Advertisement

Neonatology pp 535-555 | Cite as

Hormones and Gastrointestinal Function of Newborns

  • Flavia Prodam
  • Simonetta Bellone
  • Roberta Ricotti
  • Alice Monzani
  • Giulia Genoni
  • Enza Giglione
  • Gianni Bona
Reference work entry

Abstract

Development is a continuous process that does not stop after birth but progresses along a continuum. The intestinal absorptive process is only partially mature before 26 weeks of gestation, and gastroenteropancreatic peptides and hormones are secreted in a basal rate and can be completely stimulated or inhibited after delivery, in particular with the nutrient contact. A growing knowledge about this complex interplay among nutrients, gut peptides, and the gut under development is an important tool in the clinical care of preterm newborns. The investigation of this system in fetal and neonatal life is still ongoing. This chapter will review the data about secretion of gut peptides (GLP-1, GLP-2, oxyntomodulin, GIP, PYY, ghrelin, obestatin, motilin, and cholecystokinin) in the neonatal period with respect to full-term or preterm birth, weight status, and feeding conditions. More detailed studies on this topic could offer the physiological basis for correct nutritional supports to preterm infants as well as therapies for the necrotizing enterocolitis.

References

  1. Adams SH, Lei C, Jodka CM et al (2006) PYY[3-36] administration decreases the respiratory quotient and reduces adiposity in diet-induced obese mice. J Nutr 136:195–201PubMedCrossRefGoogle Scholar
  2. Adrian TE, Smith HA, Calvert SA et al (1986) Elevated plasma peptide YY in human neonates and infants. Pediatr Res 20:1225–1227PubMedCrossRefGoogle Scholar
  3. Agostoni C (2005) Ghrelin, leptin and the neurometabolic axis of breastfed and formula-fed infants. Acta Paediatr 94:523–525PubMedCrossRefGoogle Scholar
  4. Althage MC, Ford EL, Wang S et al (2008) Targeted ablation of glucose-dependent insulinotropic polypeptide-producing cells in transgenic mice reduces obesity and insulin resistance induced by a high fat diet. J Biol Chem 283:18365–18376PubMedPubMedCentralCrossRefGoogle Scholar
  5. Amato A, Baldassano S, Mulè F (2016) GLP2: an underestimated signal for improving glycaemic control and insulin sensitivity. J Endocrinol 229:R57–R66PubMedCrossRefGoogle Scholar
  6. Amin H, Holst JJ, Hartmann B et al (2008) Functional ontogeny of the proglucagon-derived peptide axis in the premature human neonate. Pediatrics 121:e180–e186PubMedCrossRefGoogle Scholar
  7. Bahrami J, Longuet C, Baggio LL et al (2010) The glucagon-like peptide-2 receptor modulates islet adaptation to metabolic stress in the ob/ob mouse. Gastroenterology 139:857–868PubMedCrossRefGoogle Scholar
  8. Baldassano S, Amato A (2014) GLP-2: what do we know? What are we going to discover? Regul Pept 194-195:6–10PubMedCrossRefGoogle Scholar
  9. Baldassano S, Rappa F, Amato A et al (2015) GLP-2 as beneficial factor in the glucose homeostasis in mice fed a high fat diet. J Cell Physiol 230:3029–3036PubMedCrossRefGoogle Scholar
  10. Baldassano S, Amato A, Caldara GF, Mulè F (2016) Glucagon-like peptide-2 treatment improves glucose dysmetabolism in mice fed a high fat diet. Endocrine 54(3):648–656PubMedCrossRefGoogle Scholar
  11. Baldelli R, Bellone S, Castellino N et al (2006) Oral glucose load inhibits circulating ghrelin levels to the same extent in normal and obese children. Clin Endocrinol 64:255–259CrossRefGoogle Scholar
  12. Barazzoni R, Zanetti M, Ferreira C et al (2007) Relationships between desacylated and acylated ghrelin and insulin sensitivity in the metabolic syndrome. J Clin Endocrinol Metab 92:3935–3940PubMedCrossRefGoogle Scholar
  13. Batterham RL, Cowley MA, Small CJ et al (2002) Gut hormone PYY(3-36) physiologically inhibits food intake. Nature 418:650–654PubMedCrossRefGoogle Scholar
  14. Batterham RL, Cohen MA, Ellis SM et al (2003) Inhibition of food intake in obese subjects by peptide YY3-36. N Engl J Med 349:941–948PubMedCrossRefGoogle Scholar
  15. Bellone S, Rapa A, Vivenza D et al (2004) Circulating ghrelin levels in the newborn are positively associated with gestational age. Clin Endocrinol 60:613–617CrossRefGoogle Scholar
  16. Bellone S, Baldelli R, Radetti G et al (2006) Ghrelin secretion in preterm neonates progressively increases and is refractory to the inhibitory effect of food intake. J Clin Endocrinol Metab 91:1929–1933PubMedCrossRefGoogle Scholar
  17. Bellone S, Prodam F, Savastio S et al (2012a) Acylated and unacylated ghrelin levels in normal weight and obese children: influence of puberty and relationship with insulin, leptin and adiponectin levels. J Endocrinol Investig 35(2):191–197Google Scholar
  18. Bellone S, Prodam F, Savastio S et al (2012b) Acylated/unacylated ghrelin ratio in cord blood: correlation with anthropometric and metabolic parameters and pediatric lifespan comparison. Eur J Endocrinol 166:115–120PubMedCrossRefGoogle Scholar
  19. Berseth CL, Nordyke CK, Valdes MG et al (1992) Responses of gastrointestinal peptides and motor activity to milk and water feedings in preterm and term infants. Pediatr Res 31:587–590PubMedCrossRefGoogle Scholar
  20. Bideci A, Camurdan MO, Yesilkaya E et al (2008) Serum ghrelin, leptin and resistin levels in adolescent girls with polycystic ovary syndrome. J Obstet Gynaecol Res 34:578–584PubMedCrossRefGoogle Scholar
  21. Boutsikou T, Briana DD, Boutsikou M et al (2013) Cord blood chemerin and obestatin levels in large for gestational age infants. J Matern Fetal Neonatal Med 26(2):123–126PubMedCrossRefGoogle Scholar
  22. Broglio F, Gottero C, Prodam F et al (2004) Non-acylated ghrelin counteracts the metabolic but not the neuroendocrine response to acylated ghrelin in humans. J Clin Endocrinol Metab 89:3062–3065PubMedCrossRefGoogle Scholar
  23. Brøns C, Saltbæk PN, Friedrichsen M et al (2016) Endocrine and metabolic diurnal rhythms in young adult men born small vs appropriate for gestational age. Eur J Endocrinol 175:29–40PubMedCrossRefGoogle Scholar
  24. Bryant MG, Buchan AM, Gregor M et al (1982) Development of intestinal regulatory peptides in the human fetus. Gastroenterology 83:47–54PubMedGoogle Scholar
  25. Bunt JC, Salbe AD, Tschop MH et al (2003) Cross-sectional and prospective relationships of fasting plasma ghrelin concentrations with anthropometric measures in pima Indian children. J Clin Endocrinol Metab 88:3756–3761PubMedCrossRefGoogle Scholar
  26. Burrin DG, Stoll B (2002) Key nutrients and growth factors for the neonatal gastrointestinal tract. Clin Perinatol 29:65–96PubMedCrossRefGoogle Scholar
  27. Calanna S, Christensen M, Holst JJ et al (2013) Secretion of glucose-dependent insulinotropic polypeptide in patients with type 2 diabetes: systematic review and meta-analysis of clinical studies. Diabetes Care 36:3346–3352PubMedPubMedCentralCrossRefGoogle Scholar
  28. Cani PD, Possemiers S, Van de Wiele T et al (2009) Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58:1091–1103PubMedPubMedCentralCrossRefGoogle Scholar
  29. Cesur G, Ozguner F, Yilmaz N, Dundar B (2012) The relationship between ghrelin and adiponectin levels in breast milk and infant serum and growth of infants during early postnatal life. J Physiol Sci 62(3):185–190PubMedCrossRefGoogle Scholar
  30. Chanoine JP, Yeung LP, Wong AC, Birmingham CL (2002) Immunoreactive ghrelin in human cord blood: relation to anthropometry, leptin, and growth hormone. J Pediatr Gastroenterol Nutr 35:282–286PubMedCrossRefGoogle Scholar
  31. Chaudhri OB, Wynne K, Bloom SR (2008) Can gut hormones control appetite and prevent obesity? Diabetes Care 31(Suppl 2):S284–S289PubMedCrossRefGoogle Scholar
  32. Chen X, Du X, Zhu J et al (2012) Correlations of circulating peptide YY and ghrelin with body weight, rate of weight gain, and time required to achieve the recommended daily intake in preterm infants. Braz J Med Biol Res 45:656–664PubMedPubMedCentralCrossRefGoogle Scholar
  33. Chiesa C, Osborn JF, Haass C et al (2008) Ghrelin, leptin, IGF-1, IGFBP-3, and insulin concentrations at birth: is there a relationship with foetal growth and neonatal anthropometry? Clin Chem 54:550–558PubMedCrossRefGoogle Scholar
  34. Choi K, Roh SG, Hong YH et al (2003) The role of ghrelin and growth hormone secretagogues receptor on rat adipogenesis. Endocrinology 144:754–759PubMedCrossRefGoogle Scholar
  35. Cohen MA, Ellis SM, le Roux CW et al (2003) Oxyntomodulin suppresses appetite and reduces food intake in humans. J Clin Endocrinol Metab 88:4696–4701PubMedCrossRefGoogle Scholar
  36. Corpeleijn WE, van Vliet I, de Gast-Bakker DA et al (2008) Effect of enteral IGF-1 supplementation on feeding tolerance, growth, and gut permeability in enterally fed premature neonates. J Pediatr Gastroenterol Nutr 46:184–190PubMedCrossRefGoogle Scholar
  37. Cortelazzi D, Cappiello V, Morpurgo PS et al (2003) Circulating levels of ghrelin in human fetuses. Eur J Endocrinol 149:111–116PubMedCrossRefGoogle Scholar
  38. Covasa M, Marcuson JK, Ritter RC (2001) Diminished satiation in rats exposed to elevated levels of endogenous or exogenous cholecystokinin. Am J Phys Regul Integr Comp Phys 280:R331–R337Google Scholar
  39. Cummings DE, Weigle DS, Frayo RS et al (2002) Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med 346:1623–1630CrossRefPubMedGoogle Scholar
  40. Dakin CL, Gunn I, Small CJ et al (2001) Oxyntomodulin inhibits food intake in the rat. Endocrinology 142:4244–4250PubMedCrossRefGoogle Scholar
  41. Dakin CL, Small CJ, Batterham RL et al (2004) Peripheral oxyntomodulin reduces food intake and body weight gain in rats. Endocrinology 145:2687–2695PubMedCrossRefGoogle Scholar
  42. Dasopoulou M, Briana DD, Boutsikou T et al (2015) Motilin and gastrin secretion and lipid profile in preterm neonates following prebiotics supplementation: a double-blind randomized controlled study. JPEN J Parenter Enteral Nutr 39(3):359–368PubMedCrossRefGoogle Scholar
  43. De Clercq P, Springer S, Depoortere I, Peeters TL (1998) Motilin in human milk: identification and stability during digestion. Life Sci 63:1993–2000PubMedCrossRefGoogle Scholar
  44. de Moura EG, Lisboa PC, Passos MC (2008) Neonatal programming of neuroimmunomodulation–role of adipocytokines and neuropeptides. Neuroimmunomodulation 15:176–188PubMedCrossRefGoogle Scholar
  45. Degen L, Oesch S, Casanova M et al (2005) Effect of peptide YY3-36 on food intake in humans. Gastroenterology 129:1430–1436PubMedCrossRefGoogle Scholar
  46. Delhanty PJ, Neggers SJ, van der Lely AJ (2012) Mechanisms in endocrinology: ghrelin: the differences between acyl- and des-acyl ghrelin. Eur J Endocrinol 167:601–608PubMedCrossRefGoogle Scholar
  47. Díaz M, Bassols J, Sebastiani G et al (2015) Circulating GLP-1 in infants born small-for-gestational-age: breast-feeding versus formula-feeding. Int J Obes 39:1501–1503CrossRefGoogle Scholar
  48. Dong CX, Zhao W, Solomon C et al (2014) The intestinal epithelial insulin-like growth factor-1 receptor links glucagon-like peptide-2 action to gut barrier function. Endocrinology 155:370–379PubMedCrossRefGoogle Scholar
  49. Drucker DJ (2002) Biological actions and therapeutic potential of the glucagon-like peptides. Gastroenterology 122:531–544PubMedCrossRefGoogle Scholar
  50. Drucker DJ, Yusta B (2014) Physiology and pharmacology of the enteroendocrine hormone glucagon-like peptide-2. Annu Rev Physiol 76:561–583PubMedCrossRefGoogle Scholar
  51. Du X, Kosinski JR, Lao J et al (2012) Differential effects of oxyntomodulin and GLP-1 on glucose metabolism. Am J Physiol Endocrinol Metab 303:E265–E271PubMedCrossRefGoogle Scholar
  52. Fallucca F, Kuhl C, Lauritsen KB et al (1985) Gastric inhibitory polypeptide (GIP) concentration in human amniotic fluid. Horm Metab Res 17:251–255PubMedCrossRefGoogle Scholar
  53. Flatt PR (2007) Effective surgical treatment of obesity may be mediated by ablation of the lipogenic gut hormone gastric inhibitory polypeptide (GIP): evidence and clinical opportunity for development of new obesity-diabetes drugs? Diab Vasc Dis Res 4:151–153PubMedCrossRefGoogle Scholar
  54. Flatt PR (2008) Dorothy Hodgkin Lecture 2008. Gastric inhibitory polypeptide (GIP) revisited: a new therapeutic target for obesity-diabetes? Diabet Med 25:759–764PubMedCrossRefGoogle Scholar
  55. Garcia-Diaz D, Campion J, Milagro FI, Martinez JA (2007) Adiposity dependent apelin gene expression: relationships with oxidative and inflammation markers. Mol Cell Biochem 305:87–94PubMedCrossRefGoogle Scholar
  56. Gardiner JV, Jayasena CN, Bloom SR (2008) Gut hormones: a weight off your mind. J Neuroendocrinol 20:834–841PubMedCrossRefGoogle Scholar
  57. Gault VA, Irwin N, Green BD et al (2005) Chemical ablation of gastric inhibitory polypeptide receptor action by daily (Pro3)GIP administration improves glucose tolerance and ameliorates insulin resistance and abnormalities of islet structure in obesity-related diabetes. Diabetes 54:2436–2446PubMedCrossRefGoogle Scholar
  58. Gauna C, Delhanty PJ, Hofland LJ et al (2005) Ghrelin stimulates, whereas des-octanoyl ghrelin inhibits, glucose output by primary hepatocytes. J Clin Endocrinol Metab 90:1055–1060PubMedCrossRefGoogle Scholar
  59. Geloneze B, Lima MM, Pareja JC et al (2013) Association of insulin resistance and GLP-2 secretion in obesity: a pilot study. Arq Bras Endocrinol Metabol 57:632–635PubMedCrossRefGoogle Scholar
  60. Ghigo E, Arvat E, Giordano R et al (2001) Biologic activities of growth hormone secretagogues in humans. Endocrine 14:87–93PubMedCrossRefGoogle Scholar
  61. Gibbs J, Young RC, Smith GP (1973) Cholecystokinin decreases food intake in rats. J Comp Physiol Psychol 84:488–495PubMedCrossRefGoogle Scholar
  62. Gil-Campos M, Aguilera CM, Canete R, Gil A (2006) Ghrelin: a hormone regulating food intake and energy homeostasis. Br J Nutr 96:201–226PubMedCrossRefGoogle Scholar
  63. Gourcerol G, St-Pierre DH, Tache Y (2007) Lack of obestatin effects on food intake: should obestatin be renamed ghrelin-associated peptide (GAP)? Regul Pept 141:1–7PubMedCrossRefGoogle Scholar
  64. Grigoryan M, Kedees MH, Guz Y, Teitelman G (2012) Phenotype of entero-endocrine L cells becomes restricted during development. Dev Dyn 241:1986–1992PubMedCrossRefGoogle Scholar
  65. Gualillo O, Caminos J, Blanco M et al (2001) Ghrelin, a novel placental-derived hormone. Endocrinology 142:788–794PubMedCrossRefGoogle Scholar
  66. Guan X, Shi X, Li X, Chang B et al (2012) GLP-2 receptor in POMC neurons suppresses feeding behavior and gastric motility. Am J Physiol Endocrinol Metab 303:E853–E864PubMedPubMedCentralCrossRefGoogle Scholar
  67. Han L, Li M, Yu X et al (2014) Assay of adiponectin, leptin, true insulin and ghrelin levels in preterm human milk, and its relationship with infants growth. Zhonghua Er Ke Za Zhi 52(7):510–515PubMedGoogle Scholar
  68. Harada T, Nakahara T, Yasuhara D et al (2008) Obestatin, acyl ghrelin, and des-acyl ghrelin responses to an oral glucose tolerance test in the restricting type of anorexia nervosa. Biol Psychiatry 63:245–247PubMedCrossRefGoogle Scholar
  69. Heijboer AC, Pijl H, Van den Hoek AM et al (2006) Gut-brain axis: regulation of glucose metabolism. J Neuroendocrinol 18:883–894PubMedCrossRefGoogle Scholar
  70. Hellstrom PM, Geliebter A, Naslund E et al (2004) Peripheral and central signals in the control of eating in normal, obese and binge-eating human subjects. Br J Nutr 92(Suppl 1):S47–S57PubMedCrossRefGoogle Scholar
  71. Heptulla RA, Tamborlane WV, Cavaghan M et al (2000) Augmentation of alimentary insulin secretion despite similar gastric inhibitory peptide (GIP) responses in juvenile obesity. Pediatr Res 47:628–633PubMedCrossRefGoogle Scholar
  72. Higgins PB, Fernandez JR, Garvey WT et al (2008) Entero-insular axis and postprandial insulin differences in African American and European American children. Am J Clin Nutr 88:1277–1283PubMedPubMedCentralGoogle Scholar
  73. Hill ME, Asa SL, Drucker DJ (1999) Essential requirement for Pax6 in control of enteroendocrine proglucagon gene transcription. Mol Endocrinol 13:1474–1486PubMedCrossRefGoogle Scholar
  74. Holst JJ (2007) The physiology of glucagon-like peptide 1. Physiol Rev 87:1409–1439PubMedCrossRefGoogle Scholar
  75. Holst B, Egerod KL, Schild E et al (2007) GPR39 signaling is stimulated by zinc ions but not by obestatin. Endocrinology 148:13–20PubMedCrossRefGoogle Scholar
  76. Hubler A, Rippel C, Kauf E et al (2006) Associations between ghrelin levels in serum of preterm infants and enteral nutritional state during the first 6 months after birth. Clin Endocrinol 65:611–616CrossRefGoogle Scholar
  77. Ilcol YO, Hizli B (2007) Active and total ghrelin concentrations increase in breast milk during lactation. Acta Paediatr 96:1632–1639PubMedCrossRefGoogle Scholar
  78. Irwin N, Flatt PR (2015) New perspectives on exploitation of incretin peptides for the treatment of diabetes and related disorders. World J Diabetes 6:1285–1295PubMedPubMedCentralCrossRefGoogle Scholar
  79. Itoh Z (1997) Motilin and clinical application. Peptides 18:593–608PubMedCrossRefGoogle Scholar
  80. James RJ, Drewett RF, Cheetham TD (2004) Low cord ghrelin levels in term infants are associated with slow weight gain over the first 3 months of life. J Clin Endocrinol Metab 89:3847–3850PubMedCrossRefGoogle Scholar
  81. Janik JS, Track NS, Filler RM (1982) Motilin, human pancreatic polypeptide, gastrin, and insulin plasma concentrations in fasted children. J Pediatr 101:51–56PubMedCrossRefGoogle Scholar
  82. Jia X, Brown JC, Ma P et al (1995) Effects of glucose-dependent insulinotropic polypeptide and glucagon-like peptide-I-(7-36) on insulin secretion. Am J Phys 268:E645–E651Google Scholar
  83. Kahveci H, Laloglu F, Kilic O, Ciftel M, Kara M, Laloglu E, Yildirim A, Orbak Z, Ertekin V, Cesur Y (2015) Fasting and postprandial glucose, insulin, leptin, and ghrelin values in preterm babies and their mothers: relationships among their levels, foetal growth, and neonatal anthropometry. J Matern Fetal Neonatal Med 28(8):916–921PubMedCrossRefGoogle Scholar
  84. Kalies H, Heinrich J, Borte N et al (2005) The effect of breastfeeding on weight gain in infants: results of a birth cohort study. Eur J Med Res 10:36–42PubMedGoogle Scholar
  85. Kasa-Vubu JZ, Rosenthal A, Murdock EG, Welch KB (2007) Impact of fatness, fitness, and ethnicity on the relationship of nocturnal ghrelin to 24-hour luteinizing hormone concentrations in adolescent girls. J Clin Endocrinol Metab 92:3246–3252PubMedCrossRefGoogle Scholar
  86. Kawamata R, Suzuki Y, Yada Y et al (2014) Gut hormone profiles in preterm and term infants during the first 2 months of life. J Pediatr Endocrinol Metab 27(7–8):717–723PubMedGoogle Scholar
  87. Kawamata R, Suzuki Y, Yada Y et al (2015) Gut hormones of preterm infants with abdominal symptoms and hypothyroxinemia. Pediatr Int 57:614–619PubMedCrossRefGoogle Scholar
  88. Kim SJ, Nian C, Karunakaran S et al (2012) GIP-overexpressing mice demonstrate reduced diet-induced obesity and steatosis, and improved glucose homeostasis. PLoS One 7:e40156PubMedPubMedCentralCrossRefGoogle Scholar
  89. King KC, Oliven A, Kalhan SC (1989) Functional enteroinsular axis in full-term newborn infants. Pediatr Res 25:490–495PubMedCrossRefGoogle Scholar
  90. Knip M, Kaapa P, Koivisto M (1993) Hormonal enteroinsular axis in newborn infants of insulin-treated diabetic mothers. J Clin Endocrinol Metab 77:1340–1344PubMedGoogle Scholar
  91. Kojima M, Kangawa K (2005) Ghrelin: structure and function. Physiol Rev 85:495–522PubMedCrossRefGoogle Scholar
  92. Konturek SJ, Konturek JW, Pawlik T, Brzozowski T (2004) Brain-gut axis and its role in the control of food intake. J Physiol Pharmacol 55:137–154PubMedGoogle Scholar
  93. Lambeir AM, Durinx C, Scharpe S, De Meester I (2003) Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit Rev Clin Lab Sci 40:209–294PubMedCrossRefGoogle Scholar
  94. Lanyi E, Varnagy A, Kovacs KA et al (2008) Ghrelin and acyl ghrelin in preterm infants and maternal blood: relationship with endocrine and anthropometric measures. Eur J Endocrinol 158:27–33PubMedCrossRefGoogle Scholar
  95. Lebenthal A, Lebenthal E (1999) The ontogeny of the small intestinal epithelium. JPEN J Parenter Enteral Nutr 23:S3–S6PubMedCrossRefGoogle Scholar
  96. Leite-Moreira AF, Soares JB (2007) Physiological, pathological and potential therapeutic roles of ghrelin. Drug Discov Today 12:276–288PubMedCrossRefGoogle Scholar
  97. Lothe L, Ivarsson SA, Lindberg T (1987) Motilin, vasoactive intestinal peptide and gastrin in infantile colic. Acta Paediatr Scand 76:316–320PubMedCrossRefGoogle Scholar
  98. Lu M, Wheeler MB, Leng XH, Boyd AE III (1993) Stimulation of insulin secretion and insulin gene expression by gastric inhibitory polypeptide. Trans Assoc Am Phys 106:42–53PubMedGoogle Scholar
  99. Lucas A, Sarson DL, Bloom SR, Aynsley-Green A (1980) Developmental aspects of gastric inhibitory polypeptide (GIP) and its possible role in the enteroinsular axis in neonates. Acta Paediatr Scand 69:321–325PubMedCrossRefGoogle Scholar
  100. Mahmoud EL, Benirschke K, Vaucher YE, Poitras P (1988) Motilin levels in term neonates who have passed meconium prior to birth. J Pediatr Gastroenterol Nutr 7:95–99PubMedCrossRefGoogle Scholar
  101. Marchini G, Linden A (1992) Cholecystokinin, a satiety signal in newborn infants? J Dev Physiol 17:215–219PubMedGoogle Scholar
  102. Martin GR, Beck PL, Sigalet DL (2006) Gut hormones, and short bowel syndrome: the enigmatic role of glucagon-like peptide-2 in the regulation of intestinal adaptation. World J Gastroenterol 12:4117–4129PubMedPubMedCentralCrossRefGoogle Scholar
  103. Mechanick JI, Kushner RF, Sugerman HJ et al (2008) American Association of Clinical Endocrinologists, the obesity Society, and American Society for Metabolic & Bariatric Surgery Medical guidelines for clinical practice for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient. Endocr Pract 14(Suppl 1):1–83PubMedCrossRefGoogle Scholar
  104. Misra M, Miller KK, Cord J et al (2007) Relationships between serum adipokines, insulin levels, and bone density in girls with anorexia nervosa. J Clin Endocrinol Metab 92:2046–2052PubMedCrossRefGoogle Scholar
  105. Misra M, Prabhakaran R, Miller KK et al (2008) Prognostic indicators of changes in bone density measures in adolescent girls with anorexia nervosa-II. J Clin Endocrinol Metab 93:1292–1297PubMedCrossRefGoogle Scholar
  106. Mitrovic O, Cokic V, Dikic D et al (2014) Ghrelin receptors in human gastrointestinal tract during prenatal and early postnatal development. Peptides 57:1–11PubMedCrossRefGoogle Scholar
  107. Moran TH (2000) Cholecystokinin and satiety: current perspectives. Nutrition 16:858–865PubMedCrossRefGoogle Scholar
  108. Müller TD, Nogueiras R, Andermann ML et al (2015) Ghrelin. Mol Metab 4:437–460PubMedPubMedCentralCrossRefGoogle Scholar
  109. Mulvihill SJ, Stone MM, Debas HT, Fonkalsrud EW (1985) The role of amniotic fluid in foetal nutrition. J Pediatr Surg 20:668–672PubMedCrossRefGoogle Scholar
  110. Nagasaki H, Ohta T (2015) Extra-uterine growth and adipocytokines in appropriate-for-gestational-age preterm infants. Pediatr Int.  https://doi.org/10.1111/ped.12896CrossRefPubMedGoogle Scholar
  111. Nagata E, Nakagawa Y, Yamaguchi R et al (2011) Altered gene expressions of ghrelin, PYY, and CCK in the gastrointestinal tract of the hyperphagic intrauterine growth restriction rat offspring. Horm Metab Res 43(3):178–182PubMedCrossRefGoogle Scholar
  112. Naitoh R, Miyawaki K, Harada N et al (2008) Inhibition of GIP signaling modulates adiponectin levels under high-fat diet in mice. Biochem Biophys Res Commun 376:21–25PubMedCrossRefGoogle Scholar
  113. Nakahara T, Harada T, Yasuhara D et al (2008) Plasma obestatin concentrations are negatively correlated with body mass index, insulin resistance index, and plasma leptin concentrations in obesity and anorexia nervosa. Biol Psychiatry 64:252–255PubMedCrossRefGoogle Scholar
  114. Naslund E, Barkeling B, King N et al (1999) Energy intake and appetite are suppressed by glucagon-like peptide-1 (GLP-1) in obese men. Int J Obes Relat Metab Disord 23:304–311PubMedCrossRefGoogle Scholar
  115. Neary NM, Goldstone AP, Bloom SR (2004) Appetite regulation: from the gut to the hypothalamus. Clin Endocrinol 60:153–160CrossRefGoogle Scholar
  116. Nishikubo T, Yamakawa A, Kamitsuji H et al (2005) Identification of the motilin cells in duodenal epithelium of premature infants. Pediatr Int 47(3):248–251PubMedCrossRefGoogle Scholar
  117. O'Mahony SM, Felice VD, Nally K et al (2014) Disturbance of the gut microbiota in early-life selectively affects visceral pain in adulthood without impacting cognitive or anxiety-related behaviors in male rats. Neuroscience 277:885–901PubMedCrossRefGoogle Scholar
  118. Ozaki T, Mohammad S, Morioka E et al (2013) Infant satiety depends on transient expression of cholecystokinin-1 receptors on ependymal cells lining the third ventricle in mice. J Physiol 591(5):1295–1312CrossRefPubMedGoogle Scholar
  119. Ozer EA, Holst JJ, Duman N et al (2009) The relationship between glucagon-like peptide 2 and feeding intolerance in preterm infants. J Trop Pediatr 55:276–277PubMedCrossRefGoogle Scholar
  120. Padidela R, Patterson M, Sharief N et al (2009) Elevated basal and post-feed glucagon-like peptide 1 (GLP-1) concentrations in the neonatal period. Eur J Endocrinol 160:53–58PubMedCrossRefGoogle Scholar
  121. Paik KH, Choe YH, Park WH et al (2006) Suppression of acylated ghrelin during oral glucose tolerance test is correlated with whole-body insulin sensitivity in children with Prader-Willi syndrome. J Clin Endocrinol Metab 91:1876–1881PubMedCrossRefGoogle Scholar
  122. Pais R, Gribble FM, Reimann F (2016) Stimulation of incretin secreting cells. Ther Adv Endocrinol Metab 7:24–42PubMedPubMedCentralCrossRefGoogle Scholar
  123. Perala MM, Kajantie E, Valsta LM et al (2013) Early growth and postprandial appetite regulatory hormone responses. Br J Nutr 110:1591–1600PubMedCrossRefGoogle Scholar
  124. Persaud SJ, Bewick GA (2014) Peptide YY: more than just an appetite regulator. Diabetologia 57:1762–1769PubMedCrossRefGoogle Scholar
  125. Pocai A (2013) Action and therapeutic potential of oxyntomodulin. Mol Metab 3:241–251PubMedPubMedCentralCrossRefGoogle Scholar
  126. Poitras P, Peeters TL (2008) Motilin. Curr Opin Endocrinol Diabetes Obes 15:54–57PubMedCrossRefGoogle Scholar
  127. Pomerants T, Tillmann V, Jurimae J, Jurimae T (2006) Relationship between ghrelin and anthropometrical, body composition parameters and testosterone levels in boys at different stages of puberty. J Endocrinol Investig 29:962–967CrossRefGoogle Scholar
  128. Prodam F, Filigheddu N (2014) Ghrelin gene products in acute and chronic inflammation. Arch Immunol Ther Exp (Warsz) 62(5):369–3684CrossRefGoogle Scholar
  129. Prodam F, Me E, Riganti F et al (2006) The nutritional control of ghrelin secretion in humans: the effects of enteral vs. parenteral nutrition. Eur J Nutr 45:399–405PubMedCrossRefGoogle Scholar
  130. Prodam F, Bellone S, Corneli G et al (2008) Ghrelin: a molecular target for weight regulation, glucose and lipid metabolism. Recent Patents Endocrine Metab Immune Drug Discov 2(3):1–1CrossRefGoogle Scholar
  131. Prodam F, Bellone S, Ricotti R et al (2011) Ghrelin regulation in epilepsy. Underlying mechanisms of epilepsy. InTech, Prof. Fatima Shad Kaneez (ed). ISBN:978–953–307-765-9, pp 151–180. Available from: http://www.intechopen.com/books/underlying-mechanisms-ofepilepsy/ghrelin-regulation-in-epilepsyGoogle Scholar
  132. Prodam F, Monzani A, Ricotti R et al (2014a) Systematic review of ghrelin response to food intake in pediatric age, from neonates to adolescents. J Clin Endocrinol Metab 99(5):1556–1568PubMedCrossRefGoogle Scholar
  133. Prodam F, Cadario F, Bellone S et al (2014b) Obestatin levels are associated with C-peptide and antiinsulin antibodies at the onset, whereas unacylated and acylated ghrelin levels are not predictive of long-term metabolic control in children with type 1 diabetes. J Clin Endocrinol Metab 99(4):E599–E607PubMedCrossRefGoogle Scholar
  134. Qader SS, Hakanson R, Rehfeld JF et al (2008) Proghrelin-derived peptides influence the secretion of insulin, glucagon, pancreatic polypeptide and somatostatin: a study on isolated islets from mouse and rat pancreas. Regul Pept 146:230–237PubMedCrossRefGoogle Scholar
  135. Ranganath LR (2008a) The entero-insular axis: implications for human metabolism. Clin Chem Lab Med 46:43–56PubMedCrossRefGoogle Scholar
  136. Ranganath LR (2008b) Incretins: pathophysiological and therapeutic implications of glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1. J Clin Pathol 61:401–409PubMedCrossRefGoogle Scholar
  137. Savino F, Fissore MF, Grassino EC et al (2005) Ghrelin, leptin and IGF-I levels in breast-fed and formula-fed infants in the first years of life. Acta Paediatr 94:531–537PubMedCrossRefGoogle Scholar
  138. Savino F, Grassino EC, Fissore MF et al (2006a) Ghrelin, motilin, insulin concentration in healthy infants in the first months of life: relation to fasting time and anthropometry. Clin Endocrinol 65:158–162CrossRefGoogle Scholar
  139. Savino F, Grassino EC, Guidi C et al (2006b) Ghrelin and motilin concentration in colicky infants. Acta Paediatr 95:738–741PubMedCrossRefGoogle Scholar
  140. Savino F, Lupica MM, Liguori SA et al (2012a) Ghrelin and feeding behaviour in preterm infants. Early Hum Dev 88:S51–S55PubMedCrossRefGoogle Scholar
  141. Savino F, Benetti S, Lupica MM et al (2012b) Ghrelin and obestatin in infants, lactating mothers and breast milk. Horm Res Paediatr 78(5–6):297–303PubMedCrossRefGoogle Scholar
  142. Schmidt PT, Naslund E, Gryback P et al (2003) Peripheral administration of GLP-2 to humans has no effect on gastric emptying or satiety. Regul Pept 116:21–25PubMedCrossRefGoogle Scholar
  143. Sharman-Koendjbiharie M, Hopman WP, Piena-Spoel M et al (2002) Gut hormones in preterm infants with necrotizing enterocolitis during starvation and reintroduction of enteral nutrition. J Pediatr Gastroenterol Nutr 35:674–679PubMedCrossRefGoogle Scholar
  144. Shimizu T, Kitamura T, Yoshikawa N et al (2007) Plasma levels of active ghrelin until 8 weeks after birth in preterm infants: relationship with anthropometric and biochemical measures. Arch Dis Child Fetal Neonatal Ed 92:F291–F292PubMedPubMedCentralCrossRefGoogle Scholar
  145. Shoji H, Watanabe A, Ikeda N et al (2016) Influence of gestational age on serum incretin levels in preterm infants. J Dev Orig Health Dis 25:1–4Google Scholar
  146. Shulman DI, Kanarek K (1993) Gastrin, motilin, insulin, and insulin-like growth factor-I concentrations in very-low-birth-weight infants receiving enteral or parenteral nutrition. JPEN J Parenter Enteral Nutr 17:130–133PubMedCrossRefGoogle Scholar
  147. Siahanidou T, Mandyla H, Vounatsou M et al (2005) Circulating peptide YY concentrations are higher in preterm than full-term infants and correlate negatively with body weight and positively with serum ghrelin concentrations. Clin Chem 51:2131–2137PubMedCrossRefGoogle Scholar
  148. Siahanidou T, Mandyla H, Militsi H et al (2007) Peptide YY (3-36) represents a high percentage of total PYY immunoreactivity in preterm and full-term infants and correlates independently with markers of adiposity and serum ghrelin concentrations. Pediatr Res 62:200–203PubMedCrossRefGoogle Scholar
  149. Siahanidou T, Margeli A, Tsirogianni C et al (2015) Elevated circulating ghrelin, but not peptide YY(3-36) levels, in term neonates with infection. Clin Chem Lab Med 53(11):1815–1824PubMedCrossRefGoogle Scholar
  150. Sigalet DL, Martin G, Meddings J et al (2004) GLP-2 levels in infants with intestinal dysfunction. Pediatr Res 56:371–376PubMedCrossRefGoogle Scholar
  151. Sigalet DL, Brindle M, Boctor D et al (2015) A safety and dosing study of glucagon-like peptide 2 in children with intestinal failure. JPEN J Parenter Enteral Nutr. 56(3):371–376Google Scholar
  152. Skow MA, Bergmann NC, Knop FK (2016) Diabetes and obesity treatment based on dual incretin receptor activation – “twincretins”. Diabetes Obes Metab 18(9):847–854.  https://doi.org/10.1111/dom.12685CrossRefPubMedGoogle Scholar
  153. Soriano-Guillen L, Barrios V, Chowen JA et al (2004) Ghrelin levels from foetal life through early adulthood: relationship with endocrine and metabolic and anthropometric measures. J Pediatr 144:30–35PubMedCrossRefGoogle Scholar
  154. Spreckley E, Murphy KG (2015) The L-Cell in nutritional sensing and the regulation of appetite. Front Nutr 2:23PubMedPubMedCentralCrossRefGoogle Scholar
  155. Stadlbauer U, Woods SC, Langhans W, Meyer U (2015) PYY3–36: beyond food intake. Front Neuroendocrinol 38:1–11PubMedCrossRefGoogle Scholar
  156. Stock S, Leichner P, Wong AC et al (2005) Ghrelin, peptide YY, glucose-dependent insulinotropic polypeptide, and hunger responses to a mixed meal in anorexic, obese, and control female adolescents. J Clin Endocrinol Metab 90:2161–2168PubMedCrossRefGoogle Scholar
  157. Stoll B, Puiman PJ, Cui L et al (2012) Continuous parenteral and enteral nutrition induces metabolic dysfunction in neonatal pigs. JPEN J Parenter Enteral Nutr 36:538–550PubMedPubMedCentralCrossRefGoogle Scholar
  158. Tang SQ, Jiang QY, Zhang YL et al (2008) Obestatin: its physicochemical characteristics and physiological functions. Peptides 29:639–645PubMedCrossRefGoogle Scholar
  159. Tang-Christensen M, Larsen PJ, Thulesen J et al (2000) The proglucagon-derived peptide, glucagon-like peptide-2, is a neurotransmitter involved in the regulation of food intake. Nat Med 6:802–807PubMedCrossRefGoogle Scholar
  160. Teitelbaum DH, Han-Markey T, Drongowski RA et al (1997) Use of cholecystokinin to prevent the development of parenteral nutrition-associated cholestasis. JPEN J Parenter Enteral Nutr 21:100–103PubMedCrossRefGoogle Scholar
  161. Thompson NM, Gill DA, Davies R et al (2004) Ghrelin and des-octanoyl ghrelin promote adipogenesis directly in vivo by a mechanism independent of the type 1a growth hormone secretagogue receptor. Endocrinology 145:234–242PubMedCrossRefGoogle Scholar
  162. Tomasetto C, Karam SM, Ribieras S et al (2000) Identification and characterization of a novel gastric peptide hormone: the motilin-related peptide. Gastroenterology 119:395–405PubMedCrossRefGoogle Scholar
  163. Tornhage CJ, Serenius F, Uvnas-Moberg K, Lindberg T (1995) Plasma somatostatin and cholecystokinin levels in preterm infants and their mothers at birth. Pediatr Res 37:771–776PubMedCrossRefGoogle Scholar
  164. Tornhage CJ, Serenius F, Uvnas-Moberg K, Lindberg T (1996) Plasma somatostatin and cholecystokinin levels in preterm infants during the first day of life. Biol Neonate 70:311–321PubMedCrossRefGoogle Scholar
  165. Tornhage CJ, Serenius F, Uvnas-Moberg K, Lindberg T (1998) Plasma somatostatin and cholecystokinin levels in preterm infants during kangaroo care with and without nasogastric tube-feeding. J Pediatr Endocrinol Metab 11:645–651PubMedCrossRefGoogle Scholar
  166. Uvnas-Moberg K, Marchini G, Winberg J (1993) Plasma cholecystokinin concentrations after breast feeding in healthy 4 day old infants. Arch Dis Child 68:46–48PubMedPubMedCentralCrossRefGoogle Scholar
  167. Valderas JP, Padilla O, Solari S et al (2014) Feeding and bone turnover in gastric bypass. J Clin Endocrinol Metab 99:491–497PubMedCrossRefGoogle Scholar
  168. Valsamakis G, Papatheodorou DC, Naouma A et al (2014) Neonatal birthwaist is positively predicted by second trimester maternal active ghrelin, a pro-appetite hormone, and negatively associated with third trimester maternal leptin, a pro-satiety hormone. Early Hum Dev 90:487–492PubMedCrossRefGoogle Scholar
  169. Van den Hoek AM, Heijboer AC, Corssmit EP et al (2004) PYY3-36 reinforces insulin action on glucose disposal in mice fed a high-fat diet. Diabetes 53:1949–1952PubMedCrossRefGoogle Scholar
  170. Verdich C, Flint A, Gutzwiller JP et al (2001) A meta-analysis of the effect of glucagon-like peptide-1 (7-36) amide on ad libitum energy intake in humans. J Clin Endocrinol Metab 86:4382–4389PubMedGoogle Scholar
  171. Vilsboll T, Krarup T, Sonne J et al (2003) Incretin secretion in relation to meal size and body weight in healthy subjects and people with type 1 and type 2 diabetes mellitus. J Clin Endocrinol Metab 88:2706–2713PubMedCrossRefGoogle Scholar
  172. Wagner CL (2002) Amniotic fluid and human milk: a continuum of effect? J Pediatr Gastroenterol Nutr 34:513–514PubMedCrossRefGoogle Scholar
  173. Warchoł M, Krauss H, Wojciechowska M et al (2014) The role of ghrelin, leptin and insulin in foetal development. Ann Agri Env Med 21(2):349–352CrossRefGoogle Scholar
  174. West DB, Greenwood MR, Marshall KA, Woods SC (1987) Lithium chloride, cholecystokinin and meal patterns: evidence that cholecystokinin suppresses meal size in rats without causing malaise. Appetite 8:221–227PubMedCrossRefGoogle Scholar
  175. Whatmore AJ, Hall CM, Jones J et al (2003) Ghrelin concentrations in healthy children and adolescents. Clin Endocrinol 59:649–654CrossRefGoogle Scholar
  176. Wiedmer P, Nogueiras R, Broglio F et al (2007) Ghrelin, obesity and diabetes. Nat Clin Pract Endocrinol Metab 3:705–712PubMedCrossRefGoogle Scholar
  177. Wierup N, Bjorkqvist M, Westrom B et al (2007) Ghrelin and motilin are cosecreted from a prominent endocrine cell population in the small intestine. J Clin Endocrinol Metab 92:3573–3581PubMedCrossRefGoogle Scholar
  178. Wojcicki JM (2012) Peptide YY in children: a review. J Pediatr Endocrinol Metab 25(3–4):227–232PubMedGoogle Scholar
  179. Woods SC (2004) Gastrointestinal satiety signals I. An overview of gastrointestinal signals that influence food intake. Am J Physiol Gastrointest Liver Physiol 286:G7–13PubMedCrossRefGoogle Scholar
  180. Wortley KE, Anderson KD, Garcia K et al (2004) Genetic deletion of ghrelin does not decrease food intake but influences metabolic fuel preference. Proc Natl Acad Sci U S A 101:8227–8232PubMedPubMedCentralCrossRefGoogle Scholar
  181. Wortley KE, del Rincon JP, Murray JD et al (2005) Absence of ghrelin protects against early-onset obesity. J Clin Invest 115:3573–3578PubMedPubMedCentralCrossRefGoogle Scholar
  182. Wynne K, Park AJ, Small CJ et al (2006) Oxyntomodulin increases energy expenditure in addition to decreasing energy intake in overweight and obese humans: a randomised controlled trial. Int J Obes(Lond) 30:1729–1736CrossRefGoogle Scholar
  183. Xiao Q, Boushey RP, Drucker DJ, Brubaker PL (1999) Secretion of the intestinotropic hormone glucagon-like peptide 2 is differentially regulated by nutrients in humans. Gastroenterology 117:99–105PubMedCrossRefGoogle Scholar
  184. Xiao C, Dash S, Morgantini C et al (2015) Gut peptides are novel regulators of intestinal lipoprotein secretion: experimental and pharmacological manipulation of lipoprotein metabolism. Diabetes 64:2310–2318PubMedCrossRefGoogle Scholar
  185. Yang J, Brown MS, Liang G et al (2008) Identification of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone. Cell 132:387–396PubMedCrossRefGoogle Scholar
  186. Yokota I, Kitamura S, Hosoda H et al (2005) Concentration of the n-octanoylated active form of ghrelin in foetal and neonatal circulation. Endocr J 52:271–276PubMedCrossRefGoogle Scholar
  187. Yoshikawa H, Miyata I, Eto Y (2006) Serum glucagon-like peptide-2 levels in neonates: comparison between extremely low-birthweight infants and normal-term infants. Pediatr Int 48:464–469PubMedCrossRefGoogle Scholar
  188. Zhang W, Zhao L, Lin TR et al (2004) Inhibition of adipogenesis by ghrelin. Mol Biol Cell 15:2484–2491PubMedPubMedCentralCrossRefGoogle Scholar
  189. Zhang JV, Ren PG, Avsian-Kretchmer O et al (2005) Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin’s effects on food intake. Science 310:996–999PubMedCrossRefGoogle Scholar
  190. Zhang S, Zhai G, Zhang J et al (2014) Ghrelin and obestatin plasma levels and ghrelin/obestatin prepropeptide gene polymorphisms in small for gestational age infants. J Int Med Res 42(6):1232–1242PubMedCrossRefGoogle Scholar
  191. Zou CC, Liang L, Wang CL, Fu JF, Zhao ZY (2009) The change in ghrelin and obestatin levels in obese children after weight reduction. Acta Paediatr 98:159–165PubMedCrossRefGoogle Scholar
  192. Zwirska-Korczala K, Adamczyk-Sowa M, Sowa P et al (2007) Role of leptin, ghrelin, angiotensin II and orexins in 3 T3 L1 preadipocyte cells proliferation and oxidative metabolism. J Physiol Pharmacol 58(Suppl 1):53–64PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Flavia Prodam
    • 1
  • Simonetta Bellone
    • 1
  • Roberta Ricotti
    • 1
  • Alice Monzani
    • 1
  • Giulia Genoni
    • 1
  • Enza Giglione
    • 1
  • Gianni Bona
    • 1
  1. 1.Department of Health Sciences, Division of PediatricsUniversity of Piemonte OrientaleNovaraItaly

Personalised recommendations