dilatation: results of a retrospective study from five neonatal intensive care units in the Netherlands. Acta Paediatr 91:212–217PubMedCrossRefGoogle Scholar
  44. de Vries LS, Koopman C, Groenendaal F et al (2009) COL4A1 mutation in two preterm siblings with antenatal onset of parenchymal hemorrhage. Ann Neurol 65:12–18PubMedCrossRefGoogle Scholar
  45. de Vries LS, Groenendaal F, Liem KD, Heep A, Brouwer AJ, van ’t Verlaat E, Benavente-Fernández I, van Straaten HL, van Wezel-Meijler G, Smit BJ, Govaert P, Woerdeman PA, Whitelaw A, ELVIS study group (ed) (2018) Treatment thresholds for intervention in posthaemorrhagic ventricular dilation: a randomised controlled trial. Arch Dis Child Fetal Neonatal.  https://doi.org/10.1136/archdischild-2017-314206. pii: fetalneonatal-2017-314206 [Epub ahead of print]
  46. Dolfin T, Skidmore MB, Fong KW et al (1983) Incidence, severity and timing of subependymal and intraventricular hemorrhages in preterm infants born in a perinatal unit as detected by serial real-time ultrasound. Pediatrics 71:541–546PubMedGoogle Scholar
  47. Doyle LW, Crowther CA, Middleton P (2009) Magnesium sulphate for women at risk of preterm birth for neuroprotection of the fetus. Cochrane Database Syst Rev 21(1), CD004661Google Scholar
  48. Drayton MR, Skidmore R (1987) Vasoactivity of the major intracranial arteries in newborn infants. Arch Dis Child 62:236–240PubMedCrossRefPubMedCentralGoogle Scholar
  49. Dudink J, Lequin M, Weisglas-Kuperus N et al (2008) Venous subtypes of preterm periventricular haemorrhagic infarction. Arch Dis Child Fetal Neonatal Ed 93:F201–F206PubMedCrossRefGoogle Scholar
  50. Duppre P, Sauer H, Giannopoulou EZ et al (2015) Cellular and humoral coagulation profiles and occurrence of IVH in VLBW and ELBW infants. Early Hum Dev 91:695–700PubMedCrossRefGoogle Scholar
  51. Ecury-Goossen GM, Dudink J, Lequin M et al (2010) The clinical presentation of preterm cerebellar haemorrhage. Eur J Pediatr 169(10):1249–1253PubMedCrossRefPubMedCentralGoogle Scholar
  52. El-Ganzoury MM, El-Farrash RA, Saad AA et al (2014) Antenatal administration of vitamin K1: relationship to vitamin K-dependent coagulation factors and incidence rate of periventricular-intraventricular hemorrhage in preterm infants; Egyptian randomized controlled trial. J Matern Fetal Neonatal Med 27(8):816–820PubMedCrossRefGoogle Scholar
  53. Fabres J, Carlo WA, Phillips V et al (2007) Both extremes of arterial carbon dioxide pressure and the magnitude of fluctuations in arterial carbon dioxide pressure are associated with severe intraventricular hemorrhage in preterm infants. Pediatrics 119:299–305PubMedCrossRefGoogle Scholar
  54. Felderhoff-Mueser U, Buhrer C, Groneck P et al (2003) Soluble Fas (CD95/Apo-1), soluble Fas ligand and activated Capspase 3 in the cerebrospinal fluid of infants with posthemorrhagic and nonhemorrhagic hydrocephalus. Pediatr Res 54:659–664PubMedCrossRefGoogle Scholar
  55. Fernell E, Hagberg G, Hagberg B (1993) Infantile hydrocephalus in preterm, low-birth-weight infants: a nationwide Swedish cohort study 1979–1988. Acta Paediatr 82:45–48PubMedCrossRefGoogle Scholar
  56. Forman K (2014) Coagulopathy in newborns with hypoxic ischemic encephalopathy (HIE) treated with therapeutic hypothermia: a retrospective case-control study. BMC Pediatr 14:277PubMedCrossRefPubMedCentralGoogle Scholar
  57. Fowlie PW, Davis PG (2010) Prophylactic intravenous indomethacin for preventing mortality and morbidity in preterm infants. Cochrane Database Syst Rev 7(7):CD000174Google Scholar
  58. Gannon CM, Kornhauser MS, Gross GW et al (2001) When combined, early bedside head ultrasound and electroencephalography predict abnormal computerized tomography or magnetic resonance brain images obtained after extracorporeal membrane oxygenation treatment. J Perinatol 21:451–455PubMedCrossRefGoogle Scholar
  59. Ghazi-Birry HS, Brown WR, Moody DM et al (1997) Human germinal matrix: venous origin of hemorrhage and vascular characteristics. AJNR Am J Neuroradiol 18:219–229PubMedGoogle Scholar
  60. Gleissner M, Jorch G, Avenarius S (2000) Risk factors for intraventricular hemorrhage in a birth cohort of 3721 premature infants. J Perinat Med 28:104–110PubMedGoogle Scholar
  61. Göpel W, Härtel C, Ahrens P et al (2006) Interleukin-6-174-genotype, sepsis and cerebral injury in very low birth weight infants. Genes Immun 7:65–68PubMedCrossRefGoogle Scholar
  62. Gould SJ, Howard S, Hope PL, Reynolds EO (1987) Periventricular intraparenchymal cerebral haemorrhage in preterm infants: the role of venous infarction. J Pathol 151:197–202PubMedCrossRefGoogle Scholar
  63. Govaert P, Vanhaesebrouck P, de Praeter C (1992) Traumatic neonatal intracranial bleeding and stroke. Arch Dis Child 67:840–845PubMedCrossRefPubMedCentralGoogle Scholar
  64. Gram M, Sveinsdottir S, Ruscher K, Hansson SR, Cinthio M, Akerström B, Ley D (2013) Hemoglobin induces inflammation after preterm intraventricular hemorrhage by methemoglobin formation. J Neuroinflammation 10:100.  https://doi.org/10.1186/1742-2094-10-100
  65. Hamrick SE, Miller SP, Leonard C et al (2004) Trends in severe brain injury and neurodevelopmental outcome in premature newborn infants: the role of cystic periventricular leukomalacia. J Pediatr 145:593–599PubMedCrossRefGoogle Scholar
  66. Hanigan WC, Powell FC, Miller TC, Wright RM (1995) Symptomatic intracranial hemorrhage in full-term infants. Childs Nerv Syst 11:698–707PubMedCrossRefGoogle Scholar
  67. Haque KN, Hayes AM, Ahmed Z et al (2008) Caesarean or vaginal delivery for preterm very-low-birth weight (</=1,250 g) infant: experience from a district general hospital in UK. Arch Gynecol Obstet 277:207–212PubMedCrossRefGoogle Scholar
  68. Hardart GE, Fackler JC (1999) Predictors of intracranial hemorrhage during neonatal extracorporeal membrane oxygenation. J Pediatr 134:156–159PubMedCrossRefGoogle Scholar
  69. Harding DR, Dhamrait S, Whitelaw A et al (2004) Does interleukin-6 genotype influence cerebral injury or developmental progress after preterm birth? Pediatrics 114:941–947PubMedCrossRefGoogle Scholar
  70. Härtel C, König I, Köster S et al (2006) Genetic polymorphisms of hemostasis genes and primary outcome of very low birth weight infants. Pediatrics 118:683–689PubMedCrossRefGoogle Scholar
  71. Heep A, Behrendt D, Nitsch P et al (2003) Increased interleukin-6 serum levels are associated with severe intraventricular hemorrhage in extremely premature infants. Arch Dis Child 88:F501–F504CrossRefGoogle Scholar
  72. Heep A, Stoffel-Wagner B, Bartmann P et al (2004a) Vascular endothelial growth factor and transforming growth factor-beta1 are highly expressed in the cerebrospinal fluid of premature infants with posthemorrhagic hydrocephalus. Pediatr Res 56:768–774PubMedCrossRefGoogle Scholar
  73. Heep A, Schaller K, Rittmann N et al (2004b) Multiple brain abscesses in an extremely preterm infant: treatment surveillance with interleukin-6 in the CSF. Eur J Pediatr 163:44–45CrossRefPubMedGoogle Scholar
  74. Herbst A, Källén K (2007) Influence of mode of delivery on neonatal mortality and morbidity in spontaneous preterm breech delivery. Eur J Obstet Gynecol Reprod Biol 133:25–29PubMedCrossRefGoogle Scholar
  75. Heuchan AM, Evans N, Henderson Smart DJ, Simpson JM (2002) Perinatal risk factors for major intraventricular haemorrhage in the Australian and New Zealand Neonatal Network, 1995–97. Arch Dis Child Fetal Neonatal Ed 86(2):F86–F90PubMedCrossRefPubMedCentralGoogle Scholar
  76. Hofmeyr GJ, Hannah ME (2003) Planned caesarean section for term breech delivery. Cochrane Database Syst Rev 3, CD000166Google Scholar
  77. Holberton JR, Drew SM, Mori R, Konig K (2012) The diagnostic value of a single measurement of superior vena cava flow in the first 24 h of life in very preterm infants. Eur J Pediatr 171:1489–1495PubMedCrossRefGoogle Scholar
  78. Ingram MC, Huguenard AL, Miller BA, Chern JJ (2014) Poor correlation between head circumference and cranial ultrasound findings in premature infants with intraventricular hemorrhage. J Neurosurg Pediatr 14:184–189PubMedCrossRefGoogle Scholar
  79. Jiménez AJ, García-Verdugo JM, González CA et al (2009) Disruption of the neurogenic niche in the subventricular zone of postnatal hydrocephalic hyh mice. J Neuropathol Exp Neurol 68(9):1006–1020.  https://doi.org/10.1097/NEN.0b013e3181b44a5aCrossRefPubMedGoogle Scholar
  80. Jocelyn LJ, Casiro OG (1992) Neurodevelopmental outcome of term infants with intraventricular hemorrhage. Am J Dis Child 146:194–197PubMedGoogle Scholar
  81. Kaiser A, Whitelaw A (1985) Cerebrospinal fluid pressure during posthaemorrhagic ventricular dilatation in newborn. Arch Dis Child 60:920–924PubMedCrossRefPubMedCentralGoogle Scholar
  82. Kamphuis MM, Paridaans NP, Porcelijn L, Lopriore E, Oepkes D (2014) Incidence and consequences of neonatal alloimmune thrombocytopenia: a systematic review. Pediatrics 133:715–721PubMedCrossRefGoogle Scholar
  83. Kennedy CR, Ayers S, Campbell MJ et al (2001) Randomized, controlled trial of acetazolamide and furosemide in posthemorrhagic ventricular dilation in infancy: follow-up at 1 year. Pediatrics 108:597–607PubMedCrossRefGoogle Scholar
  84. Kersbergen K, de Vries LS, van Straaten HLM et al (2009) Anticoagulation therapy and imaging in neonates with a unilateral thalamic hemorrhage due to cerebral sinovenous thrombosis. Stroke 40(8):2754–2760PubMedCrossRefGoogle Scholar
  85. Khwaja O, Volpe JJ (2008) Pathogenesis of cerebral white matter injury of prematurity. Arch Dis Child Fetal Neonatal Ed 93:F153–F161PubMedCrossRefPubMedCentralGoogle Scholar
  86. Kilani RA, Wetmore J (2006) Neonatal subgaleal hematoma: presentation and outcome – radiological findings and factors associated with mortality. Am J Perinatol 23:41–48PubMedCrossRefGoogle Scholar
  87. Klebermass-Schrehof K, Rona Z, Waldhör T et al (2013) Can neurophysiological assessment improve timing of intervention in posthaemorrhagic ventricular dilatation? Arch Dis Child Fetal Neonatal Ed 98(4):F291–F297PubMedCrossRefGoogle Scholar
  88. Kluckow M, Evans N (2000) Low superior vena cava flow and intraventricular haemorrhage in preterm infants. Arch Dis Child Fetal Neonatal Ed 82:F188–F194PubMedCrossRefPubMedCentralGoogle Scholar
  89. Kribs A, Roll C, Göpel W et al (2015) Nonintubated surfactant application vs conventional therapy in extremely preterm infants: a randomized clinical trial. JAMA Pediatr 169(8):723–730CrossRefPubMedGoogle Scholar
  90. Krueger RC, Wu H, Zandian M et al (2006) Neural progenitors populate the cerebrospinal fluid of preterm patients with hydrocephalus. J Pediatr 148(3):337–340.e3.  https://doi.org/10.1016/j.jpeds.2005.09.035CrossRefPubMedGoogle Scholar
  91. Kuban K, Sanocka U, Leviton A et al (1999) White matter disorders of prematurity: association with intraventricular hemorrhage and ventriculomegaly. The Developmental Epidemiology Network. J Pediatr 134:539–546PubMedCrossRefGoogle Scholar
  92. Larroche JC (1972) Post-haemorrhagic hydrocephalus in infancy. Anatomical study. Biol Neonate 20(3):287–299PubMedCrossRefGoogle Scholar
  93. Larroque B, Marret S, Ancel P-Y et al (2003) White matter damage and intraventricular hemorrhage in very preterm infants: the EPIPAGE study. J Pediatr 143:477–483PubMedCrossRefGoogle Scholar
  94. Leijser LM, Miller SP, van Wezel-Meijler G, Brouwer AJ, Traubici J, van Haastert IC, Whyte HE, Groenendaal F, Kulkarni AV, Han KS, Woerdeman PA, Church PT, Kelly EN, van Straaten HLM, Ly LG, de Vries LS (2018) Posthemorrhagic ventricular dilatation in preterm infants: When best to intervene? Neurology. 90(8):e698–e706.  https://doi.org/10.1212/WNL.0000000000004984PubMedCrossRefGoogle Scholar
  95. Lemons JA, Bauer CR, Oh W et al (2001) Very low birth weight outcomes of the National Institute of Child Health and Human Development Neonatal Research Network, January 1995 through December 1996. NICD Neonatal Research Network. Pediatrics 107(1), E1PubMedCrossRefGoogle Scholar
  96. Levene MI, Starte DR (1981) A longitudinal study of posthaemorrhagic ventricular dilatation in the newborn. Arch Dis Child 56:905–910PubMedCrossRefPubMedCentralGoogle Scholar
  97. Limperopoulos C, Benson CB, Bassan H et al (2005) Cerebellar hemorrhage in the preterm infant: ultrasonographic findings and risk factors. Pediatrics 116:717–724PubMedCrossRefGoogle Scholar
  98. Limperopoulos C, Bassan H, Gauvreau K et al (2007) Does cerebellar injury in premature infants contribute to the high prevalence of long-term cognitive, learning, and behavioral disability in survivors? Pediatrics 120:584–593PubMedCrossRefGoogle Scholar
  99. Liu J, Wang Q, Gao F et al (2006) Maternal antenatal administration of vitamin K1 results in increasing the activities of vitamin K-dependent coagulation factors in umbilical blood and in decreasing the incidence rate of periventricular-intraventricular hemorrhage in premature infants. J Perinatal Med 34(2):173–176CrossRefGoogle Scholar
  100. Looney CB, Smith JK, Merck LH (2007) Intracranial hemorrhage in asymptomatic neonates: prevalence on MR images and relationship to obstetric and neonatal risk factors. Radiology 242:535–541PubMedCrossRefGoogle Scholar
  101. Maalouf EF, Duggan PJ, Counsell SJ et al (2001) Comparison of findings on cranial ultrasound and magnetic resonance imaging in preterm infants. Pediatrics 107:719–727PubMedCrossRefGoogle Scholar
  102. Ment LR, Stewart WB, Ardito TA, Madri JA (1995a) Germinal matrix microvascular maturation correlates inversely with the risk period for neonatal intraventricular hemorrhage. Brain Res Dev Brain Res 84:142–149PubMedCrossRefGoogle Scholar
  103. Ment LR, Oh W, Ehrenkranz RA, Philip AG et al (1995b) Antenatal steroids, delivery mode, and intraventricular hemorrhage in preterm infants. Am J Obstet Gynecol 172:795–800PubMedCrossRefGoogle Scholar
  104. Ment LR, Vohr B, Allan W et al (1999) The etiology and outcome of ventriculomegaly at term in very low birth weight infants. Pediatrics 104:243–248PubMedCrossRefGoogle Scholar
  105. Ment LR, Peterson BS, Meltzer JA et al (2006) A functional magnetic resonance imaging study of the long-term influences of early indomethacin exposure on language processing in the brains of prematurely born children. Pediatrics 118:961–970PubMedCrossRefPubMedCentralGoogle Scholar
  106. Mercer JS, Vohr BR, McGrath MM et al (2006) Delayed cord clamping in very preterm infants reduces the incidence of intraventricular hemorrhage and late-onset sepsis: a randomized, controlled trial. Pediatrics 117:1235–1242PubMedCrossRefPubMedCentralGoogle Scholar
  107. Messerschmidt A, Brugger PC, Boltshauser E et al (2005) Disruption of cerebellar development: potential complication of extreme prematurity. AJNR Am J Neuroradiol 26:1659–1667PubMedGoogle Scholar
  108. Meuwissen ME, Halley DJ, Smit LS et al (2015) The expanding phenotype of COL4A1 and COL4A2 mutations: clinical data on 13 newly identified families and a review of the literature. Genet Med.  https://doi.org/10.1038/gim.2014.210CrossRefPubMedGoogle Scholar
  109. Modi N, Lewis H, Al-Naqeeb N et al (2001) The effects of repeated antenatal glucocorticoid therapy on the brain. Pediatr Res 50:581–585PubMedCrossRefGoogle Scholar
  110. Moody DM, Brown WR, Challa VR et al (1994) Alkaline phosphatase histochemical staining in the study of germinal matrix hemorrhage and brain vascular morphology in a very-low-birth-weight neonate. Pediatr Res 35:424–430PubMedCrossRefGoogle Scholar
  111. Morales WJ, Angel JL, O’Brien WF et al (1988) The use of antenatal vitamin K in the prevention of early neonatal intraventricular hemorrhage. Am J Obstet Gynecol 159:774–779PubMedCrossRefGoogle Scholar
  112. Morita T, Morimoto M, Yamada K et al (2015) Low-grade intraventricular hemorrhage disrupts cerebellar white matter in preterm infants: evidence from diffusion tensor imaging. Neuroradiology 57(5):507–514PubMedCrossRefGoogle Scholar
  113. Murphy BP, Inder TE, Rooks V, Taylor GA et al (2002) Posthaemorrhagic ventricular dilatation in the premature infant: natural history and predictors of outcome. Arch Dis Child Fetal Neonatal Ed 87:F37–F41PubMedCrossRefPubMedCentralGoogle Scholar
  114. Neary E, Okafor I, Al-Awaysheh F et al (2013) Laboratory coagulation parameters in extremely premature infants born earlier than 27 gestational weeks upon admission to a neonatal intensive care unit. Neonatology 104(3):222–227PubMedCrossRefGoogle Scholar
  115. Noori S, McCoy M, Anderson MP et al (2014) Changes in cardiac function and cerebral blood flow in relation to peri/intraventricular hemorrhage in extremely preterm infants. J Pediatr 164(2):264–70.e1-3.  https://doi.org/10.1016/j.jpeds.2013.09.045CrossRefPubMedGoogle Scholar
  116. Northern Neonatal Nursing Initiative Trial Group (1996) Randomised trial of prophylactic early fresh-frozen plasma or gelatin or glucose in preterm babies: outcome at 2 years. Lancet 348:229–232CrossRefGoogle Scholar
  117. Olischar M, Klebermass K, Waldhoer T et al (2007) Background patterns and sleep-wake cycles on amplitude-integrated electroencephalography in preterms younger than 30 weeks gestational age with peri-/intraventricular haemorrhage. Acta Paediatr 96:1743–1750PubMedCrossRefGoogle Scholar
  118. Osborn DA, Evans N, Kluckow M (2003) Hemodynamic and antecedent risk factors of early and late periventricular/intraventricular hemorrhage in premature infants. Pediatrics 112:33–39PubMedCrossRefGoogle Scholar
  119. Palmer KG, Kronsberg SS, Barton BA (2005) Effect of inborn versus outborn delivery on clinical outcomes in ventilated preterm neonates: secondary results from the NEOPAIN trial. J Perinatol 25:270–275PubMedCrossRefGoogle Scholar
  120. Paneth N, Rudelli R, Kazam E, Monte W (1994) Brain damage in the preterm infant, Clinics in developmental medicine no. 131. MacKeith Press, LondonGoogle Scholar
  121. Pape KE, Wigglesworth JS (1979) Haemorrhage, ischaemia and perinatal brain, Clinics in developmental medicine no. 69/70. SIMP/Heinemann, London, pp 133–148Google Scholar
  122. Parodi A, Rossi A, Severino M et al (2015a) Accuracy of ultrasound in assessing cerebellar haemorrhages in very low birthweight babies. Arch Dis Child Fetal Neonatal Ed 100(4):F289–F292PubMedCrossRefGoogle Scholar
  123. Parodi A, Morana G, Severino MS et al (2015b) Low-grade intraventricular hemorrhage: is ultrasound good enough? J Matern Fetal Neonatal Med 28(Suppl 1):2261–2264PubMedCrossRefGoogle Scholar
  124. Patra K, Wilson-Costello D, Taylor HG et al (2006) Grades I-II intraventricular hemorrhage in extremely low birth weight infants: effects on neurodevelopment. J Pediatr 149(2):169–173PubMedCrossRefGoogle Scholar
  125. Payne AH, Hintz SR, Hibbs AM et al (2013) Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network: neurodevelopmental outcomes of extremely low-gestational age neonates with low-grade periventricular-intraventricular hemorrhage. JAMA Pediatr 167:451–459PubMedCrossRefPubMedCentralGoogle Scholar
  126. Persson EK, Hagberg G, Uvebrant P (2006) Disabilities in children with hydrocephalus – a population-based study of children aged between four and twelve years. Neuropediatrics 37:330–336PubMedCrossRefGoogle Scholar
  127. Plaisier A, Raets MM, Ecury-Goossen GM et al (2015) Serial cranial ultrasonography or early MRI for detecting preterm brain injury? Arch Dis Child Fetal Neonatal Ed 100(4):F293–F300PubMedCrossRefGoogle Scholar
  128. Pomerance JJ, Teal JG, Gogolok JF et al (1987) Maternally administered antenatal vitamin K1: effect on neonatal prothrombin activity, partial thromboplastin time, and intraventricular hemorrhage. Obstet Gynecol 70:235–241PubMedGoogle Scholar
  129. Poralla C, Hertfelder H, Oldenburg J et al (2011) Elevated interleukin-6 concentration and alterations of the coagulation system are associated with the development of intraventricular hemorrhage in extremely preterm infants. Neonatology 102(4):270–275CrossRefGoogle Scholar
  130. Poralla C, Traut C, Hertfelder HJ (2012) The coagulation system of extremely preterm infants: influence of perinatal risk factors on coagulation. J Perinatol 32:869–873PubMedCrossRefGoogle Scholar
  131. Rabe H, Reynolds G, Diaz-Rossello J (2008) A systematic review and meta-analysis of a brief delay in clamping the umbilical cord of preterm infants. Neonatology 93:138–144PubMedCrossRefGoogle Scholar
  132. Rademaker KJ, Groenendaal F, Jansen GH et al (1994) Unilateral haemorrhagic parenchymal lesions in the preterm infant: shape, site and prognosis. Acta Paediatr 83:602–628PubMedCrossRefGoogle Scholar
  133. Radic JA, Vincer M, McNeely PD (2015) Outcomes of intraventricular hemorrhage and posthemorrhagic hydrocephalus in a population-based cohort of very preterm infants born to residents of Nova Scotia from 1993 to 2010. J Neurosurg Pediatr 15(6):580–588PubMedCrossRefGoogle Scholar
  134. Roberts D, Dalziel S (2006) Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev 19(3), CD004454Google Scholar
  135. Roberts D, Brown J, Medley N, Dalziel SR (2017) Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev 3:CD004454PubMedGoogle Scholar
  136. Robinson S (2012) Neonatal posthemorrhagic hydrocephalus from prematurity: pathophysiology and current treatment concepts. J Neurosurg Pediatrics 9(3):242–258.  https://doi.org/10.3171/2011.12.PEDS11136CrossRefGoogle Scholar
  137. Rodríguez EM, Guerra MM, Vío K et al (2012) A cell junction pathology of neural stem cells leads to abnormal neurogenesis and hydrocephalus. Biol Res 45(3):231–241.  https://doi.org/10.4067/S0716-97602012000300005CrossRefPubMedGoogle Scholar
  138. Roland EH, Flodmark O, Hill A (1990) Thalamic hemorrhagic with intraventricular hemorrhage in the full term newborn. Pediatrics 85:737–742PubMedGoogle Scholar
  139. Ross G, Boatright S, Auld PA, Nass R (1996) Specific cognitive abilities in 2-year-old children with subependymal and mild intraventricular hemorrhage. Brain Cogn 32(1):1–13PubMedCrossRefGoogle Scholar
  140. Roze E, Kerstjens JM, Maathuis CG et al (2008) Risk factors for adverse outcome in preterm infants with periventricular hemorrhagic infarction. Pediatrics 122:e46–e52PubMedCrossRefGoogle Scholar
  141. Roze E, Van Braeckel KN, van der Veere CN (2009) Functional outcome at school age of preterm infants with periventricular hemorrhagic infarction. Pediatrics 123:1493–1500PubMedCrossRefGoogle Scholar
  142. Roze E, Benders MJ, Kersbergen KJ et al (2015) Neonatal DTI early after birth predicts motor outcome in preterm infants with periventricular hemorrhagic infarction. Pediatr Res 78(3):298–303PubMedCrossRefGoogle Scholar
  143. Salonvaara M, Riikonen P, Kekomäki R et al (2005) Intraventricular haemorrhage in very‐low‐birthweight preterm infants: association with low prothrombin activity at birth. Acta Paediatr 94(6):807–811PubMedCrossRefGoogle Scholar
  144. Sarkar S, Bhagat I, Dechert R et al (2009) Severe intraventricular hemorrhage in preterm infants: comparison of risk factors and short-term neonatal morbidities between grade 3 and grade 4 intraventricular hemorrhage. Am J Perinatol 26:419–424PubMedCrossRefGoogle Scholar
  145. Sävman K, Blennow M, Hagberg H et al (2002) Cytokine response in cerebrospinal fluid from preterm infants with posthaemorrhagic ventricular dilatation. Acta Paediatr 91:1357–1363PubMedCrossRefGoogle Scholar
  146. Schmidt B, Davis P, Moddeman D et al (2001) Trial of indomethacin prophylaxis in preterm investigators. Long-term effects of indomethacin prophylaxis in extremely-low-birth-weight infants. N Eng J Med 344:1966–1972CrossRefGoogle Scholar
  147. Schmitz T, Heep A, Groenendaal F et al (2007) Interleukin-1beta, interleukin-18, and interferon-gamma expression in the cerebrospinal fluid of premature infants with posthemorrhagic hydrocephalus-markers of white matter damage? Pediatr Res 61:722–726PubMedCrossRefGoogle Scholar
  148. Schreiner C, Suter C, Watzka M et al (2014) Genetic variants of the vitamin K dependent coagulation system and intraventricular hemorrhage in preterm infants. BMC Pediatr 14:219PubMedCrossRefPubMedCentralGoogle Scholar
  149. Sherlock RL, Synnes AR, Grunau RE et al (2008) Long term outcome after neonatal intraparenchymal echodensities with porencephaly. Arch Dis Child Fetal Neon Ed 93:F127–F131CrossRefGoogle Scholar
  150. Sirc J, Dempsey EM, Miletin J (2013) Cerebral tissue oxygenation index, cardiac output and superior vena cava flow in infants with birth weight less than 1250 grams in the first 48 hours of life. Early Hum Dev 89:449–452PubMedCrossRefGoogle Scholar
  151. Smit E, Odd D, Whitelaw A (2013) Postnatal phenobarbital for the prevention of intraventricular hemorrhage in preterm infants. Cochrane Database Syst Rev 8, CD001691Google Scholar
  152. Soraisham AS, Singhal N, McMillan DD, Canadian Neonatal Network et al (2009) A multicenter study on the clinical outcome of chorioamnionitis in preterm infants. Am J Obstet Gynecol 372:e1–e6Google Scholar
  153. Soubasi V, Mitsakis K, Sarafidis K et al (2012) Early abnormal amplitude-integrated electroencephalography (aEEG) is associated with adverse short-term outcome in premature infants. Eur J Paediatr Neurol 16(6):625–630PubMedCrossRefGoogle Scholar
  154. Soul JS, Eichenwald E, Walter G et al (2004) CSF removal in infantile posthemorrhagic hydrocephalus results in significant improvement in cerebral hemodynamics. Pediatr Res 55:872–876PubMedCrossRefGoogle Scholar
  155. Soul JS, Hammer PE, Tsuji M et al (2007) Fluctuating pressure-passivity is common in the cerebral circulation of sick premature infants. Pediatr Res 61:467–473PubMedCrossRefGoogle Scholar
  156. Spinillo A, Gardella B, Preti E (2007) Preeclampsia and brain damage among preterm infants: a changed panorama in a 20-year analysis. Am J Perinatol 24:101–106PubMedCrossRefGoogle Scholar
  157. Srinivasan L, Allsop J, Counsell SJ et al (2006) Smaller cerebellar volumes in very preterm infants at term-equivalent age are associated with the presence of supratentorial lesions. AJNR Am J Neuroradiol 27:573–579PubMedGoogle Scholar
  158. Staudt M, Braun C, Gerloff C, Erb M, Grodd W, Krägeloh-Mann I (2006) Developing somatosensory projections bypass periventricular brain lesions. Neurology 67:522–525PubMedCrossRefGoogle Scholar
  159. Steggerda SJ, Leijser LM, Wiggers-de Bruïne FT et al (2009a) Cerebellar injury in preterm infants: incidence and findings on US and MR images. Radiology 252(1):190–199.  https://doi.org/10.1148/radiol.2521081525CrossRefPubMedGoogle Scholar
  160. Steggerda SJ, Leijser LM, Wiggers-de Bruïne FT et al (2009b) Cerebellar injury in preterm infants: incidence and findings on US and MR images. Radiology 252(1):190–199PubMedCrossRefGoogle Scholar
  161. Synnes AR, Macnab YC, Qiu Z et al (2006) Neonatal intensive care unit characteristics affect the incidence of severe intraventricular hemorrhage. Med Care 44(8):754–759PubMedCrossRefGoogle Scholar
  162. Takashima S, Takashi M, Ando Y (1986) Pathogenesis of periventricular white matter haemorrhage in preterm infants. Brain Dev 8:25–30PubMedCrossRefGoogle Scholar
  163. Tam EW, Miller SP, Studholme C et al (2011) Differential effects of intraventricular hemorrhage and white matter injury on preterm cerebellar growth. J Pediatr 158(3):366–371PubMedCrossRefGoogle Scholar
  164. Thorp JA, Jones PG, Clark RH et al (2001) Perinatal factors associated with severe intracranial hemorrhage. Am J Obstet Gynecol 185:859–862PubMedCrossRefGoogle Scholar
  165. Tortora D, Severino M, Malova M, Parodi A, Morana G, Ramenghi LA, Rossi A (2016) Variability of cerebral deep venous system in preterm and term neonates evaluated on MR SWI venography. AJNR Am J Neuroradiol.  https://doi.org/10.3174/ajnr.A4877PubMedCrossRefGoogle Scholar
  166. Tortora D, Severino M, Malova M, Parodi A, Morana G, Sedlacik J, Govaert P, Volpe JJ, Rossi A, Ramenghi LA (2018) Differences in subependymal vein anatomy may predispose preterm infants to GMH-IVH. Arch Dis Child Fetal Neonatal Ed 103(1):F59–F65.  https://doi.org/10.1136/archdischild-2017-312710PubMedCrossRefGoogle Scholar
  167. Tsuji M, Saul JP, du Plessis A et al (2000) Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants. Pediatrics 106(4):625–632PubMedCrossRefGoogle Scholar
  168. Uchil D, Arulkumaran S (2003) Neonatal subgaleal hemorrhage and its relationship to delivery by vacuum extraction. Obstet Gynecol Surv 58:687–693PubMedCrossRefGoogle Scholar
  169. van Alfen-van der Velden AA, Hopman JC, Klaessens JH, Feuth T et al (2007) Cerebral hemodynamics and oxygenation after serial CSF drainage in infants with PHVD. Brain Dev 29:623–629CrossRefGoogle Scholar
  170. van de Bor M, Verloove-Vanhorick SP, Baerts W, Brand R, Ruys JH (1984) Outcome of periventricular-intraventricular hemorrhage at 2 years of age in 484 very preterm infants admitted to 6 neonatal intensive care units in The Netherlands. Neuropediatrics 19(4):183–185Google Scholar
  171. Van Der Lugt NM, Kamphuis MM, Paridaans NP et al (2015) Neonatal outcome in alloimmune thrombocytopenia after maternal treatment with intravenous immunoglobulin. Blood Transfus 13:66–71Google Scholar
  172. Vasileiadis GT, Gelman N, Han VK et al (2004) Uncomplicated intraventricular hemorrhage is followed by reduced cortical volume at near-term age. Pediatrics 114:e367–e372PubMedCrossRefGoogle Scholar
  173. Vavasseur C, Slevin M, Donoghue V, Murphy JF (2007) Effect of low grade intraventricular hemorrhage on developmental outcome of preterm infants. J Pediatr 151(2), e6PubMedCrossRefGoogle Scholar
  174. Veldman A, Josef J, Fischer D et al (2006) A prospective pilot study of prophylactic treatment of preterm neonates with recombinant activated factor VII during the first 72 hours of life. Pediatr Crit Care Med 7(1):34–39PubMedCrossRefGoogle Scholar
  175. Ventriculomegaly Trial Group (1994) Randomised trial of early tapping in neonatal posthaemorrhagic ventricular dilatation: results at 30 months. Arch Dis Child 70:F129–F136CrossRefGoogle Scholar
  176. Vesoulis ZA, Inder TE, Woodward LJ et al (2014) Early electrographic seizures, brain injury, and neurodevelopmental risk in the very preterm infant. Pediatr Res 75(4):564–569PubMedCrossRefGoogle Scholar
  177. Vohr BR, Garcia-Coll C, Flanagan P, Oh W (1992) Effects of intraventricular hemorrhage and socioeconomic status on perceptual, cognitive, and neurologic status of low birth weight infants at 5 years of age. J Pediatr 121:280–285PubMedCrossRefGoogle Scholar
  178. Vohr BR, Allan W, Katz KH et al (2014) Adolescents born prematurely with isolated grade 2 haemorrhage in the early 1990s face increased risks of learning challenges. Acta Paediatr 103(10):1066–1071PubMedCrossRefGoogle Scholar
  179. Volpe JJ (1989) Intraventricular hemorrhage in the premature infant-current concepts. Part I. Ann Neurol 25:3–11PubMedCrossRefGoogle Scholar
  180. Volpe JJ (2008a) Neonatal neurology, 4th edn. Saunders, PhiladelphiaGoogle Scholar
  181. Volpe JJ (2008b) Intracranial hemorrhage: subdural, primary subarachnoid, intracerebellar, intraventricular (term infant), and miscellaneous. In: Neurology of the newborn. Saunders, Philadelphia, pp 483–516Google Scholar
  182. Volpe JJ (2009) Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol 8(1):110–124.  https://doi.org/10.1016/S1474-4422(08)70294-1CrossRefPubMedPubMedCentralGoogle Scholar
  183. Volpe JJ, Kinney HC, Jensen FE, Rosenberg PA (2011) The developing oligodendrocyte: key cellular target in brain injury in the premature infant. Int J Dev Neurosci 29(4):423–440.  https://doi.org/10.1016/j.ijdevneu.2011.02.012CrossRefPubMedPubMedCentralGoogle Scholar
  184. Waltl H, Födisch HJ, Kurz R et al (1973) Intracranial haemorrhage in low-birth-weight infants and prophylactic administration of coagulation-factor concentrate. Lancet 1:1284–1286PubMedCrossRefGoogle Scholar
  185. Wells JT, Ment LR (1995) Prevention of intraventricular haemorrhage in preterm infants. Early Hum Dev 42:209–233PubMedCrossRefGoogle Scholar
  186. Whitelaw A, Aquilina K (2012) Management of posthaemorrhagic ventricular dilatation. Arch Dis Child Fetal Neonatal Ed 97:F229–F233PubMedCrossRefGoogle Scholar
  187. Whitelaw A, Pople I, Cherian S et al (2003) Phase 1 trial of prevention of hydrocephalus after intraventricular hemorrhage in newborn infants by drainage, irrigation and fibrinolytic therapy. Pediatrics 111:759–765PubMedCrossRefGoogle Scholar
  188. Whitelaw A, Evans D, Carter M et al (2007) Randomized clinical trial of prevention of hydrocephalus after intraventricular hemorrhage in preterm infants: brain-washing versus tapping fluid. Pediatrics 119:e1071–e1078PubMedCrossRefGoogle Scholar
  189. Whitelaw A, Jary S, Kmita G et al (2010) Randomized trial of drainage, irrigation and fibrinolytic therapy for premature infants with posthemorrhagic ventricular dilatation: developmental outcome at 2 years. Pediatrics 125(4):e852–e858PubMedCrossRefGoogle Scholar
  190. Wu YW, Hamrick SEG, Miller SP et al (2003) Intraventricular hemorrhage in term neonates caused by sinovenous thrombosis. Ann Neurol 54:123–126PubMedCrossRefGoogle Scholar
  191. Yanowitz TD, Jordan JA, Gilmour CH et al (2002) Hemodynamic disturbances in premature infants born after chorioamnionitis: association with cord blood cytokine concentrations. Pediatr Res 51:310–316PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of NeonatologyWilhelmina Children’s Hospital, University Medical CenterUtrechtThe Netherlands
  2. 2.Department of NeonatologySouthmead Hospital, North Bristol NHS TrustBristolUK

Personalised recommendations