Advertisement

Neonatology pp 1523-1547 | Cite as

Physiology and Abnormalities of Leukocytes in Newborns

  • Kurt R. Schibler
Reference work entry

Abstract

Leukocytes have a major role in host defence against invading microorganisms. During the fetal and neonatal periods, leukocyte physiology is peculiar and neutrophil counts vary considerably early in the neonatal period. Neonates, especially preterm children, have an immaturity of neutrophil function and production, with limited abilities to recall mature neutrophils in peripheral blood. Infections may therefore be more challenging at this age. The most common disorders of leukocytes present in newborns are quantitative abnormalities such as neutropenia, neutrophilia, and leukemoid reaction. Quantitative defects in phagocytic leukocytes may also occur in conjunction with qualitative changes. Classification of leukocyte abnormalities according to underlying kinetic mechanisms can provide useful indicators for the diagnosis and management of affected infants. When evaluating a neonate with leukocyte abnormalities, it is helpful to recall that some varieties of these abnormalities are common and others are exceedingly rare. If neutropenia persists for more than 5 days, further evaluation is indicated, particularly if the neutrophil count is less than 500 cells per microliter. Because of the immaturity of the immune system in newborns, early treatment should be initiated to prevent severe consequences. The etiology of leukocyte abnormalities and the seriousness of clinical features determine treatment (antibiotics, granulocytes transfusions, intravenous immunoglobulins, or granulocytes – colony stimulating factor administration). This chapter will focus on the features of newborns’ immune system and higlight the most common causes of leukocyte abnormalities and key therapeutic options.

References

  1. A controlled trial of interferon gamma to prevent infection in chronic granulomatous disease. The International Chronic Granulomatous Disease Cooperative Study Group. (1991) N Engl J Med 324(8): 509–516Google Scholar
  2. African Neonatal Sepsis Trial (AFRINEST) group et al (2015a) Oral amoxicillin compared with injectable procaine benzylpenicillin plus gentamicin for treatment of neonates and young infants with fast breathing when referral is not possible: a randomised, open-label, equivalence trial. Lancet 385(9979):1758–1766CrossRefGoogle Scholar
  3. African Neonatal Sepsis Trial (AFRINEST) group et al (2015b) Simplified antibiotic regimens compared with injectable procaine benzylpenicillin plus gentamicin for treatment of neonates and young infants with clinical signs of possible serious bacterial infection when referral is not possible: a randomised, open-label, equivalence trial. Lancet 385(9979):1767–1776CrossRefGoogle Scholar
  4. Al-Hadithy H et al (1981) Defective neutrophil function in low-birth-weight, premature infants. J Clin Pathol 34(4):366–370PubMedPubMedCentralCrossRefGoogle Scholar
  5. AlMulla ZS, Christensen RD (1995) Neutropenia in the neonate. Clin Perinatol 22(3):711–739CrossRefGoogle Scholar
  6. Ambruso DR et al (1984) Oxidative metabolism of cord blood neutrophils: relationship to content and degranulation of cytoplasmic granules. Pediatr Res 18(11):1148–1153PubMedCrossRefGoogle Scholar
  7. Azzopardi DV et al (2009) Moderate hypothermia to treat perinatal asphyxial encephalopathy. N Engl J Med 361(14):1349–1358CrossRefPubMedGoogle Scholar
  8. Bacterial etiology of serious infections in young infants in developing countries: results of a multicenter study. The WHO Young Infants Study Group. (1999) Pediatr Infect Dis J 18(10 Suppl): S17–S22Google Scholar
  9. Baehner RL (1975) Microbe ingestion and killing by neutrophils: normal mechanisms and abnormalities. Clin Haematol 4(3):609–633PubMedGoogle Scholar
  10. Bainton DF (1981) Selective abnormalities of azurophil and specific granules of human neutrophilic leukocytes. Fed Proc 40(5):1443–1450PubMedGoogle Scholar
  11. Beekman R, Touw IP (2010) G-CSF and its receptor in myeloid malignancy. Blood 115(25):5131–5136PubMedCrossRefGoogle Scholar
  12. Bektas S, Goetze B, Speer CP (1990) Decreased adherence, chemotaxis and phagocytic activities of neutrophils from preterm neonates. Acta Paediatr Scand 79(11):1031–1038PubMedCrossRefGoogle Scholar
  13. Bertrand Y et al (2002) Reticular dysgenesis: HLA non-identical bone marrow transplants in a series of 10 patients. Bone Marrow Transplant 29(9):759–762PubMedCrossRefGoogle Scholar
  14. Birle A et al (2015) Neutrophil chemotaxis in cord blood of term and preterm neonates is reduced in preterm neonates and influenced by the mode of delivery and anaesthesia. PLoS One 10(4):e0120341PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bonilla MA et al (1989) Effects of recombinant human granulocyte colony-stimulating factor on neutropenia in patients with congenital agranulocytosis. N Engl J Med 320(24):1574–1580PubMedCrossRefGoogle Scholar
  16. Boocock GR et al (2003) Mutations in SBDS are associated with Shwachman-Diamond syndrome. Nat Genet 33(1):97–101PubMedCrossRefGoogle Scholar
  17. Boxer LA, Yokoyama M, Lalezari P (1972) Isoimmune neonatal neutropenia. J Pediatr 80(5):783–787PubMedCrossRefGoogle Scholar
  18. Boxer LA et al (1975) Autoimmune neutropenia. N Engl J Med 293(15):748–753PubMedCrossRefGoogle Scholar
  19. Brodeur GM et al (1980) Transient leukemoid reaction and trisomy 21 mosaicism in a phenotypically normal newborn. Blood 55(4):691–693PubMedGoogle Scholar
  20. Broxmeyer HE, Kim CH (1999) Regulation of hematopoiesis in a sea of chemokine family members with a plethora of redundant activities. Exp Hematol 27(7):1113–1123PubMedCrossRefGoogle Scholar
  21. Burroughs L, Woolfrey A, Shimamura A (2009) Shwachman-Diamond syndrome: a review of the clinical presentation, molecular pathogenesis, diagnosis, and treatment. Hematol Oncol Clin North Am 23(2):233–248PubMedPubMedCentralCrossRefGoogle Scholar
  22. Bux J (2001) Molecular nature of granulocyte antigens. Transfus Clin Biol 8(3):242–247PubMedCrossRefGoogle Scholar
  23. Bux J et al (1998) Diagnosis and clinical course of autoimmune neutropenia in infancy: analysis of 240 cases. Blood 91(1):181–186PubMedGoogle Scholar
  24. Cadnapaphornchai M, Faix RG (1992) Increased nosocomial infection in neutropenic low birth weight (2000 grams or less) infants of hypertensive mothers. J Pediatr 121(6):956–961PubMedCrossRefGoogle Scholar
  25. Cairo MS et al (1990) Seven-day administration of recombinant human granulocyte colony-stimulating factor to newborn rats: modulation of neonatal neutrophilia, myelopoiesis, and group B Streptococcus sepsis. Blood 76(9):1788–1794PubMedGoogle Scholar
  26. Cairo MS et al (1991) Modulation of neonatal rat myeloid kinetics resulting in peripheral neutrophilia by single pulse administration of Rh granulocyte-macrophage colony-stimulating factor and Rh granulocyte colony-stimulating factor. Biol Neonate 59(1):13–21PubMedCrossRefGoogle Scholar
  27. Carr R (2000) Neutrophil production and function in newborn infants. Br J Haematol 110(1):18–28PubMedCrossRefGoogle Scholar
  28. Carr R, Modi N, Dore C (2003) G-CSF and GM-CSF for treating or preventing neonatal infections. Cochrane Database Syst Rev (3): CD003066Google Scholar
  29. Carr R et al (2009) Granulocyte-macrophage colony stimulating factor administered as prophylaxis for reduction of sepsis in extremely preterm, small for gestational age neonates (the PROGRAMS trial): a single-blind, multicentre, randomised controlled trial. Lancet 373(9659):226–233PubMedCrossRefGoogle Scholar
  30. Chan VW et al (1999) Secondary lymphoid-tissue chemokine (SLC) is chemotactic for mature dendritic cells. Blood 93(11):3610–3616PubMedGoogle Scholar
  31. Christensen RD (1989) Neutrophil kinetics in the fetus and neonate. Am J Pediatr Hematol Oncol 11(2):215–223PubMedGoogle Scholar
  32. Christensen RD, Rothstein G (1980) Exhaustion of mature marrow neutrophils in neonates with sepsis. J Pediatr 96(2):316–318PubMedCrossRefGoogle Scholar
  33. Conway LT et al (1987) Natural history of primary autoimmune neutropenia in infancy. Pediatrics 79(5):728–733PubMedGoogle Scholar
  34. Corey SJ, Wollman MR, Deshpande RV (1996) Granulocyte colony-stimulating factor and congenital neutropenia--risk of leukemia? J Pediatr 129(1):187–188PubMedCrossRefGoogle Scholar
  35. Craft AP, Finer NN, Barrington KJ (2000) Vancomycin for prophylaxis against sepsis in preterm neonates. Cochrane Database Syst Rev (2): CD001971Google Scholar
  36. Dale DC, Bolyard AA, Hammond WP (1993) Cyclic neutropenia: natural history and effects of long-term treatment with recombinant human granulocyte colony-stimulating factor. Cancer Invest 11(2):219–223PubMedCrossRefGoogle Scholar
  37. Dale DC et al (2000) Mutations in the gene encoding neutrophil elastase in congenital and cyclic neutropenia. Blood 96(7):2317–2322PubMedGoogle Scholar
  38. D'Ambola JB et al (1988) Human and rabbit newborn lung macrophages have reduced anti-Candida activity. Pediatr Res 24(3):285–290PubMedCrossRefGoogle Scholar
  39. Doron MW et al (1994) Increased incidence of sepsis at birth in neutropenic infants of mothers with preeclampsia. J Pediatr 125(3):452–458PubMedCrossRefGoogle Scholar
  40. Douglas SD, Yoder MC (1996) The mononuclear phagocyte and dendritic cell systems. In: Stiehm ER (ed) Immunological disorders in infants and children. W.B. Saunders, Philadelphia, pp 113–132Google Scholar
  41. Erdman SH et al (1982) Supply and release of storage neutrophils. A developmental study. Biol Neonate 41(3–4):132–137PubMedCrossRefGoogle Scholar
  42. Etzioni A (2009) Genetic etiologies of leukocyte adhesion defects. Curr Opin Immunol 21(5):481–486PubMedCrossRefGoogle Scholar
  43. Fagerholm SC, Lek HS, Morrison VL (2014) Kindlin-3 in the immune system. Am J Clin Exp Immunol 3(1):37–42PubMedPubMedCentralGoogle Scholar
  44. Farruggia P (2016) Immune neutropenias of infancy and childhood. World J Pediatr 12(2):142–148PubMedCrossRefGoogle Scholar
  45. Feng X et al (2014) Prophylactic first-line antibiotics reduce infectious fever and shorten hospital stay during chemotherapy-induced agranulocytosis in childhood acute myeloid leukemia. Acta Haematol 132(1):112–117PubMedCrossRefGoogle Scholar
  46. Fong ON et al (2014) Expression profile of cord blood neutrophils and dysregulation of HSPA1A and OLR1 upon challenge by bacterial peptidoglycan. J Leukoc Biol 95(1):169–178PubMedCrossRefGoogle Scholar
  47. Forman ML, Stiehm ER (1969) Impaired opsonic activity but normal phagocytosis in low-birth-weight infants. N Engl J Med 281(17):926–931PubMedCrossRefGoogle Scholar
  48. Gale RP, Sparkes RS, Golde DW (1978) Bone marrow origin of hepatic macrophages (Kupffer cells) in humans. Science 201(4359):937–938PubMedCrossRefGoogle Scholar
  49. Ganapathi KA et al (2007) The human Shwachman-Diamond syndrome protein, SBDS, associates with ribosomal RNA. Blood 110(5):1458–1465PubMedPubMedCentralCrossRefGoogle Scholar
  50. Ghosh S, Thrasher AJ, Gaspar HB (2015) Gene therapy for monogenic disorders of the bone marrow. Br J Haematol 171:155–170PubMedCrossRefGoogle Scholar
  51. Gil-Krzewska A et al (2016) Chediak-Higashi syndrome: lysosomal trafficking regulator domains regulate exocytosis of lytic granules but not cytokine secretion by natural killer cells. J Allergy Clin Immunol 137(4):1165–1177PubMedCrossRefGoogle Scholar
  52. Gladstone IM et al (1990) A ten-year review of neonatal sepsis and comparison with the previous fifty-year experience. Pediatr Infect Dis J 9(11):819–825PubMedCrossRefGoogle Scholar
  53. Gorlin JB (1993) The phagocyte system: structure and function. In: Natan D (ed) Haematology of infancy and childhood. W.B. Saunders, Philadelphia, p 882Google Scholar
  54. Greenhow TL, Hung YY, Herz AM (2012) Changing epidemiology of bacteremia in infants aged 1 week to 3 months. Pediatrics 129(3):e590–e596PubMedCrossRefGoogle Scholar
  55. Haller O, Arnheiter H, Lindenmann J (1979) Natural, genetically determined resistance toward influenza virus in hemopoietic mouse chimeras. Role of mononuclear phagocytes. J Exp Med 150(1):117–126PubMedCrossRefGoogle Scholar
  56. Harris MC et al (1983) Phagocytosis of group B streptococcus by neutrophils from newborn infants. Pediatr Res 17(5):358–361PubMedCrossRefGoogle Scholar
  57. Hawes CS, Kemp AS, Jones WR (1980) In vitro parameters of cell-mediated immunity in the human neonate. Clin Immunol Immunopathol 17(4):530–536PubMedCrossRefGoogle Scholar
  58. Heiss NS et al (1998) X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat Genet 19(1):32–38CrossRefPubMedGoogle Scholar
  59. Hill HR (1987) Biochemical, structural, and functional abnormalities of polymorphonuclear leukocytes in the neonate. Pediatr Res 22(4):375–382PubMedCrossRefGoogle Scholar
  60. Homans AC, Verissimo AM, Vlacha V (1993) Transient abnormal myelopoiesis of infancy associated with trisomy 21. Am J Pediatr Hematol Oncol 15(4):392–399PubMedGoogle Scholar
  61. Horwitz M et al (1999) Mutations in ELA2, encoding neutrophil elastase, define a 21-day biological clock in cyclic haematopoiesis. Nat Genet 23(4):433–436PubMedCrossRefGoogle Scholar
  62. Inis Collaborative Group et al (2011) Treatment of neonatal sepsis with intravenous immune globulin. N Engl J Med 365(13):1201–1211CrossRefGoogle Scholar
  63. Introne W, Boissy RE, Gahl WA (1999) Clinical, molecular, and cell biological aspects of Chediak-Higashi syndrome. Mol Genet Metab 68(2):283–303PubMedCrossRefGoogle Scholar
  64. Jacobs RF et al (1985) Phagocytosis of type III group B streptococci by neonatal monocytes: enhancement by fibronectin and gammaglobulin. J Infect Dis 152(4):695–700PubMedCrossRefGoogle Scholar
  65. Jacobs SE et al (2011) Whole-body hypothermia for term and near-term newborns with hypoxic-ischemic encephalopathy: a randomized controlled trial. Arch Pediatr Adolesc Med 165(8):692–700PubMedCrossRefGoogle Scholar
  66. Jenkins DD et al (2013) Altered circulating leukocytes and their chemokines in a clinical trial of therapeutic hypothermia for neonatal hypoxic ischemic encephalopathy. Pediatr Crit Care Med 14(8):786–795PubMedCrossRefGoogle Scholar
  67. Ji X et al (2016) Lysosomal trafficking regulator (LYST). Adv Exp Med Biol 854:745–750PubMedCrossRefGoogle Scholar
  68. Kirwan M, Dokal I (2008) Dyskeratosis congenita: a genetic disorder of many faces. Clin Genet 73(2):103–112PubMedCrossRefGoogle Scholar
  69. Kjeldsen L et al (1996) Granules and secretory vesicles in human neonatal neutrophils. Pediatr Res 40(1):120–129PubMedCrossRefGoogle Scholar
  70. Klein RB et al (1977) Decreased mononuclear and polymorphonuclear chemotaxis in human newborns, infants, and young children. Pediatrics 60(4):467–472PubMedGoogle Scholar
  71. Kocherlakota P, La Gamma EF (1997) Human granulocyte colony-stimulating factor may improve outcome attributable to neonatal sepsis complicated by neutropenia. Pediatrics 100(1), E6PubMedCrossRefGoogle Scholar
  72. Koenig JM, Christensen RD (1989a) Incidence, neutrophil kinetics, and natural history of neonatal neutropenia associated with maternal hypertension. N Engl J Med 321(9):557–562PubMedCrossRefGoogle Scholar
  73. Koenig JM, Christensen RD (1989b) Neutropenia and thrombocytopenia in infants with Rh hemolytic disease. J Pediatr 114(4 Pt 1):625–631PubMedCrossRefGoogle Scholar
  74. Koenig JM, Christensen RD (1991) The mechanism responsible for diminished neutrophil production in neonates delivered of women with pregnancy-induced hypertension. Am J Obstet Gynecol 165(2):467–473PubMedCrossRefGoogle Scholar
  75. Kostmann R (1956) Infantile genetic agranulocytosis: agranulocytosis infantilis hereditaria. Acta Paediatr Suppl 45(Suppl 105):1–78PubMedGoogle Scholar
  76. Kuo CY, Kohn DB (2016) Gene therapy for the treatment of primary immune deficiencies. Curr Allergy Asthma Rep 16(5):39PubMedPubMedCentralCrossRefGoogle Scholar
  77. Lalezari P, Radel E (1974) Neutrophil-specific antigens: immunology and clinical significance. Semin Hematol 11(3):281–290PubMedGoogle Scholar
  78. Lalezari P, Khorshidi M, Petrosova M (1986) Autoimmune neutropenia of infancy. J Pediatr 109(5):764–769PubMedCrossRefGoogle Scholar
  79. Lamba M et al (2016) Bacteriological spectrum and antimicrobial susceptibility pattern of neonatal septicaemia in a tertiary care hospital of North India. J Matern Fetal Neonatal Med 29(24):3993–3998PubMedCrossRefGoogle Scholar
  80. Levine DH, Madyastha PR (1986) Isoimmune neonatal neutropenia. Am J Perinatol 3(3):231–233PubMedCrossRefGoogle Scholar
  81. Link DC et al (2007) Distinct patterns of mutations occurring in de novo AML versus AML arising in the setting of severe congenital neutropenia. Blood 110(5):1648–1655PubMedPubMedCentralCrossRefGoogle Scholar
  82. Luchtman-Jones L, Schwartz AL (2002) Hematologic problems in the fetus and neonate. In: Fanaroff AA, Martin RJ (eds) Neonatal-perinatal medicine: diseases of the fetus and infant. Mosby, St. Louis, pp 1205–1206Google Scholar
  83. Lyall EG, Lucas GF, Eden OB (1992) Autoimmune neutropenia of infancy. J Clin Pathol 45(5):431–434PubMedPubMedCentralCrossRefGoogle Scholar
  84. Maheshwari A, Christensen RD (2004) Developmental granulopoiesis. In: Polin RA, Fox WW, Abman SH (eds) Fetal and neonatal physiology. Saunders, Philadelphia, pp 1388–1396CrossRefGoogle Scholar
  85. Makaryan V et al (2015) The diversity of mutations and clinical outcomes for ELANE-associated neutropenia. Curr Opin Hematol 22(1):3–11PubMedPubMedCentralCrossRefGoogle Scholar
  86. Manroe BL et al (1979) The neonatal blood count in health and disease. I. Reference values for neutrophilic cells. J Pediatr 95(1):89–98PubMedCrossRefGoogle Scholar
  87. Marchant EA et al (2013) Neonatal sepsis due to coagulase-negative staphylococci. Clin Dev Immunol 2013:586076PubMedPubMedCentralCrossRefGoogle Scholar
  88. Marlow N et al (2013) A randomised trial of granulocyte-macrophage colony-stimulating factor for neonatal sepsis: outcomes at 2 years. Arch Dis Child Fetal Neonatal Ed 98(1):F46–F53PubMedCrossRefGoogle Scholar
  89. Marlow N et al (2015) A randomised trial of granulocyte-macrophage colony-stimulating factor for neonatal sepsis: childhood outcomes at 5 years. Arch Dis Child Fetal Neonatal Ed 100(4):F320–F326PubMedPubMedCentralCrossRefGoogle Scholar
  90. Marodi L, Csorba S, Nagy B (1980) Chemotactic and random movement of human newborn monocytes. Eur J Pediatr 135(1):73–75PubMedCrossRefGoogle Scholar
  91. Marodi L, Leijh PC, van Furth R (1984) Characteristics and functional capacities of human cord blood granulocytes and monocytes. Pediatr Res 18(11):1127–1131PubMedCrossRefGoogle Scholar
  92. Marrone A et al (2007) Telomerase reverse-transcriptase homozygous mutations in autosomal recessive dyskeratosis congenita and Hoyeraal-Hreidarsson syndrome. Blood 110(13):4198–4205PubMedPubMedCentralCrossRefGoogle Scholar
  93. McCracken GH Jr, Eichenwald HF (1971) Leukocyte function and the development of opsonic and complement activity in the neonate. Am J Dis Child 121(2):120–126PubMedGoogle Scholar
  94. Meuret G, Hoffmann G (1973) Monocyte kinetic studies in normal and disease states. Br J Haematol 24(3):275–285PubMedCrossRefGoogle Scholar
  95. Meuret G, Batara E, Furste HO (1975) Monocytopoiesis in normal man: pool size, proliferation activity and DNA synthesis time of promonocytes. Acta Haematol 54(5):261–270PubMedCrossRefGoogle Scholar
  96. Miller ME (1978) Phagocytic cells. In: Miller ME (ed) Host defense in the human neonate. Grune & Stratton, New York, pp 59–71Google Scholar
  97. Mouzinho A et al (1994) Revised reference ranges for circulating neutrophils in very-low-birth-weight neonates. Pediatrics 94(1):76–82PubMedGoogle Scholar
  98. Mularoni A et al (2014) The role of coagulase-negative staphylococci in early onset sepsis in a large European cohort of very low birth weight infants. Pediatr Infect Dis J 33(5):e121–e125PubMedCrossRefGoogle Scholar
  99. Nussbaum C et al (2013) Neutrophil and endothelial adhesive function during human fetal ontogeny. J Leukoc Biol 93(2):175–184PubMedPubMedCentralCrossRefGoogle Scholar
  100. Ohlsson A, Lacy JB (2004) Intravenous immunoglobulin for preventing infection in preterm and/or low-birth-weight infants. Cochrane Database Syst Rev (1): CD000361Google Scholar
  101. Ohlsson A, Lacy JB (2015) Intravenous immunoglobulin for suspected or proven infection in neonates. Cochrane Database Syst Rev (3): CD001239Google Scholar
  102. Ozkaynak MF et al (2005) Randomized comparison of antibiotics with and without granulocyte colony-stimulating factor in children with chemotherapy-induced febrile neutropenia: a report from the Children's Oncology Group. Pediatr Blood Cancer 45(3):274–280PubMedCrossRefGoogle Scholar
  103. Pahwa SG et al (1977) Cellular and humoral components of monocyte and neutrophil chemotaxis in cord blood. Pediatr Res 11(5):677–680PubMedCrossRefGoogle Scholar
  104. Pammi M, Brocklehurst P (2011) Granulocyte transfusions for neonates with confirmed or suspected sepsis and neutropenia. Cochrane Database Syst Rev (10): CD003956Google Scholar
  105. Parwaresch MR, Wacker HH (1984) Origin and kinetics of resident tissue macrophages. Parabiosis studies with radiolabelled leucocytes. Cell Tissue Kinet 17(1):25–39PubMedGoogle Scholar
  106. Philip AG, Hewitt JR (1980) Early diagnosis of neonatal sepsis. Pediatrics 65(5):1036–1041PubMedGoogle Scholar
  107. Phillips ML et al (1995) Neutrophil adhesion in leukocyte adhesion deficiency syndrome type 2. J Clin Invest 96(6):2898–2906PubMedPubMedCentralCrossRefGoogle Scholar
  108. Raghunathan R et al (1982) Phagocyte chemotaxis in the perinatal period. J Clin Immunol 2(3):242–245PubMedCrossRefGoogle Scholar
  109. Rodwell RL et al (1993) Hematologic scoring system in early diagnosis of sepsis in neutropenic newborns. Pediatr Infect Dis J 12(5):372–376PubMedPubMedCentralCrossRefGoogle Scholar
  110. Rognoni E, Ruppert R, Fassler R (2016) The kindlin family: functions, signaling properties and implications for human disease. J Cell Sci 129(1):17–27PubMedCrossRefGoogle Scholar
  111. Roos D (2016) Chronic granulomatous disease. Br Med Bull 118(1):50–63PubMedPubMedCentralCrossRefGoogle Scholar
  112. Roper M et al (1985) Severe congenital leukopenia (reticular dysgenesis). Immunologic and morphologic characterizations of leukocytes. Am J Dis Child 139(8):832–835PubMedCrossRefGoogle Scholar
  113. Rubin LG et al (2002) Evaluation and treatment of neonates with suspected late-onset sepsis: a survey of neonatologists' practices. Pediatrics 110(4), e42PubMedCrossRefGoogle Scholar
  114. Rujkijyanont P et al (2009) Bone marrow cells from patients with Shwachman-Diamond syndrome abnormally express genes involved in ribosome biogenesis and RNA processing. Br J Haematol 145(6):806–815PubMedCrossRefGoogle Scholar
  115. Sanchez-Guiu I et al (2014) Chediak-Higashi syndrome: description of two novel homozygous missense mutations causing divergent clinical phenotype. Eur J Haematol 92(1):49–58PubMedCrossRefGoogle Scholar
  116. Savage SA, Alter BP (2009) Dyskeratosis congenita. Hematol Oncol Clin North Am 23(2):215–231PubMedPubMedCentralCrossRefGoogle Scholar
  117. Schelonka RL et al (1994) Peripheral leukocyte count and leukocyte indexes in healthy newborn term infants. J Pediatr 125(4):603–606PubMedCrossRefGoogle Scholar
  118. Schibler KR et al (1998) A randomized, placebo-controlled trial of granulocyte colony-stimulating factor administration to newborn infants with neutropenia and clinical signs of early-onset sepsis. Pediatrics 102(1 Pt 1):6–13PubMedCrossRefGoogle Scholar
  119. Schuit KE, Powell DA (1980) Phagocytic dysfunction in monocytes of normal newborn infants. Pediatrics 65(3):501–504PubMedGoogle Scholar
  120. Seale AC, Obiero CW, Berkley JA (2015) Rational development of guidelines for management of neonatal sepsis in developing countries. Curr Opin Infect Dis 28(3):225–230PubMedPubMedCentralCrossRefGoogle Scholar
  121. Shah PS, Kaufman DA (2009) Antistaphylococcal immunoglobulins to prevent staphylococcal infection in very low birth weight infants. Cochrane Database Syst Rev (2): CD006449Google Scholar
  122. Shah TA et al (2012) Hospital and neurodevelopmental outcomes of extremely low-birth-weight infants with necrotizing enterocolitis and spontaneous intestinal perforation. J Perinatol 32(7):552–558PubMedCrossRefGoogle Scholar
  123. Shane AL, Stoll BJ (2014) Neonatal sepsis: progress towards improved outcomes. J Infect 68(Suppl 1):S24–S32PubMedCrossRefGoogle Scholar
  124. Shankaran S et al (2008) Outcomes of safety and effectiveness in a multicenter randomized, controlled trial of whole-body hypothermia for neonatal hypoxic-ischemic encephalopathy. Pediatrics 122(4):e791–e798PubMedPubMedCentralCrossRefGoogle Scholar
  125. Shwachman H et al (1964) The syndrome of pancreatic insufficiency and bone marrow dysfunction. J Pediatr 65:645–663PubMedCrossRefGoogle Scholar
  126. Siegel JD, McCracken GH Jr (1981) Sepsis neonatorum. N Engl J Med 304(11):642–647PubMedCrossRefGoogle Scholar
  127. Simbruner G et al (2010) Systemic hypothermia after neonatal encephalopathy: outcomes of neo.nEURO.network RCT. Pediatrics 126(4):e771–e778PubMedPubMedCentralCrossRefGoogle Scholar
  128. Skokowa J et al (2014) Cooperativity of RUNX1 and CSF3R mutations in severe congenital neutropenia: a unique pathway in myeloid leukemogenesis. Blood 123(14):2229–2237PubMedCrossRefGoogle Scholar
  129. Sozzani S et al (1999) The ro le of chemokines in the regulation of dendritic cell trafficking. J Leukoc Biol 66(1):1–9PubMedCrossRefGoogle Scholar
  130. Speer CP, Johnston RB Jr (1984) Phagocyte function. In: Ogra PL (ed) Neonatal infections: nutritional and immunologic interactions. Grune & Stratton, Orlando, pp 21–36Google Scholar
  131. Speer CP et al (1988) Phagocytosis-associated functions in neonatal monocyte-derived macrophages. Pediatr Res 24(2):213–216PubMedPubMedCentralCrossRefGoogle Scholar
  132. Stoll BJ et al (2011) Early onset neonatal sepsis: the burden of group B Streptococcal and E. coli disease continues. Pediatrics 127(5):817–826PubMedPubMedCentralCrossRefGoogle Scholar
  133. Stoll BJ et al (2015) Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993–2012. JAMA 314(10):1039–1051PubMedPubMedCentralCrossRefGoogle Scholar
  134. Thomas ED et al (1976) Direct evidence for a bone marrow origin of the alveolar macrophage in man. Science 192(4243):1016–1018PubMedCrossRefGoogle Scholar
  135. Trubowitz S, Davies S (1982) Pathophysiology of the monocyte-macrophage system. In: Trubowitz S (ed) The human bone marrow: anatomy, physiology, and pathophysiology. CRC Press, Boco Raton, pp 95–126Google Scholar
  136. Tsai MH et al (2016) Infectious complications and morbidities after neonatal bloodstream infections: an observational cohort study. Medicine (Baltimore) 95(11):e3078PubMedCentralCrossRefGoogle Scholar
  137. Uzel G et al (2010) Complications of tumor necrosis factor-alpha blockade in chronic granulomatous disease-related colitis. Clin Infect Dis 51(12):1429–1434PubMedPubMedCentralCrossRefGoogle Scholar
  138. van Furth R (1992) Development and distribution of mononuclear phagocytes. In: Gallin JI (ed) Inflammation: basic principles and clinical correlates. Raven, New York, pp 325–340Google Scholar
  139. van Furth R, Sluiter W (1986) Distribution of blood monocytes between a marginating and a circulating pool. J Exp Med 163(2):474–479PubMedCrossRefGoogle Scholar
  140. van Furth R, Raeburn JA, van Zwet TL (1979) Characteristics of human mononuclear phagocytes. Blood 54(2):485–500PubMedGoogle Scholar
  141. Veldhuisen B et al (2014) Molecular typing of human platelet and neutrophil antigens (HPA and HNA). Transfus Apher Sci 50(2):189–199PubMedCrossRefGoogle Scholar
  142. Volkman A (1966) The origin and turnover of mononuclear cells in peritoneal exudates in rats. J Exp Med 124(2):241–254PubMedPubMedCentralCrossRefGoogle Scholar
  143. Weston WL et al (1977) Monocyte-macrophage function in the newborn. Am J Dis Child 131(11):1241–1242PubMedGoogle Scholar
  144. Whitelaw DM (1972) Observations on human monocyte kinetics after pulse labeling. Cell Tissue Kinet 5(4):311–317PubMedGoogle Scholar
  145. Xanthou M et al (1975) Phagocytosis and killing ability of Candida albicans by blood leucocytes of healthy term and preterm babies. Arch Dis Child 50(1):72–75PubMedPubMedCentralCrossRefGoogle Scholar
  146. Yegin O (1983) Chemotaxis in childhood. Pediatr Res 17(3):183–187PubMedCrossRefGoogle Scholar
  147. Zaidi AK et al (2009) Pathogens associated with sepsis in newborns and young infants in developing countries. Pediatr Infect Dis J 28(1 Suppl):S10–S18PubMedCrossRefGoogle Scholar
  148. Zipursky A (1993) Isoimmune hemolytic disease. In: Nathan DG (ed) Hematology of infancy and childhood. WB Saunders, Philadelphia, p 65Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Perinatal InstituteCincinnati Children’s Hospital Medical CenterCincinnatiUSA

Personalised recommendations