Neonatology pp 1999-2017 | Cite as

Brain Development and Perinatal Vulnerability to Cerebral Damage

  • Luca A. Ramenghi
  • Monica Fumagalli
  • Veena Supramaniam
Reference work entry


The recent exponential rise in detailed magnetic resonance (MR) imaging studies has emphasized the concept of gestationally determined regional vulnerability in the brain. The site and nature of the injury is determined by a combination of the characteristics of the insult, the specific tissue and cell vulnerability, and the gestational age. Acute perinatal hypoxic ischemic events, previously considered characteristic for the term newborn presenting with hypoxic-ischemic encephalopathy, may occur at earlier points in gestation. White matter lesions, which are considered the hallmark of injury to the preterm brain, may also occur in a small percentage of term neonates. The regional tissue vulnerability at a given gestational age will be determined by the local metabolic requirements in combination with specific cell characteristics, such as the expression of different glutamatergic receptor subtypes and endogenous antioxidant mechanisms. In addition, neonatal neurons are programmed for cell death to allow for essential pruning and optimal connectivity, but this characteristic increases the vulnerability of such cells to injury. The nature of the insult is also important in dictating lesion site. In this chapter we will discuss the vulnerability of tissue and cell types in relation to gestational age and examine how these relate to patterns of injury seen on brain MR imaging and the clinical history and presentation of the infant.


  1. Ajayi-Obe M, Saeed N, Cowan FM et al (2000) Reduced development of cerebral cortex in extremely preterm infants. Lancet 356:1162–1163CrossRefGoogle Scholar
  2. Allendoerfer KL, Shatz CJ (1994) The subplate, a transient neocortical structure: its role in the development of connections between thalamus and cortex. Annu Rev Neurosci 17:185–218CrossRefGoogle Scholar
  3. Andiman SE, Haynes RL, Trachtenberg FL et al (2010) The cerebral cortex overlying periventricular leukomalacia: analysis of pyramidal neurons. Brain Pathol 20:803–814CrossRefGoogle Scholar
  4. Banker BQ, Larroche JC (1962) Periventricular leukomalacia of infancy. A form of neonatal anoxic encephalopathy. Arch Neurol 7:386–410CrossRefGoogle Scholar
  5. Barkovich AJ, Lindan CE (1994) Congenital cytomegalovirus infection of the brain: imaging analysis and embryologic consideration. AJNR Am J Neuroradiol 15:703–715PubMedGoogle Scholar
  6. Barkovich AJ, Sargent SK (1995) Profound asphyxia in the premature infant: imaging findings. AJNR Am J Neuroradiol 16:1837–1846PubMedGoogle Scholar
  7. Bassi L, Ricci D, Volzone A et al (2008) Probabilistic diffusion tractography of the optic radiations and visual function in preterm infants at term equivalent age. Brain 131:573–582CrossRefGoogle Scholar
  8. Billiard SS, Haynes RL, Folkerth RD et al (2006) Development of microglia in the cerebral white matter of the human fetus and infant. J Comp Neurol 497:199–208CrossRefGoogle Scholar
  9. Boardman JP, Counsell SJ, Rueckert D et al (2006) Abnormal deep grey matter development following preterm birth detected using deformation-based morphometry. NeuroImage 32:70–78CrossRefGoogle Scholar
  10. Chugani HT, Shewmon DA, Shields WD et al (1993) Surgery for intractable infantile spasms: neuroimaging perspectives. Epilepsia 34:764–771CrossRefGoogle Scholar
  11. Cioni G, Fazzi B, Coluccini M et al (1997) Cerebral visual impairment in preterm infants with periventricular leukomalacia. Pediatr Neurol 17:331–338CrossRefGoogle Scholar
  12. Counsell SJ, Maalouf EF, Fletcher AM et al (2002) MR imaging assessment of myelination in the very preterm brain. AJNR Am J Neuroradiol 23:872–881PubMedGoogle Scholar
  13. De Carli A, Jary S, Ramenghi LA et al (2010) Magnetic resonance imaging (MRI) at term equivalent age correlates with neurodevelopment at 2 years in preterm infants with post-hemorrhagic ventricular dilatation. PAS Meeting Abstract 3746Google Scholar
  14. de Graaf-Peters V, Hadders-Algra M (2006) Ontogeny of the human central nervous system: what is happening when? Early Hum Dev 82:257–266CrossRefGoogle Scholar
  15. Dean JM, Wang X, Kaindl AM et al (2009) Microglial MyD88 signaling regulates acute neuronal toxicity of LPS-stimulated microglia in vitro. Brain, Behaviour and Immunity. J Neurosci 16:2508–2521Google Scholar
  16. Deng W, Wang H, Rosenberg PA et al (2004) Role of metabotropic glutamate receptors in oligodendrocytes excitotoxicity and oxidative stress. Proc Natl Acad Sci U S A 101:7751–7756CrossRefGoogle Scholar
  17. Dommergues MA, Plaisant F, Verney C, Gressens P (2003) Early microglial activation following neonatal excitotoxic brain damage in mice: a potential target for neuroprotection. Neuroscience 121:619–628CrossRefGoogle Scholar
  18. Dudink J, Buijs J, Govaert P et al (2010) Diffusion tensor imaging of the cortical plate and subplate in very-low-birth-weight infants. Pediatr Radiol 40:1397–1404CrossRefGoogle Scholar
  19. Dyet LE, Kennea N, Counsell SJ et al (2006) Natural history of brain lesions in extremely preterm infants studied with serial magnetic resonance imaging from birth and neurodevelopmental assessment. Pediatrics 118:536–548CrossRefGoogle Scholar
  20. Elkabes S, Peng L, Black IB (1998) Lipopolysaccharide differentially regulates microglial trk receptor and neurotrophin expression. J Neurosci Res 54:117–122CrossRefGoogle Scholar
  21. Ferriero DM, Arcavi LJ, Sagar SM et al (1988) Selective sparing of NADPH-diaphorase neurons in neonatal hypoxia-ischemia. Ann Neurol 24:670–676CrossRefGoogle Scholar
  22. Ferriero DM, Sheldon RA, Black SM, Chuai J (1995) Selective destruction of nitric oxide synthase neurons with quisqualate reduces damage after hypoxia-ischemia in the neonatal rat. Pediatr Res 38:912–918CrossRefGoogle Scholar
  23. Ferriero DM, Holtzman DM, Black SM, Sheldon RA (1996) Neonatal mice lacking neuronal nitric oxide synthase are less vulnerable to hypoxic-ischemic injury. Neurobiol Dis 3:64–71CrossRefGoogle Scholar
  24. Fumagalli M, Ramenghi LA, Righini A et al (2009) Cerebellar haemorrhages and pons development in extremely low birth weight infants. Front Biosci 1:537–541Google Scholar
  25. Ghazi-Birry HS, Brown WR, Moody DM et al (1997) Human germinal matrix: venous origin of hemorrhage and vascular characteristics. AJNR Am J Neuroradiol 18:219–239PubMedGoogle Scholar
  26. Ghosh A, Shatz CJ (1992) Involvement of subplate neurons in the formation of ocular dominance columns. Science 255:1441–1443CrossRefGoogle Scholar
  27. Gurka MJ, LoCasale-Crouch J, Blackman JA (2010) Long-term cognition, achievement, socioemotional, and behavioral development of healthy late-preterm infants. Arch Pediatr Adolesc Med 164:525–532CrossRefGoogle Scholar
  28. Hambleton G, Wigglesworth JS (1976) Origin of intraventricular haemorrhage in the preterm infant. Arch Dis Child 51:651–659CrossRefGoogle Scholar
  29. Haynes RL, Folkerth RD, Keefe RJ et al (2003) Nitrosative and oxidative injury to premyelinating oligodendrocytes in periventricular leukomalacia. J Neuropathol Exp Neurol 62:441–450CrossRefGoogle Scholar
  30. Hüppi PS, Dubois J (2006) Diffusion tensor imaging of brain development. Semin Fetal Neonatal Med 11:489–497CrossRefGoogle Scholar
  31. Hüppi PS, Schuknecht B, Boesch C et al (1996) Structural and neurobehavioral delay in postnatal brain development of preterm infants. Pediatr Res 39:895–901CrossRefGoogle Scholar
  32. Inder TE, Huppi PS, Warfield S et al (1999) Periventricular white matter injury in the premature infant is followed by reduced cerebral cortical gray matter volume at term. Ann Neurol 46:755–760CrossRefGoogle Scholar
  33. Jiang ZD, Brosi DM, Wu YY, Wilkinson AR (2009) Relative maturation of peripheral and central regions of the human brainstem from preterm to term and the influence of preterm birth. Pediatr Res 65:657–662CrossRefGoogle Scholar
  34. Judas M, Rados M, Jovanov-Milosevic N et al (2005) Structural, immunocytochemical, and MR imaging properties of periventricular crossroads of growing cortical pathways in preterm infants. AJNR Am J Neuroradiol 26:2671–2684PubMedGoogle Scholar
  35. Kapellou O, Counsell SJ, Kennea N et al (2006) Abnormal cortical development after premature birth shown by altered allometric scaling of brain growth. PLoS Med 3:e265CrossRefGoogle Scholar
  36. Khwaja O, Volpe JJ (2008) Pathogenesis of cerebral white matter injury of prematurity. Arch Dis Child Fetal Neonatal Ed 93:F153–F161CrossRefGoogle Scholar
  37. Kinoshita Y, Okudera T, Tsuru E, Yokota A (2001) Volumetric analysis of the germinal matrix and lateral ventricles performed using MR images of postmortem fetuses. AJNR Am J Neuroradiol 22:382–388PubMedGoogle Scholar
  38. Kitsommart R, Janes M, Mahajan V et al (2009) Outcomes of latepreterm infants: a retrospective, single-center, Canadian study. Clin Pediatr (Phila) 48:844–850CrossRefGoogle Scholar
  39. Kjellmer I (1991) Mechanism of perinatal brain damage. Ann Med 23:675–679CrossRefGoogle Scholar
  40. Kostovic I, Judas M (2006) Prolonged coexistence of transient and permanent circuitry elements in the developing cerebral cortex of fetuses and preterm infants. Dev Med Child Neurol 48:388–393CrossRefGoogle Scholar
  41. Kostovic I, Rakic P (1990) Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. J Comp Neurol 297:441–470CrossRefGoogle Scholar
  42. Lee CT, Chen J, Worden LT, Freed WJ (2010) Cocaine causes deficits in radial migration and alters the distribution of glutamate and GABA neurons in the developing rat cerebral cortex. Synapse 65:21–34CrossRefGoogle Scholar
  43. Leech RW, Kohnen P (1974) Subependymal and intraventricular hemorrhage in the newborn. Am J Pathol 77:465–475PubMedPubMedCentralGoogle Scholar
  44. Leuchtmann EA, Ratner AE, Vijitruth R et al (2003) AMPA receptors are the major mediators of excitotoxic death in mature oligodendrocytes. Neurobiol Dis 14:336–348CrossRefGoogle Scholar
  45. Ligam P, Haynes RL, Folkerth RD et al (2009) Thalamic damage in periventricular leukomalacia: novel pathologic observations relevant to cognitive deficits in survivors of prematurity. Pediatr Res 65:524–529CrossRefGoogle Scholar
  46. Limperopoulos C, Benson CB, Bassan H et al (2005) Cerebellar hemorrhage in the preterm infant: ultrasonographic findings and risk factors. Pediatrics 116:717–724CrossRefGoogle Scholar
  47. Limperopoulos C, Bassan H, Gauvreau K et al (2007) Does cerebellar injury in premature infants contribute to the high prevalence of long-term cognitive, learning, and behavioral disability in survivors? Pediatrics 120:584–593CrossRefGoogle Scholar
  48. Limperopoulos C, Robertson RL, Sullivan NR et al (2009) Cerebellar injury in term infants: clinical characteristics, magnetic resonance imaging findings, and outcome. Pediatr Neurol 41:1–8CrossRefGoogle Scholar
  49. Logitharajah P, Rutherford MA, Cowan FM (2009) Hypoxic-ischemic encephalopathy in preterm infants: antecedent factors, brain imaging and outcome. Pediatr Res 66:222–229CrossRefGoogle Scholar
  50. Luo MH, Hannemann H, Kulkarni AS et al (2010) Human cytomegalovirus infection causes premature and abnormal differentiation of human neural progenitor cells. J Virol 84:3528–3541CrossRefGoogle Scholar
  51. Marcorelles P, Laquerrière A, Adde-Michel C et al (2010) Evidence for tangential migration disturbances in human lissencephaly resulting from a defect in LIS1, DCX and ARX genes. Acta Neuropathol 120:503–515CrossRefGoogle Scholar
  52. Marin Padilla M (1999) Developmental neuropathology and impact of perinatal brain damage. III: gray matter lesions of the neocortex. J Neuropathol Exp Neurol 58:407–429CrossRefGoogle Scholar
  53. Marsh B, Stevens SL, Packard AE et al (2009) Systemic lipopolysaccharide protects the brain from Ischemic Injury by reprogramming the response of the brain to stroke: a critical role for IRF3. J Neurosci 29:9839–9849CrossRefGoogle Scholar
  54. Mateus J, Fox K, Jain S et al (2010) Preterm premature rupture of membranes: clinical outcomes of late-preterm infants. Clin Pediatr (Phila) 49:60–65CrossRefGoogle Scholar
  55. McQuillen PS, Ferriero DM (2004) Selective vulnerability in the developing central nervous system. Pediatr Neurol 30:227–235CrossRefGoogle Scholar
  56. McQuillen PS, Sheldon RA, Shatz CJ, Ferriero DM (2003) Selective vulnerability of subplate neurons after early neonatal hypoxiaischemia. J Neurosci 23:3308–3315CrossRefGoogle Scholar
  57. Melamed N, Klinger G, Tenenbaum-Gavish K et al (2009) Shortterm neonatal outcome in low-risk, spontaneous, singleton, late preterm deliveries. Obstet Gynecol 114(2 Part 1):253–260CrossRefGoogle Scholar
  58. Ment LR, Allan WC, Makuch RW et al (2005) Grade 3 to 4 intraventricular hemorrhage and Bayley scores predict outcome. Pediatrics 116:1597–1598CrossRefGoogle Scholar
  59. Métin C, Vallee RB, Rakic P, Bhide PG (2008) Modes and mishaps of neuronal migration in the mammalian brain. J Neurosci 28:11746–11752CrossRefGoogle Scholar
  60. Miller SP, Ferriero DM, Leonard C et al (2005) Early brain injury in premature newborns detected with magnetic resonance imaging is associated with adverse early neurodevelopmental outcome. J Pediatr 147:609–616CrossRefGoogle Scholar
  61. Miyoshi G, Hjerling-Leffler J, Karayannis T et al (2010) Genetic fate mapping reveals that the caudal ganglionic eminence produces a large and diverse population of superficial cortical interneurons. J Neurosci 30:1582–1594CrossRefGoogle Scholar
  62. Morse SB, Zheng H, Tang Y, Roth J (2009) Early school-age outcomes of late preterm infants. Pediatrics 123:e622–e629CrossRefGoogle Scholar
  63. Nadarajah B, Parnavelas JG (2002) Modes of neuronal migration in the developing cerebral cortex. Nat Rev Neurosci 3:423–432CrossRefGoogle Scholar
  64. Northington FJ, Graham EM, Martin LJ (2005) Apoptosis in perinatal hypoxic-ischemic brain injury: how important is it and should it be inhibited? Brain Res Brain Res Rev 50:244–257CrossRefGoogle Scholar
  65. Patel AB, de Graaf RA, Mason GF et al (2005) The contribution of GABA to glutamate/glutamine cycling and energy metabolism in the rat cortex in vivo. Proc Natl Acad Sci U S A 15:5588–1593CrossRefGoogle Scholar
  66. Rakic P (1978) Neuronal migration and contact guidance in the primate telencephalon. Postgrad Med J 54:25–40PubMedGoogle Scholar
  67. Rakic S, Zecevic N (2000) Programmed cell death in the developing human telencephalon. Eur J Neurosci 12:2721–2734CrossRefGoogle Scholar
  68. Ramenghi LA, Gill BJ, Tanner SF et al (2002) Cerebral venous thrombosis, intraventricular haemorrhage and white matter lesions in a preterm newborn with factor V (Leiden) mutation. Neuropediatrics 33:97–99CrossRefGoogle Scholar
  69. Ramenghi LA, Fumagalli M, Righini A et al (2007) Magnetic resonance imaging assessment of brain maturation in preterm neonates with punctate white matter lesions. Neuroradiology 49:161–167CrossRefGoogle Scholar
  70. Ramenghi LA, Ricci D, Mercuri E et al (2010) Visual performance and brain structure in the developing brain of preterm infants. Early Hum Dev 86(Suppl 1):73–75CrossRefGoogle Scholar
  71. Rezaie P, Male D (1999) Colonisation of the developing human brain and spinal cord by microglia: a review. Microsc Res Tech 45:359–382CrossRefGoogle Scholar
  72. Ricci D, Anker S, Cowan F et al (2006) Thalamic atrophy in infants with PVL and cerebral visual impairment. Early Hum Dev 82:591–595CrossRefGoogle Scholar
  73. Romeo DM, Di Stefano A, Conversano M et al (2010) Neurodevelopmental outcome at 12 and 18 months in late preterm infants. Eur J Paediatr Neurol 14:503–507CrossRefGoogle Scholar
  74. Rutherford MA, Supramaniam V, Ederise A et al (2010) Magnetic resonance imaging of white matter diseases of prematurity. Neuroradiology 52:505–521CrossRefGoogle Scholar
  75. Segovia KN, McClure M, Moravec M et al (2008) Arrested oligodendrocyte lineage maturation in chronic perinatal white matter injury. Ann Neurol 63:520–530CrossRefGoogle Scholar
  76. Skoff RP (1980) Neuroglia: a reevaluation of their origin and development. Pathol Res Pract 168:279–300CrossRefGoogle Scholar
  77. Srinivasan L, Allsop J, Counsell SJ et al (2006) Smaller cerebellar volumes in very preterm infants at term equivalent age are associated with the presence of supratentorial lesions. AJNR Am J Neuroradiol 117:376–386Google Scholar
  78. Supramaniam V, Srinivasan L, Doherty K et al (2010) The distribution and morphology of microglial (MG) cells in the periventricular white matter (PVWM) of immature human brain. PAS Meeting Abstract 3105Google Scholar
  79. Tabata H, Nakajima K (2003) Multipolar migration: the third mode of radial neuronal migration in the developing cerebral cortex. J Neurosci 23:9996–10001CrossRefGoogle Scholar
  80. Takashima S (1982) Olivocerebellar lesions in infants born prematurely. Brain and Development 4:361–366CrossRefGoogle Scholar
  81. Towbin A (1968) Cerebral intraventricular hemorrhage and subependymal matrix infarction in the fetus and premature newborn. Am J Pathol 52:121–140PubMedPubMedCentralGoogle Scholar
  82. Vollmer B, Roth S, Riley K et al (2006) Neurodevelopmental outcome of preterm infants with ventricular dilatation with and without associated haemorrhage. Dev Med Child Neurol 48:348–352CrossRefGoogle Scholar
  83. Volpe JJ (2009) Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol 8:110–124CrossRefGoogle Scholar
  84. Wang X, Stridh L, Li W et al (2009) Lipopolysaccharide sensitizes neonatal hypoxic-ischemic brain injury in a MyD88-dependent manner. J Immunol 183:7471–7477CrossRefGoogle Scholar
  85. Whitelaw A, Jary S, Kmita G et al (2010) Randomized trial of drainage, irrigation and fibrinolytic therapy for premature infants with posthemorrhagic ventricular dilatation: developmental outcome at 2 years. Pediatrics 125:e852–e858CrossRefGoogle Scholar
  86. Widjaja E, Geibprasert S, Mahmoodabadi SZ et al (2010) Alteration of human fetal subplate layer and intermediate zone during normal development on MR and diffusion tensor imaging. AJNR Am J Neuroradiol 31:1091–1099CrossRefGoogle Scholar
  87. Wu YW, Hamrick SE, Miller SP et al (2003) Intraventricular hemorrhage in term neonates caused by sinovenous thrombosis. Ann Neurol 54:123–126CrossRefGoogle Scholar
  88. Zhang Y, Allodi S, Sandeman DC, Beltz BS (2009) Adult neurogenesis in the crayfish brain: proliferation, migration, and possible origin of precursor cells. Dev Neurobiol 69:415–436CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Luca A. Ramenghi
    • 1
  • Monica Fumagalli
    • 2
  • Veena Supramaniam
    • 3
  1. 1.Division of NeonatologyGiannina Gaslini Children’s HospitalGenoaItaly
  2. 2.NICU, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico MilanoUniversità degli Studi di MilanoMilanItaly
  3. 3.Perinatal Imaging Group, Robert Steiner MR Unit, MRC Clinical Sciences Centre and Wigglesworth Perinatal Pathology ServicesHammersmith Hospital, Imperial CollegeLondonUK

Personalised recommendations