Advertisement

Neonatology pp 639-668 | Cite as

Calcium and Phosphorus Homeostasis: Pathophysiology

  • Jacques Rigo
  • Catherine Pieltain
  • Renaud Viellevoye
  • Franco Bagnoli
Reference work entry

Abstract

The metabolic homeostasis of calcium, phosphorus, and magnesium and mineralization of the skeleton are complex functions that require adequate supply of nutrients, the development of the intestinal absorption process, the interaction of several hormones (such as parathyroid hormone, vitamin D, and calcitonin), and optimum renal and skeletal control. Approximately 50% of total serum calcium is in ionized form at the normal serum protein concentration and represents the biologically active component of the total serum calcium concentration. The fetus maintains higher blood calcium and phosphorus levels than the ambient maternal levels. This process is the result of the active transport of calcium across the placenta. The role of vitamin D in fetal physiology is not well understood. Calcium absorption is the main determinant of its retention in the small intestine by both active and passive processes. Acid pH in the stomach is a prerequisite for absorption. Reference values of calcium retention calculated during the last trimester of gestation (120–130 mg/kg/day) are considered the target mineral accretion rates for infants with very low birth weight. We should pay particular attention to the dosage of total and ionized serum calcium when some medications are used or when there is acidosis/alkalosis, hypomagnesemia, prematurity, infant of a diabetic mother, or birth asphyxia. In contrast to calcium, the serum phosphorus concentration varies widely depending mainly on intake and renal excretion but is also influenced by age, gender, pH, and a variety of hormones. Premature infants, particularly those born at <28 weeks’ gestation, are at significant risk for reduced bone mineral content (BMC) and subsequent bone disease, variably termed metabolic bone disease (MBD), osteomalacia, osteopenia, or neonatal rickets. Several factors increase the risk for severe MBD among VLBW infants, with the most important appearing to be an inadequate supply of calcium and phosphorus associated with the use of an enteral vs. transplacental route. Early optimal parenteral and oral nutritional support, combined with biologic neonatal screening and biomarker measurements, appears to be helpful for the prevention of MBD.

References

  1. Agostoni C, Buonocore G, Carnielli VP et al (2010) Enteral nutrient supply for preterm infants. J Pediatr Gastroenterol Nutr 50:85–91CrossRefGoogle Scholar
  2. American Academy of Pediatric (1985) Committee on nutrition: nutritional needs of low birth weight infants. Pediatrics 75:976Google Scholar
  3. Atkinson SA, Tsang RC (2005) Calcium, magnesium, phosphorus, and vitamin D. In: Tsang R et al (eds) Nutrition of the preterm infant, 2nd edn. Digital Educational Publishing, Cincinnati, p 245Google Scholar
  4. Avila E, Diaz L, Barrera D et al (2006) Regulation of vitamin D hydroxylaxses gene expression by 1,25-dihydroxyvitamin D3 and cyclic AMP in cultured human syncytiotrophoblasts. J Steroid Biochem Mol Biol 103:90–96CrossRefGoogle Scholar
  5. Avila-Díaz M, Flores-Huerta S, Martínez-Muñiz I, Amato D (2001) Increments in whole body bone mineral content associated with weight and length in pre-term and full-term infants during the first 6 months of life. Arch Med Res 32:288–292CrossRefGoogle Scholar
  6. Bachetta J, Harambat Jr, Dubourg L et al (2009) Both extrauerine and intrauterine growth restriction impair renal function in children born very preterm. Kidney Int 76:445–452CrossRefGoogle Scholar
  7. Banerjee S, Mimouni FB, Mehta R (2003) Lower whole blood ionized magnesium concentrations in hypocalcemic infants of gestational diabetic mothers. Magnes Res 16:127–130PubMedGoogle Scholar
  8. Bassir M, Laborie S, Lapillonne A et al (2001) Vitamin D deficiency in Iranian mothers and their neonates: a pilot study. Acta Paediatr 90:577–579CrossRefGoogle Scholar
  9. Bishop N, Sprigg A, Dalton A (2007) Unexplained fractures in infancy: looking for fragile bones. Arch Dis Child 92:251–256CrossRefGoogle Scholar
  10. Caudarella R, Vescini F, Buffa A, Francucci CM (2007) Hyperphosphatemia: effects on bone metabolism and cardiovascular risk. J Endocrinol Investig 30(Suppl 6):29–34Google Scholar
  11. Fewtrell MS et al (2000) Neonatal factors predicting childhood height in preterm infants: evidence for a persisting effect of early metabolic bone disease? J Pediatr 137:668–673CrossRefGoogle Scholar
  12. Fudge NJ, Kovacs CS (2004) Physiological studies in heterozygous calcium sensing receptor (CaSR) gene-ablated mice confirm that the CaSR regulates calcitonin release in vivo. BMC Physiol 20:5CrossRefGoogle Scholar
  13. Fuentebella J, Korner JA (2009) Refeeding syndrome. Pediatr Clin N Am 56:1201–1210CrossRefGoogle Scholar
  14. Greer FR (2003) Vitamin D deficiency-it’s more than rickets. J Pediatr 143:422–423CrossRefGoogle Scholar
  15. Harrison CM, Johnson K, McKechnie E (2008) Osteopenia of prematurity: a national survey and review of practice. Acta Paediatr 97:407–413CrossRefGoogle Scholar
  16. Holick MF (2007) Vitamin deficiency. N Engl J Med 357:266–281CrossRefGoogle Scholar
  17. Holtback U, Aperia AC (2003) Molecular determinants of sodium and water balance during early human development. Semin Neonatol 8:291–299CrossRefGoogle Scholar
  18. Hsu SC, Levine MA (2004) Perinatal calcium metabolism: physiology and pathophysiology. Semin Neonatol 9:23–36CrossRefGoogle Scholar
  19. Karsdal MA, Henriksen K, Arnold M, Christiansen C (2008) Calcitonin: a drug of the past or for the future? Physiologic inhibition of bone resorption while sustaining osteoclast numbers improves bone quality. BioDrugs 22:137–144CrossRefGoogle Scholar
  20. Klein CJ (2002) Nutrient requirements for preterm infant formulas. J Nutr 132:1395S–1577SCrossRefGoogle Scholar
  21. Land C, Schoenau E (2008) Fetal and postnatal bone development: reviewing the role of mechanical stimuli and nutrition. Best Pract Res Clin Endocrinol Metab 22:107–118CrossRefGoogle Scholar
  22. Liu S, Gupta A, Quarles LD (2007) Emerging role of fibroblast growth factor 23 in a bone-kidney axis regulating systemic phosphate homeostasis and extracellular matrix mineralization. Curr Opin Nephrol Hypertens 16:329–335CrossRefGoogle Scholar
  23. Novakovic B, Sibson M, Hg HK et al (2009) Placenta-specific methylation of the vitamin D 24-hydroxylase gene: implications for feedback autoregulation of active vitamin D levels at the fetomaternal interface. J Biol Chem 284:14838–14848CrossRefGoogle Scholar
  24. Pawley N, Bishop NJ (2004) Prenatal and infant predictors of bone health the influence of vitamin D. Am J Clin Nutr 80(Suppl 6):1748S–1751SCrossRefGoogle Scholar
  25. Pieltain C, Vervoort A, Senterre T, Rigo J (2009) Intérêt de la consommation de produits laitiers et de la supplémentation en vitamine D au cours de la croissance. J Pédiatr Belge 11:24–27Google Scholar
  26. Portal AA (2004) Calcium and phosphorus. In: Avner ED, Harmon WE, Niaudet P et al (eds) Pediatric nephrology, 5th edn. Lieppincott, Williams and Wilkins, Philadelphia, p 209Google Scholar
  27. Putet G, Rigo J, Salle B, Senterre J (1987) Supplementation of pooled human milk with casein hydrolysate: energy and nitrogen balance and weight gain composition in very low birth weight infants. Pediatr Res 21:458–461CrossRefGoogle Scholar
  28. Quarles LD (2008) Endocrine functions of bone in mineral metabolism regulation. J Clin Invest 118:3820–3828CrossRefGoogle Scholar
  29. Rauch F, Schoenau E (2001) The developing bone: slave or master of its cells and molecules? Pediatr Res 50:309–314CrossRefGoogle Scholar
  30. Rauch F, Schoenau E (2002) Skeletal development in premature infants: a review of bone physiology beyond nutritional aspects. Arch Dis Child Fetal Neonatal Ed 86:F82–F85CrossRefGoogle Scholar
  31. Rigo J (2008) Neonatal osteopenia and bone mineralization. eNeonatal Rev 6:4Google Scholar
  32. Rigo J, Senterre J (2006) Nutritional needs of premature infants: current issues. J Pediatr 149:S80–S88CrossRefGoogle Scholar
  33. Rigo J, De Curtis M, Pieltain C et al (2000) Bone mineral metabolism in the micropremie. Clin Perinatol 27:147–170CrossRefGoogle Scholar
  34. Rigo J, Pieltain C, Salle B, Senterre J (2007) Enteral calcium, phosphate and vitamin D requirements and bone mineralization in preterm infants. Acta Paediatr 96:969–974CrossRefGoogle Scholar
  35. Rigo J, Mohamed MW, De Curtis M (2010) Disorders of calcium, phosphorus, and magnesium metabolism. In: Martin R, Fanaroff A, Walsh M (eds) Neonatal-perinatal medicine, 9th edn. Elsevier Mosby, PhiladelphiaGoogle Scholar
  36. Rodriguez SJ (2003) Neonatal hypercalcemia. J Nephrol 16:606–608Google Scholar
  37. Salle BL, Delvin EE, Lapillonne A et al (2000) Perinatal metabolism of vitamin D. Am J Clin Nutr 71:1317S–1324SCrossRefGoogle Scholar
  38. Sato K (2008) Hypercalcemia during pregnancy, puerperium, and lactation: review and a case report of hypercalcemic crisis after delivery due to excessive production of PTH-related protein (PTHrP) without malignancy (humoral hypercalcemia of pregnancy). ocr J 55:959–966CrossRefGoogle Scholar
  39. Schell-Feith EA, Kist-van Holthe JE, van der Heijden AJ (2010) Nephrocalcinosis in preterm neonates. Pediatr Nephrol 25:221–230CrossRefGoogle Scholar
  40. Schulzke SM, Trachsel D, Patole SK (2007) Physical activity programs for promoting bone mineralization and growth in preterm infants. Cochrane Database Syst Rev (18):CD005387Google Scholar
  41. Shaikh A, Berndt T, Kumar R (2008) Regulation of phosphate homeostasis by the phosphatonins and other novel mediators. Pediatr Nephrol 23:1203–1210CrossRefGoogle Scholar
  42. Stewart AF (2004) Translational implications of the parathyroid calcium receptor. N Engl J Med 351:324–326CrossRefGoogle Scholar
  43. Toke J, Patocs A, Balogh K (2009) Parathyroid hormone-dependent hypercalcemia. Wien Klin Wochenschr 121:236–245CrossRefGoogle Scholar
  44. Wagner CL, Greer FR, American Academy of Pediatrics Section on Breastfeeding, American Academy of Pediatrics Committee on Nutrition (2008) Prevention of rickets and vitamin D deficiency in infants, children, and adolescents. Pediatrics 122:1142–1152CrossRefGoogle Scholar
  45. Zamora SA, Belli DC, Rizzoli R et al (2001) Lower femoral neck bone mineral density in prepubertal former preterm girls. Bone 29:424–427CrossRefGoogle Scholar
  46. Zazzo JF, Troche G, Ruel P, Maintenant J (1995) High incidence of hypophosphatemia in surgical intensive care patients: efficacy of phosphorus therapy on myocardial function. Intensive Care Med 21:826–831CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jacques Rigo
    • 1
  • Catherine Pieltain
    • 1
  • Renaud Viellevoye
    • 1
  • Franco Bagnoli
    • 2
  1. 1.Department of NeonatologyUniversity of Liège, CHR de la CitadelleLiègeBelgium
  2. 2.Department of PediatricsObstetrics and Reproductive Medicine, University of SienaSienaItaly

Personalised recommendations