Neonatology pp 2091-2111 | Cite as

Neuroimaging Studies

  • Luca A. RamenghiEmail author
  • Petra S. Hüppi
Reference work entry


Combining different neuroimaging modalities like cranial transfontanellar ultrasound (CUS) and MRI techniques remains the key point to optimize the diagnostic approach to investigate late-preterm and term newborn babies with neurological symptoms. In addition, CUS and MRI are used also to screen very preterm babies at high risk for developing perinatally acquired lesions like hemorrhages (germinal matrix hemorrhage-intraventricular hemorrhage and cerebellar hemorrhage) and hypoxic/inflammatory abnormalities of white matter. CUS can be used in very preterm babies from the first hours of life, while MRI is utilized more often at term-equivalent age. Despite the American Academy of Pediatrics recently included “routine MRI a term-corrected age” of very premature babies among the five things not to do, we believe it is nowadays a common practice in the western world NICUs and, perhaps, it is justified practice for a special medicine like neonatal intensive care, a modern medicine always so deeply linked with the most modern research.

Magnetic resonance imaging (MRI) is the modality that allows assessment of the developing brain in great detail because of its resolving power and noninvasiveness. MR techniques are unique in that they provide the best sensitivity in detecting also metabolic and functional information without the use of ionizing radiation. Conventional MRI is therefore now widely used for identifying normal and pathologic brain morphology and giving objective information about the structure of the neonatal brain during development and injury.


  1. Benders MJ, Groenendaal F, Uiterwaal CS et al (2007) Maternal and infant characteristics associated with perinatal arterial stroke in the preterm infant. Stroke 38:1759–1765CrossRefGoogle Scholar
  2. Bouza H, Dubowitz LM, Rutherford M et al (1994) Late magnetic resonance imaging and clinical findings in neonates with unilateral lesions on cranial ultrasound. Dev Med Child Neurol 36:951–964CrossRefGoogle Scholar
  3. Burns CM, Rutherford MA, Boardman JP, Cowan FM (2008) Patterns of cerebral injury and neurodevelopmental outcomes after symptomatic neonatal hypoglycemia. Pediatrics 122:65–74CrossRefGoogle Scholar
  4. Cheong JL, Cowan FM (2009) Neonatal arterial ischaemic stroke: obstetric issues. Semin Fetal Neonatal Med 14:267–271CrossRefGoogle Scholar
  5. Childs AM, Cornette L, Ramenghi LA et al (2001) Magnetic resonance and cranial ultrasound characteristics of periventricular white matter abnormalities in newborn infants. Clin Radiol 56:647–655CrossRefGoogle Scholar
  6. Cornette LG, Tanner SF, Ramenghi LA (2002) Magnetic resonance imaging of the infant brain: anatomical characteristics and clinical significance of punctate lesions. Arch Dis Child Fetal Neonatal 86:F171–F177CrossRefGoogle Scholar
  7. Cowan FM, Pennock JM, Hanrahan JD et al (1994) Early detection of cerebral infarction and hypoxic ischemic encephalopathy in neonates using diffusion-weighted magnetic resonance imaging. Neuropediatrics 25:172–175CrossRefGoogle Scholar
  8. D’Arceuil HE, de Crespigny AJ, Röther J et al (1998) Diffusion and perfusion magnetic resonance imaging of the evolution of hypoxic ischemic encephalopathy in the neonatal rabbit. J Magn Reson Imaging 8:820–828CrossRefGoogle Scholar
  9. Dudnik J, Mercuri E, Al-Nakib L et al (2009) Evolution of unilateral arterial ischemic stroke on conventional and diffusion-weighted MR imaging. AJNR Am J Neuroradiol 30:998–1004CrossRefGoogle Scholar
  10. Fumagalli M, Ramenghi LA, Righini A et al (2009) Cerebellar haemorrhages and pons development in extremely low birth weight infants. Front Biosci 1:537–541Google Scholar
  11. Govaert P, Ramenghi L, Taal R et al (2009) Diagnosis of perinatal stroke I: definitions, differential diagnosis and registration. Acta Paediatr 98:1556–1567CrossRefGoogle Scholar
  12. Groenendaal F, Veenhoven RH, van der Grond J et al (1994) Cerebral lactate and N-acetyl-aspartate/choline ratios in asphyxiated full-term neonates demonstrated in vivo using proton magnetic resonance spectroscopy. Pediatr Res 35:148–151CrossRefGoogle Scholar
  13. Hanrahan JD, Cox IJ, Azzopardi D et al (1999) Relation between proton magnetic resonance spectroscopy within 18 hours of birth asphyxia and neurodevelopment at 1 year of age. Dev Med Child Neurol 41:76–82CrossRefGoogle Scholar
  14. Hüppi PS (2001) MR imaging and spectroscopy of brain development. Magn Reson Imaging Clin N Am 9:1–17PubMedGoogle Scholar
  15. Kersbergen KJ, Benders MJ, Groenendaal F et al (2014) Different patterns of punctate white matter lesions in serially scanned preterm infants. PLoS One 9(10):e108904CrossRefGoogle Scholar
  16. Larroche JC (1972) Sub-ependymal pseudo-cysts in the newborn. Biol Neonate 21:170–183CrossRefGoogle Scholar
  17. Malova M, Rossi A, Severino M et al (2017) Incidental findings on routine brain MRI scans in preterm infants. Arch Dis Child Fetal Neonatal Ed 102:F73–F78CrossRefGoogle Scholar
  18. Ment LR, Hirtz D, Hüppi PS (2009) Imaging biomarkers of outcome in the developing preterm brain. Lancet Neurol 8:1042–1055CrossRefGoogle Scholar
  19. Parodi A, Morana G, Severino MS et al (2015a) Low-grade intraventricular hemorrhage: is ultrasound good enough? J Matern Fetal Neonatal Med 28(Suppl 1):2261–2264CrossRefGoogle Scholar
  20. Parodi A, Rossi A, Severino M et al (2015b) Accuracy of ultrasound in assessing cerebellar haemorrhages in very low birthweight babies. Arch Dis Child Fetal Neonatal Ed 100:F289–F292CrossRefGoogle Scholar
  21. Ramenghi LA, Hüppi PS (2009) Imaging of the neonatal brain. In: Levene MI, Chevernak FA (eds) Fetal and neonatal neurology and neurosurgery. Churchill Livingstone, London, Edinburgh, pp 68–103Google Scholar
  22. Ramenghi LA, Domizio S, Quartulli L, Sabatino G (1997) Prenatal pseudocysts of the germinal matrix in preterm infants. J Clin Ultrasound 25:169–173CrossRefGoogle Scholar
  23. Ramenghi LA, Gill BJ, Tanner SF et al (2002) Cerebral venous thrombosis, intraventricular haemorrhage and white matter lesions in a preterm newborn with factor V (Leiden) mutation. Neuropediatrics 33:97–99CrossRefGoogle Scholar
  24. Ramenghi LA, Mosca F, Counsell S, Rutherford M (2005) Magnetic resonance imaging of the brain in preterm infants. In: Tortori Donati P (ed) Pediatric neuroradiology. Springer, Berlin, pp 199–234CrossRefGoogle Scholar
  25. Ramenghi LA, Govaert P, Fumagalli M et al (2009) Neonatal cerebral sinovenous thrombosis. Semin Fetal Neonatal Med 14:278–283CrossRefGoogle Scholar
  26. Righini A, Ramenghi LA, Parini R et al (2003) Water apparent diffusion coefficient and T2 changes in the acute stage of maple syrup urine disease: evidence of intramyelinic and vasogenic-interstitial edema. J Neuroimaging 13:162–165CrossRefGoogle Scholar
  27. Righini A, Ramenghi L, Zirpoli S et al (2005) Brain apparent diffusion coefficient decrease during correction of severe hypernatremic dehydration. AJNR Am J Neuroradiol 26:1690–1694PubMedGoogle Scholar
  28. Rutherford MA, Pennock JM, Counsell SJ et al (1998) Abnormal magnetic resonance signal in the internal capsule predicts poor neurodevelopmental outcome in infants with hypoxic-ischemic encephalopathy. Pediatrics 102:323–328CrossRefGoogle Scholar
  29. Rutherford M, Ramenghi LA, Edwards AD et al (2010a) Assessment of brain tissue injury after moderate hypothermia in neonates with hypoxic-ischaemic encephalopathy: a nested substudy of a randomised controlled trial. Lancet Neurol 9:39–45CrossRefGoogle Scholar
  30. Rutherford MA, Supramaniam V, Ederies A et al (2010b) Magnetic resonance imaging of white matter diseases of prematurity. Neuroradiology 52(6):505–521CrossRefGoogle Scholar
  31. Rutherford MA, Ramenghi LA, Cowan FM (2012) Arch Dis Child Fetal Neonatal Ed 97:F377–F384CrossRefGoogle Scholar
  32. Steggerda SJ, De Bruïne FT, van den Berg-Huysmans AA et al (2013) Small cerebellar hemorrhage in preterm infants: perinatal and postnatal factors and outcome. Cerebellum 12:794–801CrossRefGoogle Scholar
  33. Tanner SF, Ramenghi LA, Ridgway JP et al (2000) Quantitative comparison of intrabrain diffusion in adults and preterm and term neonates and infants. AJR Am J Roentgenol 174:1643–1649CrossRefGoogle Scholar
  34. Tuor UI, Kozlowski P, Del Bigio MR (1998) Diffusion- and T2- weighted increases in magnetic resonance images of immature brain during hypoxia-ischemia: transient reversal posthypoxia. Exp Neurol 150:321–328CrossRefGoogle Scholar
  35. Volpe JJ (2009) Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol 8:110–124CrossRefGoogle Scholar
  36. Wagenaar N, Chau V, Groenendaal F et al (2017) Clinical risk factors for punctate white matter lesions on early magnetic resonance imaging in preterm newborns. J Pediatr 182:34–40CrossRefGoogle Scholar
  37. Zayek MM, Benjamin JT, Maertens P et al (2012) Cerebellar hemorrhage: a major morbidity in extremely preterm infants. J Perinatol 32:699–704CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of NeonatologyGiannina Gaslini Children’s HospitalGenoaItaly

Personalised recommendations