Advertisement

Neonatology pp 2143-2164 | Cite as

Biochemical Basis of Hypoxic-Ischemic Encephalopathy

  • Maria Delivoria-Papadopoulos
  • Panagiotis Kratimenos
  • Endla K. Anday
Reference work entry

Abstract

Hypoxic-ischemic encephalopathy (HIE), the most common cause of neurologic disease during the perinatal period, is associated with a high mortality and morbidity rate and also has long-term consequences like cerebral palsy, mental retardation, and seizures. Perinatal HIE is caused by processes that alter the cerebral blood flow (CBF) in the fetus and newborn compromising the supply of oxygen to the brain. They may develop antepartum (20%), intrapartum (30%), antepartum and intrapartum (35%), or postpartum (10%). Acute or long-term consequences of HIE are related either to necrosis or to apoptosis of neuronal cells. Cell necrosis will lead to generalized disruption of internal homeostasis and eventually to the lysis of the cells, which give rise to an inflammatory response with the release of oxygen free radicals and activation of the microglial cells. Apoptosis is programmed cell death, not associated with the lysis of the plasma membrane and inflammation, which can be triggered by hypoxia. It is crucial to restore any failures in the respiratory and circulatory systems, in order to prevent neuronal cell death. However, neonatologists should also be aware of the hazards of medically induced hyperoxia (high FIO2) because this condition may increase the production of oxygen free radicals thus worsening the neuronal insult. Elucidating basic cellular mechanisms in response to hypoxia of the developing brain will enable the development of novel strategies for preventing or attenuating the deleterious effects of hypoxia in the human newborn.

References

  1. Aizenman E, Lipton SA, Loring RH (1989) Selective modulation of NMDA responses by reduction and oxidation. Neuron 2:1257–1263CrossRefPubMedGoogle Scholar
  2. Angeles DM, Wycliffe N, Michelson D et al (2005) Use of opioids in asphyxiated term neonates: effects of neuroimaging and clinical outcome. Pediatr Res 57:873–878CrossRefPubMedGoogle Scholar
  3. Angeles DM, Ashwal S, Wycliffe ND et al (2007) Relationship between opioid therapy, tissue damaging procedures, and brain metabolites as measured by proton MRS in asphyxiated term neonates. Pediatr Res 60:614–621CrossRefGoogle Scholar
  4. Aoki C, Fenstemaker S, Lubin M et al (1993) Nitric oxide synthase in the visual cortex of monocular monkeys as revealed by light and electron microscopic immunocytochemistry. Brain Res 620:97–113CrossRefPubMedGoogle Scholar
  5. Aoki C, Rhee J, Lubin M et al (1997) NMDA-R1 subunit of the cerebral cortex co-localizes with neuronal nitric oxide synthase at pre and postsynaptic sites and in spines. Brain Res 750:25–140CrossRefPubMedGoogle Scholar
  6. Ashraf QM, Mishra OP, Delivoria-Papadopoulos M (2007) Mechanisms of expression of apoptotic protease activating factor-1 (Apaf-1) in nuclear, mitochondrial and cytosolic fractions of the cerebral cortex of newborn piglets. Neurosci Lett 415:253–258CrossRefPubMedPubMedCentralGoogle Scholar
  7. Azzopardi D, Robertson NJ, Cowan FM et al (2000) Pilot study of treatment with whole body hypothermia for neonatal encephalopathy. Pediatrics 106:684–694CrossRefPubMedGoogle Scholar
  8. Azzopardi D, Strohm B, Marlow N, Brocklehurst P, Deierl A, Eddama O et al (2014) Effects of hypothermia for perinatal asphyxia on childhood outcomes. N Engl J Med 371:140–149.  https://doi.org/10.1056/NEJMoa1315788CrossRefPubMedGoogle Scholar
  9. Bashir ZI, Alford S, Davies SN et al (1991) Long-term potentiation of NMDA receptor-mediated synaptic transmission in the hippocampus. Nature 349:156–158CrossRefPubMedGoogle Scholar
  10. Battin MR, Dezoete JA, Gunn TR et al (2001) Neurodevelopmental outcome of infants treated with head cooling and mild hypothermia after perinatal asphyxia. Pediatrics 107:480–484CrossRefPubMedGoogle Scholar
  11. Battin MR, Penrice J, Gunn TR, Gunn AJ (2003) Treatment of term infants with head cooling and systematic hypothermia (35.0 degrees and 34.5 degrees C) after perinatal asphyxia. Pediatrics 111:244–251CrossRefPubMedGoogle Scholar
  12. Baum RM (1984) Superoxide theory of oxygen toxicity is center of heated debate. Chem Eng News 9:20–28CrossRefGoogle Scholar
  13. Beckman JS (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A 87:1620–1624CrossRefPubMedPubMedCentralGoogle Scholar
  14. Beckman JS (1991) The double-edged role of nitric oxide in brain function and superoxide-mediated injury. J Dev Physiol 15:53–59PubMedGoogle Scholar
  15. Bender MJ, Bos AF, Rademaker CM et al (2006) Early postnatal allopurinol does not improve short term outcome after severe birth asphyxia. Arch Dis Child Fetal Neonatal Ed 91:F163–F165CrossRefGoogle Scholar
  16. Benichou J, Zupan V, Fernandez H et al (1997) Tocolytic magnesium sulphate and pediatric mortality. Lancet 351:290–291CrossRefGoogle Scholar
  17. Bhat GK, Mahesh VB, Lamar CA et al (1997) Histochemical localization of nitric oxide neurons in the hypothalamus: association with gonadotropin-releasing hormone neurons and co-localization with N-methyl-D-aspartate receptors. Neuroendocrinol Lett 62:187–197CrossRefGoogle Scholar
  18. Bredt DS, Ferris CD, Snyder SH (1992) Nitric oxide synthase regulatory sites. Phosphorylation by cyclic AMP-dependent protein kinase, protein kinase C, and calcium/calmodulin protein kinase, identification of flavin and calmodulin sites. J Biol Chem 267:10976–10981PubMedGoogle Scholar
  19. Cazevielle C (1993) Superoxide and nitric oxide cooperation in hypoxia/reoxygenation-induced neuron injury. Free Radic Biol Med 14:359–395CrossRefGoogle Scholar
  20. Chaudhari T, McGuire W (2008) Allopurinol for preventing mortality and morbidity in newborn infants with suspected hypoxic-ischemic encephalopathy. Cochrane Database Syst Rev 2:CD006817Google Scholar
  21. Chawla S, Bading H (2001) CREB/CBP and SRE-interacting transcriptional regulators are fast on-off switches: duration of calcium transients specifies the magnitude of transcriptional responses. J Neurochem 79:849–858CrossRefPubMedGoogle Scholar
  22. Chein S, Oeltgen PR, Diana JN et al (1994) Extension of tissue survival time in multiorgan block preparation with a delta DADLE (D-Ala2, D-leu5)-enkephalin). J Thorac Cardiovasc Surg 107:964–967Google Scholar
  23. Chen J, Zhu RL, Nakayama M et al (1996) Expression of the apoptosis- effector gene, Bax, is up-regulated in vulnerable hippocampal CA1 neurons following global ischemia. J Neurochem 67:64–71CrossRefPubMedGoogle Scholar
  24. Chiang MC, Ashraf QM, Ara J et al (2007) Mechanism of caspase-3 activation during hypoxia in the cerebral cortex of newborn piglets. Neurosci Lett 421:67–71CrossRefPubMedGoogle Scholar
  25. Chiang MC, Ashraf QM, Mishra OP, Delivoria-Papadopoulos M (2008) Mechanism of DNA fragmentation during hypoxia in the cerebral cortex of newborn piglets. Neurochem Res 33:1232–1237CrossRefPubMedGoogle Scholar
  26. Choi DW (1990) Cerebral hypoxia: some new approaches and unanswered questions. J Neurosci 10:2493–2501CrossRefPubMedGoogle Scholar
  27. Christopherson KS, Hillier BJ, Lim WAS et al (1999) PSD-95 assembles a ternary complex with the N-Methyl-D-Aspartic acid receptor and bivalent neuronal NO synthase PDX domain. J Boi Chem 274:27467–27473CrossRefGoogle Scholar
  28. Clancy RR, McGaurn SA, Goin JE et al (2001) Allopurinol neurocardiac protection trial in infants undergoing heart surgery using deep hypothermic circulatory arrest. Pediatrics 108:61–70CrossRefPubMedGoogle Scholar
  29. Coimbria C, Wielock T (1994) Moderate hypothermia mitigates neuronal damage in the rat brain when initiated several hours following transient cerebral ischemia. Acta Neuropathol (Berlin) 87:325–331CrossRefGoogle Scholar
  30. Collingridge G (1987) Synaptic plasticity. The role of NMDA receptors in learning and memory. Nature 330:604–605CrossRefPubMedGoogle Scholar
  31. Columbano A (1995) Cell death: current difficulties in discriminating apoptosis and necrosis in the context of pathological processes in vivo. J Cell Biochem 58:181–190CrossRefPubMedGoogle Scholar
  32. Davidson JO, Wassink G, van den Heuij LG et al (2015) Therapeutic hypothermia for neonatal hypoxic-ischemic encephalopathy – where to from here? Front Neurol 14:6–198Google Scholar
  33. Dawson VL (1991) Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Natl Acad Sci U S A 88:6368–6371CrossRefPubMedPubMedCentralGoogle Scholar
  34. Dawson DA (1994a) Nitric oxide and focal cerebral ischemia: multiplicity of actions and diverse outcome. Cerebrovasc Brain Metab 64:299–324Google Scholar
  35. Dawson TM (1994b) Gases as biological messengers: nitric oxide and carbon monoxide in the brain. J Neurosci 14:5147–5159CrossRefPubMedGoogle Scholar
  36. Dawson TM, Steiner JP, Dawson VL et al (1993) Immunosuppressant FK506 enhances phosphorylation of nitric oxide synthase and protects against glutamate neurotoxicity. Proc Natl Acad Sci U S A 90:9808–9812CrossRefPubMedPubMedCentralGoogle Scholar
  37. Debillon T, Daoud P, Durand P et al (2003) Whole-body cooling after perinatal asphyxia: a study in term neonates. Dev Med Child Neurol 45:17–23CrossRefPubMedGoogle Scholar
  38. Delivoria-Papadopoulos M, Mishra OP (1998) Mechanisms of cerebral injury in perinatal asphyxia and strategies for prevention. J Pediatr 132:S30–S34CrossRefPubMedGoogle Scholar
  39. Delivoria-Papadopoulos M, Akhter W, Mishra OP (2003) Hypoxia-induced Ca2+ -influx in cerebral cortical neuronal nuclei of newborn piglets. Neurosci Lett 342:119–123CrossRefPubMedGoogle Scholar
  40. Delivoria-Papadopoulos M, Ashraf QM, Ara J, Mishra OP (2008) Nuclear mechanisms of hypoxic cerebral injury in the newborn: the role of caspases. Semin Perinatol 32:334–343CrossRefPubMedGoogle Scholar
  41. Delivoria-Papadopoulos M, Ashraf QM, Mishra OP (2001a) Brain tissue energy dependence of CaM kinase IV cascade activation during hypoxia in the cerebral cortex of newborn piglets. Neurosci Lett 491(2):113–117CrossRefGoogle Scholar
  42. Delivoria-Papadopoulos M, Ashraf QM, Mishra OP (2001b) Mechanism of CaM kinase IV activation during hypoxia in neuronal nuclei of the cerebral cortex of newborn piglets: the role of Src kinase. Neurochem Res 36(8):1512–1519CrossRefGoogle Scholar
  43. Dolmetsch RE, Lewis RS, Goodnow CC (1997) Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386:855–858CrossRefPubMedGoogle Scholar
  44. Dolmetsch RE, Pajvani U, Fife K et al (2001) Signaling to the nucleus by an L-type calcium channel-calmodulin complex through the MAP kinase pathway. Science 294:333–339CrossRefPubMedGoogle Scholar
  45. Doyle LW, Crowther CA, Middleton P et al (2009) Magnesium bias sulphate for women at risk of preterm birth for neuroprotection of the fetus. Cochrane Database Syst Rev 1:CD004661Google Scholar
  46. Dragunow M, Beiharz E, Sirimanne E et al (1994) Immediately early gene protein expression in neurons undergoing delayed death, but not necrosis following hypoxic-ischemic injury to the young rat brain. Brain Res Mol Brain Res 25:1933CrossRefGoogle Scholar
  47. Eicher DJ, Wagner CL, Katikaneni LP et al (2005) Moderate hypothermia in neonatal encephalopathy: safety outcomes. Pediatr Neurol 32:18–24CrossRefPubMedGoogle Scholar
  48. Faraci FM (1991) Role of endothelium-derived relaxing factor in cerebral circulation: large arteries vs. microcirculation. Am J Physiol 261:H1038–H1042PubMedGoogle Scholar
  49. Ferrer I, Tortosa A, Macaya A et al (1994) Evidence of nuclear DNA fragmentation following hypoxia-ischemia in the infant rat brain, and transient forebrain ischemia in the adult gerbil. Brain Pathol 4:115–122CrossRefPubMedGoogle Scholar
  50. Fields RD, Esthete F, Stevens B et al (1997) Action potential-dependent regulation of gene expression: temporal specificity in Ca2+, cAMP-responsive element binding proteins, and mitogen-activated protein kinase signaling. J Neurosci 17:7252–7266CrossRefPubMedGoogle Scholar
  51. Fritz K, Delivoria-Papadopoulos M (2006) Mechanisms of injury to the newborn brain. Clin Perinatol 33:573–591CrossRefPubMedGoogle Scholar
  52. Fritz KI, Groenenedaal F, McGowan JE et al (1996) Effects of 3- (2-carboxy-piperzine-4-yl) propyl-1-phosphonic acid (CPP) on NMDA receptor binding characteristics and brain cell membrane function during cerebral hypoxia in newborn piglets. Brain Res 729:66–74PubMedGoogle Scholar
  53. Ghosh A, Greenberg ME (1995) Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science 268:239–247CrossRefPubMedGoogle Scholar
  54. Gillardon F, Lenz C, Waschle KF (1996) Altered expression of Bcl- 2, Bcl-X, Bax and c-Fos colocalizes with DNA fragmentation and ischemic cell damage following middle cerebral artery occlusion in rats. Brain Res Mol Brain Res 40:254–260CrossRefPubMedGoogle Scholar
  55. Gluckman PD, Wyatt JS, Azzopardi D et al (2005) Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicenter randomized trial. Lancet 365:663–670CrossRefPubMedGoogle Scholar
  56. Gow AJ, Duran D, Malcom S et al (1996) Effect of peroxynitrite-induced protein modification on tyrosine phosphorylation and degradation. FEBS Lett 385:63–66CrossRefPubMedGoogle Scholar
  57. Gunn AJ, Gunn TR (1998) The ‘pharmacology’ of neuronal rescue with cerebral hypothermia. Early Hum Dev 53:19–35CrossRefPubMedGoogle Scholar
  58. Gunn AJ, Gluckman PD, Gunn TR (1998) Selective head cooling in newborn infants after perinatal asphyxia: a safety study. Pediatrics 102:885–892CrossRefPubMedGoogle Scholar
  59. Gunn AJ, Bennet L, Gunning MI et al (1999) Cerebral hypothermia is not neuroprotective when started after postischemic seizures in fetal sheep. Pediatr Res 46:274–280CrossRefPubMedGoogle Scholar
  60. Gunn AJ, Battin M, Gluckman PD et al (2005) Therapeutic hypothermia: from lab to NICU. J Perinat Med 33:340–346CrossRefPubMedGoogle Scholar
  61. Hamada Y (1994) Inhibitors of nitric oxide synthesis reduce hypoxic-ischemic brain damage in the neonatal rat. Pediatr Res 35:10–14CrossRefPubMedGoogle Scholar
  62. Hameed A, Olsen KJ, Lee MK et al (1989) Cytolysis by Ca-permeable transmembrane channels: pore formation causes extensive DNA degradation and cell lysis. J Exp Med 169:765–777CrossRefPubMedGoogle Scholar
  63. Hardingham GE, Bading H (1998) Nuclear calcium: a key regulator of gene expression. Biometals 11:345–358CrossRefPubMedGoogle Scholar
  64. Hardingham GE, Chawla S, Cruzalegui FH, Bading H (1999) Control of recruitment and transcription-activating function of CBP determines gene regulation by NMDA receptors and L-type calcium channels. Neuron 22:789–798CrossRefPubMedGoogle Scholar
  65. Higgins RD, Rahu TN, Perlman J et al (2006) Hypothermia and perinatal asphyxia: executive summary of the national institute of child health and human development workshop. J Pediatr 148:170–175CrossRefPubMedGoogle Scholar
  66. Hill A, Volpe J (1999) Hypoxic-ischemic cerebral injury in the newborn. In: Swaiman KF, Ashwal S (eds) Pediatric neurology, principles and practice. Mosby, St. Louis, pp 191–204Google Scholar
  67. Hoeger H, Engidawork E, Stolzlechner D et al (2006) Long-term effect of moderate and profound hypothermia on morphology, neurological, cognitive and behavioural functions in a rat model of perinatal asphyxia. Amino Acids 31:385–396CrossRefPubMedGoogle Scholar
  68. Hoffman DJ, Marro PJ, McGowan JE et al (1994a) Protective effect of MgSO4 infusion on NMDA receptor binding characteristics during cerebral cortical hypoxia in newborn piglets. Brain Res 644:144–149CrossRefPubMedGoogle Scholar
  69. Hoffman DJ, McGowan JE, Marro PJ et al (1994b) Hypoxia-induced modification of the N-methyl-D-aspartate (NMDA) receptor in the brain of newborn piglets. Neurosci Lett 167:156–160CrossRefPubMedGoogle Scholar
  70. Huang Z (1994) Effects of cerebral ischemia in mice deficient neuronal nitric oxide. Science 265:1883–1885CrossRefPubMedGoogle Scholar
  71. Ishida R, Akiyoshi H, Takahashi T (1974) Isolation and purification of calcium and magnesium dependent endonuclease from rat liver nuclei. Biochem Biophys Res Commun 56:703–710CrossRefPubMedGoogle Scholar
  72. Jacobs SE, Berg M, Hunt R, Tarnow-Mordi WO, Inder TE, Davis PG (2013) Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst Rev 1:CD003311.10.1002/14651858.CD003311.pub3Google Scholar
  73. Johnston MV (1995) Neurotransmitters and vulnerability of the developing brain. Brain Dev 17:301–306CrossRefPubMedGoogle Scholar
  74. Kapetanakis A, Azzopardi D, Wyatt J et al (2008) Therapeutic hypothermia for neonatal encephalopathy: a UK survey of opinion, practice and neuron-investigation at the end of 2007. Acta Paediatr 98:631–635CrossRefPubMedGoogle Scholar
  75. Kiedrowski I, Costa E, Wroblewski JT (1992) Glutamate receptor agonist stimulate nitric oxide synthase in primary cultures of cerebellar granule cells. J Neuroch 58:335–341CrossRefGoogle Scholar
  76. Kitada S, Krajewski S, Miyashita T (1996) Gamma-radiation induces upregulation of Bax protein and apoptosis in radiosensitive cells in vivo. Oncogene 12:187–192PubMedGoogle Scholar
  77. Kratimenos P, Koutroulis I, Marconi D et al (2014) Multi-targeted molecular therapeutic approach in aggressive neuroblastoma: the effect of Focal Adhesion Kinase–Src–Paxillin system. Expert Opin Ther Targets 18(12):1395–1406PubMedGoogle Scholar
  78. Kratimenos P, Koutroulis I, Agarwal B, Theocharis S, Delivoria-Papadopoulos M (2017) Effect of concurrent Src kinase inhibition with short-duration hypothermia on Ca2+/calmodulin kinase IV activity and neuropathology after hypoxia-ischemia in the newborn swine brain. Sci Rep 7(1):16664.  https://doi.org/10.1038/s41598-017-16983-1
  79. Kratimenos P, Koutroulis I, Jain A, Malaeb S, Delivoria-Papadopoulos M (2018) Effect of Src kinase inhibition on cytochrome c, Smac/DIABLO and apoptosis inducing factor (AIF) following cerebral hypoxia-ischemia in newborn piglets. Neonatology 113(1):37–43.  https://doi.org/10.1159/000480067
  80. Kurinczuk JJ, White-Koning M, Badawi N (2010) Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy. Early Hum Dev 86(6):329–338CrossRefPubMedGoogle Scholar
  81. Lawn JE, Cousens S, Zupan J (2005) 4 million neonatal deaths: when? Where? Why? Lancet 365(9462):891–900CrossRefPubMedGoogle Scholar
  82. Lee J, Kim MS, Park C et al (2004) Morphine prevents glutamate-induced death of primary rat neonatal astrocytes through modulation of intracellular redox. Immunopharmacol Immunotoxicol 26:17–28CrossRefPubMedGoogle Scholar
  83. Legido A (1994) Perinatal hypoxic-ischemic encephalopathy: current advances in diagnosis and treatment. Int Pediatr 9:114–136Google Scholar
  84. Legido A, Katsetos CD, Mishra OP et al (2001) Perinatal hypoxia-ischemia encephalopathy: current and future treatments. Int Pediatr 15:143–151Google Scholar
  85. Lerea L, McNamara JO (1993) Ionotropic glutamate receptor subtypes activate c-fos transcription by distinct calcium-requiring intracellular signaling pathways. Neuron 10:31–41CrossRefPubMedGoogle Scholar
  86. Levene MI, Evans DJ, Mason S et al (1999) An international network for evaluation neuroprotective therapy after severe birth asphyxia. Sem Perinatol 23:226–233CrossRefGoogle Scholar
  87. Lim YJ, Zheng S, Zuo Z (2004) Morphine preconditions Purkinje cells against cell death under in vitro simulated ischemia- reperfusion conditions. Anesthesiology 100:562–568CrossRefPubMedGoogle Scholar
  88. Linnik MD, Zobirst RH, Hatfield MD (1993) Evidence supporting a role for programmed cell death in focal cerebral ischemia in rats. Strokes 24:2002–2008CrossRefGoogle Scholar
  89. Lipton S (1999) Redox sensitivity of NMDA receptor. Meth Mol Biol 128:121–130Google Scholar
  90. Maro PJ, Hoffman D, Schneiderman R et al (1998) Effect of allopurinol on NMDA receptor modification following recurrent asphyxia in newborn piglets. Brain Res 787:71–77CrossRefGoogle Scholar
  91. Marro PJ, McGowan JE, Razdan B et al (1994) Effect of allopurinol on uric acid levels and brain cell membrane Na+, K+-ATPase activity during hypoxia in newborn piglets. Brain Res 650:9–15CrossRefPubMedGoogle Scholar
  92. Mayer ML, Westbrook GL, Guthrie PB (1984) Voltage-dependent block by Mg++ of NMDA responses in spinal cord neurons. Nature 309:261–263CrossRefPubMedGoogle Scholar
  93. Mayfield KP, D’Alecy LG (1992) Role of endogenous opioid peptides in the acute adaptation to hypoxia. Brain Res 582:226–231CrossRefPubMedGoogle Scholar
  94. Mayfield KP, D’Alecy LG (1994) Delta-1 opioid agonist acutely increases hypoxic tolerance. J Pharmacol Exp Ther 268:683–688PubMedGoogle Scholar
  95. Miller JA (1971) New approaches to preventing brain damage during asphyxia. Am J Obstet Gynecol 110:125–132CrossRefGoogle Scholar
  96. Mishra OP, Delivoria-Papadopoulos M (1992) NMDA receptor modification of the fetal guinea pig brain during hypoxia. Neurochem Res 17:1211–1216CrossRefPubMedGoogle Scholar
  97. Mishra OP, Delivoria-Papadopoulos M (1999) Cellular mechanisms of hypoxic injury in the developing brain. Brain Res Bull 48:233–238CrossRefPubMedGoogle Scholar
  98. Mishra OP, Delivoria-Papadopoulos M (2000) Hypoxia-induced generation of nitric oxide free radicals in cerebral cortex of newborn guinea pigs. Neurochem Res 25:1559–1565CrossRefPubMedGoogle Scholar
  99. Mishra OP, Delivoria-Papadopoulos M (2001) Effect of graded hypoxia on high-affinity Ca2+-ATPase activity in cortical neuronal nuclei of newborn piglets. Neurochem Res 26:1335–1341CrossRefPubMedGoogle Scholar
  100. Mishra OP, Delivoria-Papadopoulos M (2002) Nitric oxide-mediated Ca++-influx in neuronal nuclei and cortical synaptosomes of normoxic and hypoxic newborn piglets. Neurosci Lett 318:93–97CrossRefPubMedGoogle Scholar
  101. Mishra OP, Delivoria-Papadopoulos M (2006) Effect of neuronal nitric oxide synthase inhibition on caspase-9 activity during hypoxia in the cerebral cortex of newborn piglets. Neurosci Lett 401:81–85CrossRefPubMedGoogle Scholar
  102. Mishra OP, Delivoria-Papadopoulos M (2010) Mechanism of tyrosine phosphorylation of procaspase-9 and Apaf-1 in cytosolic fractions of the cerebral cortex of newborn piglets during hypoxia. Neurosci Lett 480:35–39CrossRefPubMedPubMedCentralGoogle Scholar
  103. Mishra OP, Fritz KI, Delivoria-Papadopoulos M (2001) NMDA receptor and neonatal hypoxic brain injury. Ment Retard Dev Disabil Res Rev 7:249–253CrossRefPubMedGoogle Scholar
  104. Mittendorf R, Covert R, Boman J et al (1997) Is tocolytic magnesium sulphate associated with increased total pediatric mortality? Lancet 350:1517–1519CrossRefPubMedGoogle Scholar
  105. Monaghan DT, Olvenman HJ, Nguyen L et al (1988) Two classes of N-methyl-D-aspartate recognition sites: differential distribution and differential regulation by glycine. Proc Natl Acad Sci U S A 85:9836–9840CrossRefPubMedPubMedCentralGoogle Scholar
  106. Monaghan DT, Bridges RJ, Cotman CW (1989) The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. Annu Rev Pharmacol Toxicol 29:365–402CrossRefPubMedGoogle Scholar
  107. Moriette G, Barrat J, Truffert P et al (2008) Effect of magnesium sulphate on mortality and neurologic morbidity of the very preterm newborn (of less than 33 weeks) with two-year neurological outcome: results of the prospective PREMAG trial. Gynecol Obstet Fertil 36:278–288CrossRefGoogle Scholar
  108. Nelson KB, Grether JK (1995) Can magnesium sulphate reduce the risk of cerebral palsy in very low birth weight infants? Pediatrics 95:263–269PubMedGoogle Scholar
  109. Nowak L, Bregetovski P, Ascher P et al (1984) Magnesium gates glutamate-activated channels in mouse central neurons. Nature 307:462–465CrossRefPubMedGoogle Scholar
  110. Nowicki JP (1991) Nitric oxide mediates neuronal death after focal cerebral ischemia in the mouse. Eur J Pharmacol 204:339–340CrossRefPubMedGoogle Scholar
  111. Numagami Y (1997) Lipid free radical generation and brain cell membrane alteration following nitric oxide synthase inhibition during cerebral hypoxia in the newborn piglet. J Neurochem 69:1542–1547CrossRefPubMedGoogle Scholar
  112. Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74:609–619CrossRefPubMedGoogle Scholar
  113. Palmer C, Roberts RL (1991) Reduction of perinatal brain damage with oxypurinol treatment after hypoxic-ischemic injury. Pediatr Res 29:362–368CrossRefGoogle Scholar
  114. Palmer C, Vanucci RC, Towfighi J (1990) Reduction of perinatal hypoxic-ischemic brain damage with allopurinol. Res Pediatr 27:332–336CrossRefGoogle Scholar
  115. Parikh NA, Lasky RE, Garza CN et al (2009) Volumetric and anatomical MRI hypoxic-ischemic encephalopathy: relationship to hypothermia therapy and neurosensory impairments. J Perinatol 29:143–149CrossRefPubMedGoogle Scholar
  116. Radi R (1991) Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys 288:481–487CrossRefPubMedGoogle Scholar
  117. Raichle ME (1983) The pathophysiology of brain ischemia. Ann Neurol 13:2–10CrossRefPubMedGoogle Scholar
  118. Ravishankar S, Ashraf QM, Mishra OP et al (2001) Expression of Bax and Bcl-2 proteins during hypoxia in cerebral cortical neuronal nuclei of newborn piglets: effect of administration of magnesium sulfate. Brain Res 901:23–29CrossRefPubMedGoogle Scholar
  119. Reed JC (1996) Mechanisms of Bcl-2 family protein function and dysfunction in health and disease. Behring Inst Mitt 97:72–100Google Scholar
  120. Rosenbaum DM, Michaelson M, Batter DK et al (1994) Evidence for hypoxia induced programmed cell death of cultured neurons. Ann Neurol 25:19–33Google Scholar
  121. Rothman SM, Olney JW (1986) Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann Neurol 19:105–111CrossRefPubMedGoogle Scholar
  122. Rouse D, Hirtz DG, Thom E et al (2008) A randomized controlled trial of magnesium sulfate for the prevention of cerebral palsy. N Engl J Med 359:895–905CrossRefPubMedPubMedCentralGoogle Scholar
  123. Russell GA, Cooke RW (1995) Randomized controlled trial of allopurinol prophylaxis in very preterm infants. Arch Dis Child Fetal Neonatal Ed 73:F27–F31CrossRefPubMedPubMedCentralGoogle Scholar
  124. Sahni R, Sanocka UM (2008) Hypothermia for hypoxic-ischemic encephalopathy. Clin Perinatol 35:717–734CrossRefPubMedGoogle Scholar
  125. Sawyer DT (1981) How super is superoxide? Acc Chem Res 14:393–400CrossRefGoogle Scholar
  126. Shankaran S, Laptook A, Wright LL et al (2002) Whole-body hypothermia for neonatal encephalopathy: animal observations as a basis for randomized, controlled pilot study in term infants. Pediatrics 110:377–385CrossRefPubMedGoogle Scholar
  127. Shankaran S, Laptook AR, Ehrenkranz RA et al (2005) Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N Engl J Med 353:1574–1584CrossRefPubMedGoogle Scholar
  128. Shankaran S, Pappas A, McDonald SA, Vohr BR, Hintz SR, Yolton K et al (2012) Childhood outcomes after hypothermia for neonatal encephalopathy. N Engl J Med 366:2085–2092.  https://doi.org/10.1056/NEJMoa1112066CrossRefPubMedPubMedCentralGoogle Scholar
  129. Tacconi S, Ratti E, Marien MR et al (1993) Inhibition of (3H)- (+)-MK-801 binding to rat brain sections by CPP and 7-chlorokynurenic acid: an autoradiographic analysis. Br J Pharmacol 108:668–674CrossRefGoogle Scholar
  130. Talati AJ, Yang W, Yolton K et al (2005) Combination of early perinatal factors to identify near-term and term neonates for neuroprotection. J Perinatol 25:245–250CrossRefPubMedGoogle Scholar
  131. Tan S, Parks DA (1999) Preserving brain function during neonatal asphyxia. Clin Perinatol 26:733–747CrossRefPubMedGoogle Scholar
  132. Tang YP, Shimizu E, Dube GR et al (1999) Genetic enhancement of learning and memory in mice. Nature 401:63–69CrossRefPubMedGoogle Scholar
  133. The Eclampsia Trial Collaborative Group (1995) Which anticonvulsant for eclampsia? Evidence from the Collaborative Eclampsia Trial. Lancet 345:1455–1463CrossRefGoogle Scholar
  134. Thorensen M, Penrice J, Lorek A (1995) Mild hypothermia after severe transient hypoxia-ischemia ameliorates delayed cerebral energy failure in the newborn piglet. Pediatr Res 37:667–670CrossRefGoogle Scholar
  135. Tominaga T, Kagure S, Narisawa K et al (1993) Endonuclease activation following focal ischemic injury in the rat brain. Brain Res 608:21–26CrossRefPubMedGoogle Scholar
  136. Trescher WH, Ishiwa S, Johnston MV (1997) Brief post-HI hypothermia markedly delays neonatal brain injury. Brain Dev 19:326–328CrossRefPubMedGoogle Scholar
  137. Van Bel F, Groenendaal F (2008) Long-term pharmalogic neuroprotection after birth asphyxia: where do we stand? Neonatology 94:203–210CrossRefPubMedGoogle Scholar
  138. Van Bel F, Shadid M, Moison RM et al (1998) Effect of allopurinol on postasphyxial free radical formation, cerebral hemodynamics, and electrical brain activity. Pediatrics 101:185–193CrossRefPubMedGoogle Scholar
  139. Vannucci RC (1990) Experimental biology of cerebral hypoxia-ischemia: relation to perinatal brain damage. Pediatr Res 27:317–326CrossRefPubMedGoogle Scholar
  140. Volpe J (2001) Neurology of the newborn, 3rd edn. WB Saunders, PhiladelphiaGoogle Scholar
  141. Wagner CL, Eicher DJ, Katikkaneni LD et al (1999) The use of hypothermia: a role in the treatment of neonatal asphyxia? Pediatr Neurol 21:429–443CrossRefPubMedGoogle Scholar
  142. Wagner BP, Nedelcu J, Martin E (2002) Delayed postischemic hypothermia improves long-term behavioral outcome after cerebral hypoxia-ischemia in neonatal rats. Pediatr Res 51:182–193CrossRefGoogle Scholar
  143. Waseem W, Ashraf QM, Zanelli SA et al (2001) Effect of graded hypoxia on cerebral cortical genomic DNA fragmentation in newborn piglet. Biol Neonate 79:187–193CrossRefGoogle Scholar
  144. Williams GD, Palmer C, Heitjan DF et al (1992) Allopurinol preserves cerebral energy metabolism during perinatal hypoxic-ischemia: a 31P NMR study in anaesthetized immature rats. Neurosci Lett 144:104–106CrossRefGoogle Scholar
  145. Wylie AH, Kerr JFR, Currie AR (1980) Cell Death, the significance of apoptosis. Int Rev Cytol 68:251–306CrossRefGoogle Scholar
  146. Yamakura T, Sakimura K, Shimoji K (1999) Direct inhibition of the N-methyl-D-aspartate receptor channel by high concentration of opioids. Anesthesiology 91:1053–1063CrossRefPubMedGoogle Scholar
  147. Zanelli SA (1999) NMDA receptor-mediated calcium influx in cerebral cortical synaptosomes of the hypoxic guinea pig fetus. Neurochem Res 24:434–446CrossRefGoogle Scholar
  148. Zanelli SA, Ashraf QM, Mishra OP (2002) Nitration is a mechanism of regulation of the NMDA receptor function during hypoxia. Neuroscience 112:869–877CrossRefPubMedGoogle Scholar
  149. Zanelli SA, Naylor M, Dobbins N et al (2008) Implementation of a “hypothermia for HIE” program: 2-year experience in a single NICU. J Perinatol 28:171–175CrossRefPubMedGoogle Scholar
  150. Zhang J, Haddad GG, Xia Y (2000) Delta-, but not mu- and kappa, opioid receptor activation protects neocortical neurons from glutamate- induced excitotoxic injury. Brain Res 885:143–153CrossRefPubMedGoogle Scholar
  151. Zhang J, Gibney GT, Zhao P (2002) Neuroprotective role of delta opioid receptors in cortical neurons. Am J Physiol 282:C1225–C1234CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Maria Delivoria-Papadopoulos
    • 1
  • Panagiotis Kratimenos
    • 2
  • Endla K. Anday
    • 1
  1. 1.Department of PediatricsDrexel University College of Medicine, St. Christopher’s Hospital for Children, Neonatal-Perinatal MedicinePhiladelphiaUSA
  2. 2.Neonatologist, Children’s National Medical Center, Center for Research in NeuroscienceGeorge Washington University School of Medicine and Health SciencesWashingtonUSA

Personalised recommendations