Neonatology pp 1549-1559 | Cite as

Neonatal Hereditary Neutropenia

  • Gaetano ChiricoEmail author
  • Carmelita D’Ippolito
Reference work entry


Hereditary neutropenia includes many disorders of distinct origin and variable prognosis, characterized by a reduction of the absolute neutrophil count (ANC) below 0.5 × 109/l, that predisposes patients to bacterial infections of variable severity, in particular pyogenic infections, such as cutaneous cellulitis, deep abscesses, pneumonia, and sepsis. The diagnosis of severe congenital neutropenia (SCN) is usually made on the basis of patient history and physical examination, and of a severe neutropenia with normal or near normal hemoglobin level and platelet count, while bone marrow examination reveals in most cases the typical defect of neutrophils, with myeloid cell differentiation arrest at the promyelocyte stage, and very few myelocytes and metamyelocytes.

The most common monogenic congenital neutropenia are usually classified according to the presence or absence of association with innate or adaptive immunodeficiency, or with extrahematopoietic manifestations, like involvement of the pancreas, central nervous system, heart, muscle, and skin.

Most of the forms of congenital neutropenia are extremely rare, about six cases per one million; some genes have been only found in a few families. The inheritance is monogenic, which may be autosomal (dominant or recessive), or X-linked. During the last few years, several genetic causes of neutropenia have been elucidated.


  1. Ambruso DR, McCabe ER, Anderson DC et al (2003) Infectious and bleeding complications in patients with glycogen Ib. Am J Dis Child 139:691–697Google Scholar
  2. Ancliff PJ, Blundell MP, Cory GO et al (2006) Two novel activating mutations in the Wiskott-Aldrich syndrome protein result in congenital neutropenia. Blood 108:2182–2189CrossRefGoogle Scholar
  3. Aprikyan A, Liles W, Park J et al (2000) Myelocatexis, a congenital disorder of severe neutropenia characterized by accelerated apoptosis and defective expression of bcl-x in neutrophil precursors. Blood 95:320–327PubMedGoogle Scholar
  4. Armistead PM, Wieder E, Akande O et al (2010) Cyclic neutropenia associated with T cell immunity to granulocyte proteases and a double de novo mutation in GFI1, a transcriptional regulator of ELANE. Br J Haematol 150:716–719CrossRefGoogle Scholar
  5. Badolato R, Fontana S, Notarangelo LD, Savoldi G (2004) Congenital neutropenia: advances in diagnosis and treatment. Curr Opin Allergy Clin Immunol 4:513–521CrossRefGoogle Scholar
  6. Beel K, Cotter MM, Blatny J et al (2009) A large kindred with X-linked neutropenia with an I294T mutation of the Wiskott-Aldrich syndrome gene. Br J Haematol 144:120–126CrossRefGoogle Scholar
  7. Boztug K, Welte K, Zeidler C, Klein C (2008) Congenital neutropenia syndromes. Immunol Allergy Clin North Am 28:259–275CrossRefGoogle Scholar
  8. Boztug K, Appaswamy G, Ashikov A et al (2009) A syndrome with congenital neutropenia and mutations in G6PC3. N Engl J Med 360:32–43CrossRefGoogle Scholar
  9. Carlsson G, Fasth A (2001) Infantile genetic agranulocytosis, morbus Kostmann: presentation of six cases from the original “Kostmann family” and a review. Acta Paediatr 90:757–764CrossRefGoogle Scholar
  10. Dale DC, Hammond WP (1988) Cyclic neutropenia: a clinical review. Blood Rev 2:178–185CrossRefGoogle Scholar
  11. Dale DC, Person RE, Bolyard AA et al (2000) Mutation in the gene encoding neutrophil elastase in congenital and cyclic neutropenia. Blood 96:2317–2322PubMedGoogle Scholar
  12. Dale DC, Cottle TE, Fier CJ, Bolyard AA, Bonilla MA, Boxer LA, Cham B, Freedman MH, Kannourakis G, Kinsey SE et al (2003) Severe chronic neutropenia: treatment and follow-up of patients in the Severe Chronic Neutropenia International Registry. Am J Hematol 72:82–93CrossRefGoogle Scholar
  13. Dell’Angelica EC, Shotelersuk V, Aguilar RC et al (1999) Altered trafficking of lysosomal proteins in Hermansky-Pudlak syndrome due to mutations in the beta 3A subunit of the AP-3 adaptor. Mol Cell 3:11–21CrossRefGoogle Scholar
  14. Devriendt K, Kim AS, Mathijs G et al (2001) Constitutively activating mutation in WASP causes X-linked severe congenital neutropenia. Nat Genet 27:313–317CrossRefGoogle Scholar
  15. Donadieu J, Leblanc T, Bader Meunier B, French Severe Chronic Neutropenia Study Group et al (2005) Analysis of risk factors for myelodysplasias, leukemias and death from infection among patients with congenital neutropenia. Experience of the French Severe Chronic Neutropenia Study Group. Haematologica 90:45–53PubMedGoogle Scholar
  16. Donadieu J, Fenneteau O, Beaupain B, Mahlaoui N, Chantelot CB (2011) Congenital neutropenia: diagnosis, molecular bases and patient management. Orphanet J Rare Dis 6:26CrossRefGoogle Scholar
  17. Dong F, Brynes RK, Tidow N, Welte K, Lowenberg B, Touw IP (1995) Mutations in the gene for the granulocyte colony-stimulating-factor receptor in patients with acute myeloid leukemia preceded by severe congenital neutropenia. N Engl J Med 333:487–493CrossRefGoogle Scholar
  18. Dror Y, Freedman MH (2002) Shwachman-Diamond syndrome. Br J Haematol 118:701–713CrossRefGoogle Scholar
  19. Fioredda F, Iacobelli S, van Biezen A, Gaspar B, Ancliff P, Donadieu J et al (2015) Stem cell transplantation in severe congenital neutropenia: an analysis from the European Society for Blood and Marrow Transplantation. Blood 126:1885–1892CrossRefGoogle Scholar
  20. Freedman MH, Bonilla MA, Fier C et al (2000) Myelodisplasia syndrome and acute myeloid leukemia in patients with congenital neutropenia receiving G-CSF therapy. Blood 96:429–436PubMedGoogle Scholar
  21. Gerin I, Veiga-da-Cunha M, Achouri Y et al (1997) Sequence of a putative glucose 6- phosphate translocase, mutated in glycogen storage disease type Ib. FEBS Lett 419:235–238CrossRefGoogle Scholar
  22. Germeshausen M, Ballmaier M, Welte K (2001) Implications of mutations in hematopoietic growth factor receptor genes in congenital cytopenias. Ann N Y Acad Sci 938:305–320CrossRefGoogle Scholar
  23. Germeshausen M, Schulze H, Kratz C et al (2005) An acquired G-CSF receptor mutation results in increased proliferation of CMML cells from a patient with severe congenital neutropenia. Leukemia 19:611–617CrossRefGoogle Scholar
  24. Germeshausen M, Grudzien M, Zeidler C, Abdollahpour H, Yetgin S, Rezaei N et al (2008) Novel HAX1 mutations in patients with severe congenital neutropenia reveal isoform-dependent genotype-phenotype associations. Blood 111:4954–4957CrossRefGoogle Scholar
  25. Germeshausen M, Deerberg S, Peter Y, Reimer C, Kratz CP, Ballmaier M (2013) The spectrum of ELANE mutations and their implications in severe congenital and cyclic neutropenia. Hum Mutat 34:905–914CrossRefGoogle Scholar
  26. Gorlin RJ, Gelb B, Diaz GA et al (2000) WHIM syndrome, an autosomal dominant disorder: clinical, hematological, and molecular studies. Am J Med Genet 91:368–376CrossRefGoogle Scholar
  27. Han J, Goldstein LA, Hou W et al (2010) Deregulation of mitochondrial membrane potential by mitochondrial insertion of granzyme B and direct Hax-1 cleavage. J Biol Chem 285:22461–22472CrossRefGoogle Scholar
  28. Horwitz MS, Duan Z, Korkmaz B et al (2007) Neutrophil elastase in cyclic and severe congenital neutropenia. Blood 109:1817–1824CrossRefGoogle Scholar
  29. Karsunky H, Zeng H, Schmidt T, Zevnik B, Kluge R, Schmid KW, Dührsen U, Möröy T (2002) Inflammatory reactions and severe neutropenia in mice lacking the transcriptional repressor Gfi1. Nat Genet 30:295–300CrossRefGoogle Scholar
  30. Klein C, Grudzien M, Appaswamy G, Germeshausen M, Sandrock I, Schäffer AA et al (2007) HAX1 deficiency causes autosomal recessive severe congenital neutropenia (Kostmann disease). Nat Genet 39:86–92CrossRefGoogle Scholar
  31. Kostman R (1975) Infantile genetic agranulocytosis. A review with presentation of ten new cases. Acta Paediatr Scand 64:362–368CrossRefGoogle Scholar
  32. Kostmann R (1956) Infantile genetic agranulocytosis (agranulocytosis infantilis hereditaria): a new recessive lethal disease in man. Almqvist and Wiksells Boktryckeri, UppsalaGoogle Scholar
  33. Lekstrom-Himes JA, Gallin JI (2000) Immunodeficiency diseases caused by defects in phagocytes. N Engl J Med 343:1703–1714CrossRefGoogle Scholar
  34. Moulding DA, Blundell MP, Spiller DG et al (2007) Unregulated actin polymerization by WASp causes defects of mitosis and cytokinesis in X-linked neutropenia. J Exp Med 204:2213–2224CrossRefGoogle Scholar
  35. Notarangelo LD, Miao CH, Ochs HD (2008) Wiskott-Aldrich syndrome. Curr Opin Hematol 15:30–36CrossRefGoogle Scholar
  36. Notarangelo LD, Savoldi G, Cavagnini S, Bennato V, Vasile S, Pilotta A, Plebani A, Porta F (2014) Severe congenital neutropenia due to G6PC3 deficiency: early and delayed phenotype in two patients with two novel mutations. Ital J Pediatr 40:80CrossRefGoogle Scholar
  37. Paley C, Murphy S, Karayalcin G et al (1991) Treatmemt of neutropenia in Shwachman-Diamond syndrome (SDS) with recombinant human granulocyte colony-stimulating factor (RH-GCSF). Blood 78:3aGoogle Scholar
  38. Person RE, Li FQ, Duan Z, Benson KF, Wechsler J, Papadaki HA, Eliopoulos G, Kaufman C, Bertolone SJ, Nakamoto B et al (2003) Mutations in proto-oncogene GFI1 cause human neutropenia and target ELA2. Nat Genet 34:308–312CrossRefGoogle Scholar
  39. Rosenberg PS, Alter BP, Bolyard AA et al (2006) The incidence of leukemia and mortality from sepsis in patients with severe congenital neutropenia receiving long-term G-CSF therapy. Blood 107:4628–4635CrossRefGoogle Scholar
  40. Rosenberg PS, Alter BP, Link DC et al (2008) Neutrophil elastase mutations and risk of leukaemia in severe congenital neutropenia. Br J Haematol 140:210–213PubMedGoogle Scholar
  41. Rosenberg PS, Zeidler C, Bolyard AA et al (2010) Stable long-term risk of leukaemia in patients with severe congenital neutropenia maintained on G-CSF therapy. Br J Haematol 150:196–199PubMedPubMedCentralGoogle Scholar
  42. Thrasher AJ, Burns SO (2010) WASP: a key immunological multitasker. Nat Rev Immunol 10:182–192CrossRefGoogle Scholar
  43. van der Meer LT, Jansen JH, van der Reijden BA (2010) Gfi1 and Gfi1b: key regulators of hematopoiesis. Leukemia 24:1834–1843CrossRefGoogle Scholar
  44. Volpi L, Roversi G, Colombo EA et al (2010) Targeted next-generation sequencing appoints c16orf57 as clericuziotype poikiloderma with neutropenia gene. Am J Hum Genet 86:72–76CrossRefGoogle Scholar
  45. Welte K, Zeidler C, Dale DC (2006) Severe congenital neutropenia. Semin Hematol 43:189–195CrossRefGoogle Scholar
  46. Westerberg LS, Meelu P, Baptista M et al (2010) Activating WASP mutations associated with X-linked neutropenia result in enhanced actin polymerization, altered cytoskeletal responses, and genomic instability in lymphocytes. J Exp Med 207:1145–1152CrossRefGoogle Scholar
  47. Xia J, Bolyard AA, Rodger E et al (2009) Prevalence of mutations in ELANE, GFI1, HAX1, SBDS, WAS and G6PC3 in patients with severe congenital neutropenia. Br J Haematol 147:535–542CrossRefGoogle Scholar
  48. Zeidler C, Schwinzer B, Welte K (2003) Congenital neutropenias. Rev Clin Exp Hematol 7:72–83PubMedGoogle Scholar
  49. Zhuang D, Qiu Y, Kogan SC, Dong F (2006) Increased CCAAT enhancer-binding protein epsilon (C/EBPepsilon) expression and premature apoptosis in myeloid cells expressing Gfi-1 N382S mutant associated with severe congenital neutropenia. J Biol Chem 281:10745–10751CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Neonatology and Intensive Neonatal Therapy UnitSpedali Civili of BresciaBresciaItaly
  2. 2.Pediatric Oncohematology and Bone Marrow TransplantSpedali Civili HospitalBresciaItaly

Personalised recommendations