Advertisement

Neonatology pp 1151-1167 | Cite as

Pathologic Unconjugated Hyperbilirubinemia–Isoimmunization, Abnormalities of Red Blood Cells, and Infections

  • Michael Kaplan
  • Ronald J. Wong
  • David K. Stevenson
Reference work entry

Abstract

Although pathologic unconjugated hyperbilirubinemia can be best understood in terms of primary problems with bilirubin uptake and conjugation, most pathologic unconjugated hyperbilirubinemia occurring after birth and requiring treatment is often associated with increased bilirubin production and further exacerbated by environmental or acquired factors, such as isoimmunization, abnormalities of red blood cells, and infection. This chapter will describe the etiology and pathogenesis of unconjugated hyperbilirubinemia, its genetic predisposition, as well as current screening tools and treatment strategies.

References

  1. Alcock GS, Liley H (2002) Immunoglobulin infusion for isoimmune haemolytic jaundice in neonates. Cochrane Database Syst Rev:CD003313Google Scholar
  2. American Academy of Pediatrics (2004) Management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation. Pediatrics 114:297–316CrossRefGoogle Scholar
  3. Berardi A, Lugli L, Ferrari F et al (2006) Kernicterus associated with hereditary spherocytosis and UGT1A1 promoter polymorphism. Biol Neonate 90:243–246CrossRefGoogle Scholar
  4. Beutler E (1994) G6PD deficiency. Blood 84:3613–3636PubMedGoogle Scholar
  5. Beutler E, Gelbart T, Demina A (1998) Racial variability in the UDP-glucuronosyltransferase 1 (UGT1A1) promoter: a balanced polymorphism for regulation of bilirubin metabolism? Proc Natl Acad Sci USA 95:8170–8174CrossRefGoogle Scholar
  6. Bhutani VK, Johnson L, Sivieri EM (1999) Predictive ability of a predischarge hour-specific serum bilirubin for subsequent significant hyperbilirubinemia in healthy term and near-term newborns. Pediatrics 103:6–14CrossRefGoogle Scholar
  7. Bhutani VK, Johnson LH, Jeffrey Maisels M et al (2004) Kernicterus: epidemiological strategies for its prevention through systems-based approaches. J Perinatol 24:650–662CrossRefGoogle Scholar
  8. Blanchette V, Dror Y, Chan A (2005) Hematology. In: MacDonald MG, Mullett MD, Seschia MMK (eds) Avery’s neonatology: pathophysiology and management of the newborn. Lippincott, Williams and Wilkins, Philadelphia, pp 1169–1234Google Scholar
  9. Bosma PJ, Chowdhury JR, Bakker C et al (1995) The genetic basis of the reduced expression of bilirubin UDP-glucuronosyltransferase 1 in Gilbert’s syndrome. N Engl J Med 333:1171–1175CrossRefGoogle Scholar
  10. Bowman JM (1988) The prevention of Rh immunization. Transfus Med Rev 2:129–150CrossRefGoogle Scholar
  11. Castillo Cuadrado ME, Bhutani VK, Aby JL et al (2015) Evaluation of a new end-tidal carbon monoxide monitor from the bench to the bedside. Acta Paediatr 104:e279–e282CrossRefGoogle Scholar
  12. Chërif-Zahar B, Mattéi MG, Le Van Kim C et al (1991) Localization of the human Rh blood group gene structure to chromosome region 1p34.3-1p36.1 by in situ hybridization. Hum Genet 86:398–400CrossRefGoogle Scholar
  13. Christensen RD, Henry E (2010) Hereditary spherocytosis in neonates with hyperbilirubinemia. Pediatrics 125:120–125CrossRefGoogle Scholar
  14. Christensen RD, Yaish HM, Lemons RS (2014) Neonatal hemolytic jaundice: morphologic features of erythrocytes that will help you diagnose the underlying condition. Neonatology 105:243–249CrossRefGoogle Scholar
  15. Christensen RD, Lambert DK, Henry E et al (2015a) End-tidal carbon monoxide as an indicator of the hemolytic rate. Blood Cells Mol Dis 54:292–296CrossRefGoogle Scholar
  16. Christensen RD, Yaish HM, Gallagher PG (2015b) A pediatrician’s practical guide to diagnosing and treating hereditary spherocytosis in neonates. Pediatrics 135:1107–1114CrossRefGoogle Scholar
  17. De Boer IP, Zeestraten EC, Lopriore E et al (2008) Pediatric outcome in Rhesus hemolytic disease treated with and without intrauterine transfusion. Am J Obstet Gynecol 198(54):e51–e54Google Scholar
  18. de Haas M, Thurik FF, Koelewijn JM et al (2015) Haemolytic disease of the fetus and newborn. Vox Sang 109:99–113CrossRefGoogle Scholar
  19. Denschlag D, Marculescu R, Unfried G et al (2004) The size of a microsatellite polymorphism of the haem oxygenase 1 gene is associated with idiopathic recurrent miscarriage. Mol Hum Reprod 10:211–214CrossRefGoogle Scholar
  20. Fairbanks VF, Fernandez MN (1969) The identification of metabolic errors associated with hemolytic anemia. JAMA 208:316–320CrossRefGoogle Scholar
  21. Fallstrom SP, Bjure J (1968) Endogenous formation of carbon monoxide in newborn infants. 3. ABO incompatibility. Acta Paediatr Scand 57:137–144CrossRefGoogle Scholar
  22. Fernandes A, Silva RF, Falcao AS et al (2004) Cytokine production, glutamate release and cell death in rat cultured astrocytes treated with unconjugated bilirubin and LPS. J Neuroimmunol 153:64–75CrossRefGoogle Scholar
  23. Gamaleldin R, Iskander I, Seoud I et al (2011) Risk factors for neurotoxicity in newborns with severe neonatal hyperbilirubinemia. Pediatrics 128:e925–e931CrossRefGoogle Scholar
  24. Grace RF, Zanella A, Neufeld EJ et al (2015) Erythrocyte pyruvate kinase deficiency: 2015 status report. Am J Hematol 90:825–830CrossRefGoogle Scholar
  25. Group WW (1989) Glucose-6-phosphate dehydrogenase deficiency. WHO Working Group. Bull World Health Organ 67:601–611Google Scholar
  26. Grundbacher FJ (1980) The etiology of ABO hemolytic disease of the newborn. Transfusion 20:563–568CrossRefGoogle Scholar
  27. Hackney DN, Knudtson EJ, Rossi KQ et al (2004) Management of pregnancies complicated by anti-c isoimmunization. Obstet Gynecol 103:24–30CrossRefGoogle Scholar
  28. Herschel M, Beutler E (2001) Low glucose-6-phosphate dehydrogenase enzyme activity level at the time of hemolysis in a male neonate with the African type of deficiency. Blood Cells Mol Dis 27:918–923CrossRefGoogle Scholar
  29. Herschel M, Ryan M, Gelbart T et al (2002) Hemolysis and hyperbilirubinemia in an African American neonate heterozygous for glucose-6-phosphate dehydrogenase deficiency. J Perinatol 22:577–579CrossRefGoogle Scholar
  30. Hsia DY, Allen FH Jr, Gellis SS et al (1952) Erythroblastosis fetalis. VIII. Studies of serum bilirubin in relation to Kernicterus. N Engl J Med 247:668–671CrossRefGoogle Scholar
  31. Hua L, Shi D, Bishop PR et al (2005) The role of UGT1A1*28 mutation in jaundiced infants with hypertrophic pyloric stenosis. Pediatr Res 58:881–884CrossRefGoogle Scholar
  32. Huang CS, Chang PF, Huang MJ et al (2002) Glucose-6-phosphate dehydrogenase deficiency, the UDP-glucuronosyltransferase 1A1 gene, and neonatal hyperbilirubinemia. Gastroenterology 123:127–133CrossRefGoogle Scholar
  33. Hudon L, Moise KJ Jr, Hegemier SE et al (1998) Long-term neurodevelopmental outcome after intrauterine transfusion for the treatment of fetal hemolytic disease. Am J Obstet Gynecol 179:858–863CrossRefGoogle Scholar
  34. Iolascon A, Miraglia del Giudice E, Perrotta S et al (1998) Hereditary spherocytosis: from clinical to molecular defects. Haematologica 83:240–257PubMedGoogle Scholar
  35. Joy SD, Rossi KQ, Krugh D et al (2005) Management of pregnancies complicated by anti-E alloimmunization. Obstet Gynecol 105:24–28CrossRefGoogle Scholar
  36. Kaplan M, Hammerman C (2004) Glucose-6-phosphate dehydrogenase deficiency: a hidden risk for kernicterus. Semin Perinatol 28:356–364CrossRefGoogle Scholar
  37. Kaplan M, Vreman HJ, Hammerman C et al (1996a) Contribution of haemolysis to jaundice in Sephardic Jewish glucose-6-phosphate dehydrogenase deficient neonates. Br J Haematol 93:822–827CrossRefGoogle Scholar
  38. Kaplan M, Rubaltelli FF, Hammerman C et al (1996b) Conjugated bilirubin in neonates with glucose-6-phosphate dehydrogenase deficiency. J Pediatr 128:695–697CrossRefGoogle Scholar
  39. Kaplan M, Renbaum P, Levy-Lahad E et al (1997) Gilbert syndrome and glucose-6-phosphate dehydrogenase deficiency: a dose-dependent genetic interaction crucial to neonatal hyperbilirubinemia. Proc Natl Acad Sci U S A 94:12128–12132CrossRefGoogle Scholar
  40. Kaplan M, Beutler E, Vreman HJ et al (1999) Neonatal hyperbilirubinemia in glucose-6-phosphate dehydrogenase-deficient heterozygotes. Pediatrics 104:68–74CrossRefGoogle Scholar
  41. Kaplan M, Hammerman C, Renbaum P et al (2000a) Gilbert’s syndrome and hyperbilirubinaemia in ABO-incompatible neonates. Lancet 356:652–653CrossRefGoogle Scholar
  42. Kaplan M, Hammerman C, Feldman R et al (2000b) Predischarge bilirubin screening in glucose-6-phosphate dehydrogenase-deficient neonates. Pediatrics 105:533–537CrossRefGoogle Scholar
  43. Kaplan M, Hammerman C, Vreman HJ et al (2001) Acute hemolysis and severe neonatal hyperbilirubinemia in glucose-6-phosphate dehydrogenase-deficient heterozygotes. J Pediatr 139:137–140CrossRefGoogle Scholar
  44. Kaplan M, Muraca M, Hammerman C et al (2002) Imbalance between production and conjugation of bilirubin: a fundamental concept in the mechanism of neonatal jaundice. Pediatrics 110, e47CrossRefGoogle Scholar
  45. Kaplan M, Hammerman C, Maisels MJ (2003) Bilirubin genetics for the nongeneticist: hereditary defects of neonatal bilirubin conjugation. Pediatrics 111:886–893CrossRefGoogle Scholar
  46. Kaplan M, Herschel M, Hammerman C et al (2004) Hyperbilirubinemia among African American, glucose-6-phosphate dehydrogenase-deficient neonates. Pediatrics 114:e213–e219CrossRefGoogle Scholar
  47. Kaplan M, Herschel M, Hammerman C et al (2006) Studies in hemolysis in glucose-6-phosphate dehydrogenase-deficient African American neonates. Clin Chim Acta 365:177–182CrossRefGoogle Scholar
  48. Kaplan M, Hammerman C, Vreman HJ et al (2010) Hemolysis and hyperbilirubinemia in antiglobulin positive, direct ABO blood group heterospecific neonates. J Pediatr 157:772–777CrossRefGoogle Scholar
  49. Kaplan M, Renbaum P, Hammerman C et al (2014a) Heme oxygenase-1 promoter polymorphisms and neonatal jaundice. Neonatology 106:323–329CrossRefGoogle Scholar
  50. Kaplan M, Bromiker R, Hammerman C (2014b) Hyperbilirubinemia, hemolysis, and increased bilirubin neurotoxicity. Semin Perinatol 38:429–437CrossRefGoogle Scholar
  51. Kaplan M, Hammerman C, Bhutani VK (2015) Parental education and the WHO neonatal G-6-PD screening program: a quarter century later. J Perinatol 35:779–784CrossRefGoogle Scholar
  52. Katayama Y, Yokota T, Zhao H et al (2015) Association of HMOX1 gene promoter polymorphisms with hyperbilirubinemia in the early neonatal period. Pediatr Int 57:645–649CrossRefGoogle Scholar
  53. Kuzniewicz M, Newman TB (2009) Interaction of hemolysis and hyperbilirubinemia on neurodevelopmental outcomes in the collaborative perinatal project. Pediatrics 123:1045–1050CrossRefGoogle Scholar
  54. Liley AW (1961) Liquor amnil analysis in the management of the pregnancy complicated by resus sensitization. Am J Obstet Gynecol 82:1359–1370CrossRefGoogle Scholar
  55. Lo YM, Hjelm NM, Fidler C et al (1998) Prenatal diagnosis of fetal RhD status by molecular analysis of maternal plasma. N Engl J Med 339:1734–1738CrossRefGoogle Scholar
  56. Maisels MJ, Kring E (2006) The contribution of hemolysis to early jaundice in normal newborns. Pediatrics 118:276–279CrossRefGoogle Scholar
  57. Maisels MJ, Newman TB (1995) Kernicterus in otherwise healthy, breast-fed term newborns. Pediatrics 96:730–733PubMedGoogle Scholar
  58. Manning D, Todd P, Maxwell M et al (2007) Prospective surveillance study of severe hyperbilirubinaemia in the newborn in the UK and Ireland. Arch Dis Child Fetal Neonatal Ed 92:F342–F346CrossRefGoogle Scholar
  59. Mari G, Deter RL, Carpenter RL et al (2000) Noninvasive diagnosis by Doppler ultrasonography of fetal anemia due to maternal red-cell alloimmunization. Collaborative Group for Doppler Assessment of the Blood Velocity in Anemic Fetuses. N Engl J Med 342:9–14CrossRefGoogle Scholar
  60. Martin JA, Hamilton BE, Sutton PD et al (2003) Births: final data for 2002. Natl Vital Stat Rep 52:1–113PubMedGoogle Scholar
  61. McKenna DS, Nagaraja HN, O’Shaughnessy R (1999) Management of pregnancies complicated by anti-Kell isoimmunization. Obstet Gynecol 93:667–673PubMedGoogle Scholar
  62. Meberg A, Johansen KB (1998) Screening for neonatal hyperbilirubinaemia and ABO alloimmunization at the time of testing for phenylketonuria and congenital hypothyreosis. Acta Paediatr 87:1269–1274CrossRefGoogle Scholar
  63. Mentzer WC (1998) Pyruvate kinase deficiency and disorders of glycolysis. In: Nathan DG, Orkin SH (eds) Nathan and Oski’s hematology of infancy and childhood. WB Saunders Company, Philadelphia, pp 665–703Google Scholar
  64. Moise KJ (2005) Red blood cell alloimmunization in pregnancy. Semin Hematol 42:169–178CrossRefGoogle Scholar
  65. Moise KJ Jr (2008) Management of rhesus alloimmunization in pregnancy. Obstet Gynecol 112:164–176CrossRefGoogle Scholar
  66. Necheles TF, Rai US, Valaes T (1976) The role of haemolysis in neonatal hyperbilirubinaemia as reflected in carboxyhaemoglobin levels. Acta Paediatr Scand 65:361–367CrossRefGoogle Scholar
  67. Newman TB, Maisels MJ (1990) Does hyperbilirubinemia damage the brain of healthy full-term infants? Clin Perinatol 17:331–358CrossRefGoogle Scholar
  68. Newman TB, Maisels MJ (1992) Response to commentaries re: evaluation and treatment of jaundice in the term newborn: a kinder, gentler approach. Pediatrics 89:831–833PubMedGoogle Scholar
  69. Newman TB, Liljestrand P, Jeremy RJ et al (2006) Outcomes among newborns with total serum bilirubin levels of 25 mg per deciliter or more. N Engl J Med 354:1889–1900CrossRefGoogle Scholar
  70. Nilsen ST, Finne PH, Bergsjo P et al (1984) Males with neonatal hyperbilirubinemia examined at 18 years of age. Acta Paediatr Scand 73:176–180CrossRefGoogle Scholar
  71. Oepkes D, Seaward PG, Vandenbussche FP et al (2006) Doppler ultrasonography versus amniocentesis to predict fetal anemia. N Engl J Med 355:156–164CrossRefGoogle Scholar
  72. Ozmert E, Erdem G, Topcu M et al (1996) Long-term follow-up of indirect hyperbilirubinemia in full-term Turkish infants. Acta Paediatr 85:1440–1444CrossRefGoogle Scholar
  73. Ozolek JA, Watchko JF, Mimouni F (1994) Prevalence and lack of clinical significance of blood group incompatibility in mothers with blood type A or B. J Pediatr 125:87–91CrossRefGoogle Scholar
  74. Rübo J, Albrecht K, Lasch P et al (1992) High-dose intravenous immune globulin therapy for hyperbilirubinemia caused by Rh hemolytic disease. J Pediatr 121:93–97CrossRefGoogle Scholar
  75. Sgro M, Campbell D, Shah V (2006) Incidence and causes of severe neonatal hyperbilirubinemia in Canada. CMAJ 175:587–590CrossRefGoogle Scholar
  76. Shibahara S, Kitamuro T, Takahashi K (2002) Heme degradation and human disease: diversity is the soul of life. Antioxid Redox Signal 4:593–602CrossRefGoogle Scholar
  77. Slusher TM, Vreman HJ, McLaren DW et al (1995) Glucose-6-phosphate dehydrogenase deficiency and carboxyhemoglobin concentrations associated with bilirubin-related morbidity and death in Nigerian infants. J Pediatr 126:102–108CrossRefGoogle Scholar
  78. Smits-Wintjens VE, Walther FJ, Lopriore E (2008) Rhesus haemolytic disease of the newborn: postnatal management, associated morbidity and long-term outcome. Semin Fetal Neonatal Med 13:265–271CrossRefGoogle Scholar
  79. Smits-Wintjens VE, Walther FJ, Rath ME et al (2011) Intravenous immunoglobulin in neonates with rhesus hemolytic disease: a randomized controlled trial. Pediatrics 127:680–686CrossRefGoogle Scholar
  80. Steiner LA, Gallagher PG (2007) Erythrocyte disorders in the perinatal period. Semin Perinatol 31:254–261CrossRefGoogle Scholar
  81. Stevenson DK, Bartoletti AL, Ostrander CR et al (1979) Pulmonary excretion of carbon monoxide in the human infant as an index of bilirubin production. II. Infants of diabetic mothers. J Pediatr 94:956–958CrossRefGoogle Scholar
  82. Stevenson DK, Ostrander CR, Hopper AO et al (1981) Pulmonary excretion of carbon monoxide as an index of bilirubin production. IIa. Evidence for possible delayed clearance of bilirubin in infants of diabetic mothers. J Pediatr 98:822–824CrossRefGoogle Scholar
  83. Stevenson DK, Vreman HJ, Oh W et al (1994) Bilirubin production in healthy term infants as measured by carbon monoxide in breath. Clin Chem 40:1934–1939PubMedGoogle Scholar
  84. Stevenson DK, Fanaroff AA, Maisels MJ et al (2001) Prediction of hyperbilirubinemia in near-term and term infants. Pediatrics 108:31–39CrossRefGoogle Scholar
  85. Tidmarsh GF, Wong RJ, Stevenson DK (2014) End-tidal carbon monoxide and hemolysis. J Perinatol 34:577–581CrossRefGoogle Scholar
  86. Uetani Y, Nakamura H, Okamoto O et al (1989) Carboxyhemoglobin measurements in the diagnosis of ABO hemolytic disease. Acta Paediatr Jpn 31:171–176CrossRefGoogle Scholar
  87. Valaes T (1994) Severe neonatal jaundice associated with glucose-6-phosphate dehydrogenase deficiency: pathogenesis and global epidemiology. Acta Paediatr Suppl 394:58–76CrossRefGoogle Scholar
  88. Van den Veyver IB, Moise KJ Jr (1996) Fetal RhD typing by polymerase chain reaction in pregnancies complicated by rhesus alloimmunization. Obstet Gynecol 88:1061–1067CrossRefGoogle Scholar
  89. Van Kamp IL, Klumper FJ, Oepkes D et al (2005) Complications of intrauterine intravascular transfusion for fetal anemia due to maternal red-cell alloimmunization. Am J Obstet Gynecol 192:171–177CrossRefGoogle Scholar
  90. van Klink JM, van Veen SJ, Smits-Wintjens VE et al (2016) Immunoglobulins in neonates with rhesus hemolytic disease of the fetus and newborn: long-term outcome in a randomized trial. Fetal Diagn Ther 39:209–213Google Scholar
  91. Vaughan JI, Warwick R, Letsky E et al (1994) Erythropoietic suppression in fetal anemia because of Kell alloimmunization. Am J Obstet Gynecol 171:247–252CrossRefGoogle Scholar
  92. Vreman HJ, Rodgers PA, Gale R et al (1989) Carbon monoxide excretion as an index of bilirubin production in rhesus monkeys. J Med Primatol 18:449–460PubMedGoogle Scholar
  93. Watchko JF, Oski FA (1983) Bilirubin 20 mg/dL = vigintiphobia. Pediatrics 71:660–663PubMedGoogle Scholar
  94. Watchko JF, Daood MJ, Biniwale M (2002) Understanding neonatal hyperbilirubinaemia in the era of genomics. Semin Neonatol 7:143–152CrossRefGoogle Scholar
  95. Wong RJ, DeSandre GH, Sibley E et al (2006) Neonatal jaundice and liver disease. In: Fanaroff AA, Martin RJ, Walsh MC (eds) Neonatal-perinatal medicine: diseases of the fetus and infant. Mosby, Philadelphia, pp 1419–1465Google Scholar
  96. Zanella A, Bianchi P, Fermo E (2007a) Pyruvate kinase deficiency. Haematologica 92:721–723CrossRefGoogle Scholar
  97. Zanella A, Fermo E, Bianchi P et al (2007b) Pyruvate kinase deficiency: the genotype-phenotype association. Blood Rev 21:217–231CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Michael Kaplan
    • 1
    • 2
  • Ronald J. Wong
    • 3
  • David K. Stevenson
    • 4
  1. 1.Department of NeonatologyShaare Zedek Medical CenterJerusalemIsrael
  2. 2.The Faculty of MedicineHebrew UniversityJerusalemIsrael
  3. 3.Department of PediatricsStanford University School of MedicineStanfordUSA
  4. 4.Department of PediatricsStanford University School of Medicine, Medical School Office BuildingStanfordUSA

Personalised recommendations