Advertisement

Neonatology pp 105-127 | Cite as

Diagnosis of Fetal Distress

  • Silvia Vannuccini
  • Caterina Bocchi
  • Filiberto Maria Severi
  • Felice Petraglia
Reference work entry

Abstract

Fetal distress is a very broad term, which can be used in many clinical situations. Although it is difficult to give a precise clinical definition, obstetricians usually use this term to indicate that the fetus is becoming hypoxic. Immediate delivery has to be considered, because neurological damage may occur when the fetal brain is deprived of oxygen. Antepartum fetal testing is used to assess hypoxia in high-risk pregnancies and monitoring during labor supplies information on the status of the fetus prior to birth. However, knowledge of the fetal responses to asphyxia, together with the known evolution of fetal heart rate patterns, should allow a more accurate definition of its onset and a more rational management and timing for intervention.

References

  1. Alfirevic Z, Stampalija T, Gyte GM (2013a) Fetal and umbilical Doppler ultrasound in high-risk pregnancies. Cochrane Database Syst Rev 11, CD007529Google Scholar
  2. Alfirevic Z, Devane D, Gyte GM (2013b) Continuous cardiotocography (CTG) as a form of electronic fetal monitoring (EFM) for fetal assessment during labour. Cochrane Database Syst Rev 31(5), CD006066Google Scholar
  3. Alfirevic Z, Stampalija T, Medley N (2015) Fetal and umbilical Doppler ultrasound in normal pregnancy. Cochrane Database Syst Rev 4, CD001450Google Scholar
  4. Allen RM, Bowling FG, Oats JJ (2004) Determining the fetal scalp lactate level that indicates the need for intervention in labour. Aust N Z J Obstet Gynaecol 44:549–552CrossRefGoogle Scholar
  5. American College of Obstetricians and Gynecologists (2009) ACOG Practice Bulletin No. 106. Intrapartum fetal heart rate monitoring: nomenclature, interpretation, and general management principles. Obstet Gynecol 114:192–202Google Scholar
  6. American College of Obstetricians and Gynecologists (2010) ACOG Practice Bulletin No. 116. Management of intrapartum fetal heart rate tracings. Reaffirmed 2015 Obstet Gynecol 116:1232–1240Google Scholar
  7. Amer-Wåhlin I, Hellsten C, Norén H et al (2001) Cardiotocography only versus cardiotocography plus ST analysis of fetal electrocardiogram for intrapartum fetal monitoring: a Swedish randomised controlled trial. Lancet 358:534–538CrossRefGoogle Scholar
  8. Baschat AA (2010) Ductus venosus Doppler for fetal surveillance in high-risk pregnancies. Clin Obstet Gynecol 53:858e68CrossRefGoogle Scholar
  9. Baschat AA (2011) Examination of the fetal cardiovascular system. Semin Fetal Neonatal Med 16:2–12CrossRefGoogle Scholar
  10. Baschat AA, Harman CR (2006) Venous Doppler in the assessment of fetal cardiovascular status. Curr Opin Obstet Gynecol 18:156–163CrossRefGoogle Scholar
  11. Baschat AA, Gembruch U, Weiner CP et al (2003) Qualitative venous Doppler waveform analysis improves prediction of critical perinatal outcomes in premature growth-restricted fetuses. Ultrasound Obstet Gynecol 22:240e5Google Scholar
  12. Baschat AA, Galan HL, Bhide A et al (2006) Doppler and biophysical assessment in growth restricted fetuses: distribution of test results. Ultrasound Obstet Gynecol 27:41e7CrossRefGoogle Scholar
  13. Becker R, Vonk R (2010) Doppler sonography of uterine arteries at 20–23 weeks: depth of notch gives information on probability of adverse pregnancy outcome and degree of fetal growth restriction in a low-risk population. Fetal Diagn Ther 27:78–86CrossRefGoogle Scholar
  14. Belfort MA, Saade GR, Thom E et al (2015) A randomized trial of intrapartum fetal ECG ST-segment analysis. N Engl J Med 373:632–641CrossRefGoogle Scholar
  15. Berkley E, Chauhan SP, Abuhamad A (2012) Doppler assessment of the fetus with intrauterine growth restriction. Am J Obstet Gynecol 206:300e8CrossRefGoogle Scholar
  16. Bloom SL, Spong CY, Thom E et al (2006) Fetal pulse oximetry and cesarean delivery. N Engl J Med 355:2195–2202CrossRefGoogle Scholar
  17. Chandraharan E (2014) Fetal scalp blood sampling during labour: is it a useful diagnostic test or a historical test that no longer has a place in modern clinical obstetrics? BJOG 121:1056–1062CrossRefGoogle Scholar
  18. Chauhan SP, Taylor M, Shields D et al (2007) Intrauterine growth restriction and oligohydramnios among high-risk patients. Am J Perinatol 24:215–221CrossRefGoogle Scholar
  19. Cosmi E, Rampon M, Saccardi C et al (2012) Middle cerebral artery peak systolic velocity in the diagnosis of fetomaternal hemorrhage. Int J Gynaecol Obstet 117:128e30CrossRefGoogle Scholar
  20. Cunningham FG, Gant NF, Leveno KJ et al (2001) Williams obstetrics, 21st edn. McGraw-Hill, New YorkGoogle Scholar
  21. Dawes GS, Moulden M, Redman CW (1995) Computerized analysis of antepartum fetal heart rate. Am J Obstet Gynecol 173:1353–1354CrossRefGoogle Scholar
  22. Dawes GS, Moulden M, Redman CW (1996) Improvements in computerized fetal heart rate analysis antepartum. J Perinat Med 24:25–36CrossRefGoogle Scholar
  23. DeVore GR (2015) The importance of the cerebroplacental ratio in the evaluation of fetal well-being in SGA and AGA fetuses. Am J Obstet Gynecol 213:5–15CrossRefGoogle Scholar
  24. East CE, Brennecke SP, King JF et al (2006) The effect of intrapartum fetal pulse oximetry in the presence of a nonreassuring fetal heart pattern on operative delivery rates: a multicenter randomized controlled trial (the FOREMOST trial). Am J Obstet Gynecol 194:606.e1–606.e16CrossRefGoogle Scholar
  25. East CE, Begg L, Colditz PB et al (2014) Fetal pulse oximetry for fetal assessment in labour. Cochrane Database Syst Rev 10, CD004075Google Scholar
  26. East CE, Leader LR, Sheehan P et al (2015) Intrapartum fetal scalp lactate sampling for fetal assessment in the presence of a non-reassuring fetal heart rate trace. Cochrane Database Syst Rev 5, CD006174Google Scholar
  27. Everett TR, Peebles DM (2015) Antenatal tests of fetal wellbeing. Semin Fetal Neonatal Med 20:138–143CrossRefGoogle Scholar
  28. Ferrazzi E, Bozzo M, Rigano S et al (2002) Temporal sequence of abnormal Doppler changes in the peripheral and central circulatory systems of the severely growth-restricted fetus. Ultrasound Obstet Gynecol 19:140–146CrossRefGoogle Scholar
  29. Figueras F, Savchev S, Triunfo S et al (2015) An integrated model with classification criteria to predict small-for-gestational-age fetuses at risk of adverse perinatal outcome. Ultrasound Obstet Gynecol 45:279–285CrossRefGoogle Scholar
  30. Gerber S, Hohlfeld P, Viquerat F et al (2006) Intrauterine growth restriction and absent or reverse end-diastolic blood flow in umbilical artery (Doppler class II or III): a retrospective study of short-and long-term fetal morbidity and mortality. Eur J Obstet Gynecol Reprod Biol 126:20–26CrossRefGoogle Scholar
  31. Grivell RM, Alfirevic Z, Gyte GM et al (2015) Antenatal cardiotocography for fetal assessment. Cochrane Database Syst Rev 9, CD007863Google Scholar
  32. Hebbar S, Rai L, Adiga P et al (2015) Reference ranges of amniotic fluid index in late third trimester of pregnancy: what should the optimal interval between two ultrasound examinations be? J Pregnancy 2015:319204CrossRefGoogle Scholar
  33. Hutter D, Kingdom J, Jaeggi E (2010) Causes and mechanisms of intrauterine hypoxia and its impact on the fetal cardiovascular system: a review. Int J Pediatr 2010:401323CrossRefGoogle Scholar
  34. Jørgensen JS, Weber T (2014) Fetal scalp blood sampling in labor – a review. Acta Obstet Gynecol Scand 93:548–555CrossRefGoogle Scholar
  35. Khalil AA, Morales Rosello J, Morlando M et al (2014) Is fetal cerebroplacental ratio an independent predictor of intrapartum fetal compromise and neonatal unit admission? Am J Obstet Gynecol 213(54):e1–e10Google Scholar
  36. Kingdom JCP, Kaufmann P (1997) Oxygen and placental villous development: origins of fetal hypoxia. Placenta 18:613–621CrossRefGoogle Scholar
  37. Kingdom J, Huppertz B, Seaward G, Kaufmann P (2000) Development of the placental villous tree and its consequences for fetal growth. Eur J Obstet Gynecol Reprod Biol 92:35–43CrossRefGoogle Scholar
  38. Klauser CK, Christensen EE, Chauhan SP et al (2005) Use of fetal pulse oximetry among high-risk women in labor: a randomized control trial. Am J Obstet Gynecol 192:1810–1817CrossRefGoogle Scholar
  39. Kühnert M, Schmidt S (2004) Intrapartum management of nonreassuring fetal heart rate patterns: a randomized controlled trial of fetal pulse oximetry. Am J Obstet Gynecol 191:1989–1995CrossRefGoogle Scholar
  40. Lalor JG, Fawole B, Alfirevic Z et al (2008) Biophysical profile for fetal assessment in high risk pregnancies. Cochrane Database Syst Rev 23, CD000038Google Scholar
  41. Lalor JG, Fawole B, Alfirevic Z et al (2012) Biophysical profile for fetal assessment in high risk pregnancies. Wiley, ChichesterGoogle Scholar
  42. Larma JD, Silva AM, Holcroft CJ et al (2007) Intrapartum electronic fetal heart rate monitoring and the identification of metabolic acidosis and hypoxic-ischemic encephalopathy. Am J Obstet Gynecol 197:301.e1–301.e8CrossRefGoogle Scholar
  43. Lees C, Marlow N, Arabin B, TRUFFLE Group et al (2013) Perinatal morbidity and mortality in early-onset fetal growth restriction: cohort outcomes of the trial of randomized umbilical and fetal flow in Europe (TRUFFLE). Ultrasound Obstet Gynecol 42:400–408CrossRefGoogle Scholar
  44. Lees CC, Marlow N, van Wassenaer-Leemhuis A, TRUFFLE Study Group et al (2015) Two year neurodevelopmental and intermediate perinatal outcomes in infants with very preterm fetal growth restriction (TRUFFLE): a randomised trial. Lancet 385:2162–2172CrossRefGoogle Scholar
  45. Leung TY, Lao TT (2012) Timing of caesarean section according to urgency. Best Pract Res Clin Obstet Gynaecol 27:251–267CrossRefGoogle Scholar
  46. Manning FA (1999) Fetal biophysical profile. Obstet Gynecol Clin North Am 26:557–577CrossRefGoogle Scholar
  47. Manning FA (2009) Antepartum fetal testing: a critical appraisal. Curr Opin Obstet Gynecol 21:348–352CrossRefGoogle Scholar
  48. Mari G (2005) Middle cerebral artery peak systolic velocity: is it the standard of care for the diagnosis of fetal anemia? J Ultrasound Med 24:697–702CrossRefGoogle Scholar
  49. Mari G, Hanif F, Kruger M et al (2007) Middle cerebral artery peak systolic velocity: a new Doppler parameter in the assessment of growth-restricted fetuses. Ultrasound Obstet Gynecol 29:310–316CrossRefGoogle Scholar
  50. Martin CB Jr (2008) Normal fetal physiology and behavior, and adaptive responses in the fetus with hypoxemia. Semin Perinatol 32:239e42Google Scholar
  51. Morales-Rosello J, Khalil A, Morlando M et al (2015) Poor neonatal acid-base status in term fetuses with low cerebroplacental ratio. Ultrasound Obstet Gynecol 45:156e61Google Scholar
  52. Morris RK, Malin G, Robson SC, Kleijnen J et al (2011) Fetal umbilical artery Doppler to predict compromise of fetal/neonatal wellbeing in a high risk population: systematic review and bivariate meta-analysis. Ultrasound Obstet Gynecol 37:135e42Google Scholar
  53. Morris RK, Say R, Robson SC et al (2012) Systematic review and meta-analysis of middle cerebral artery Doppler to predict perinatal wellbeing. Eur J Obstet Gynecol Reprod Biol 165:141e55CrossRefGoogle Scholar
  54. Morris RK, Meller CH, Tamblyn J et al (2014) Association and prediction of amniotic fluid measurements for adverse pregnancy outcome: systematic review and meta-analysis. BJOG 121:686–699CrossRefGoogle Scholar
  55. Neilson JP (2015) Fetal electrocardiogram (ECG) for fetal monitoring during labour. Cochrane Database Syst Rev 21(12), CD000116Google Scholar
  56. O’Gorman N, Tampakoudis G, Wright A et al (2016) Uterine artery pulsutility index at 12, 22, 32 and 36 weeks’ gestation in screening for preeclampsia. Ultrasound Obstet Gynecol 47:565–572CrossRefGoogle Scholar
  57. Ojala K, Vääräsmäki M, Mäkikallio K et al (2006) A comparison of intrapartum automated fetal electrocardiography and conventional cardiotocography: a randomised controlled study. BJOG 113:419–423CrossRefGoogle Scholar
  58. Omo-Aghoja L (2014) Maternal and fetal acid–base chemistry: a major determinant of perinatal outcome. Ann Med Health Sci Res 4:8–17CrossRefGoogle Scholar
  59. Ott WJ (2005) Reevaluation of the relationship between amniotic fluid volume and perinatal outcome. Am J Obstet Gynecol 192:1803–1809CrossRefGoogle Scholar
  60. Pinas A, Chandraharan E (2016) Continuous cardiotocography during labour: analysis, classification and management. Best Pract Res Clin Obstet Gynaecol 30:33–47CrossRefGoogle Scholar
  61. Pipkin FB (1999) Fetal growth and physiology. In: Edmonds KD (ed) Dewhurst’s textbook of obstetrics and gynecology for postgraduates, 6th edn. Blackwell Science, Oxford, pp 104–112Google Scholar
  62. Prior T, Mullins E, Bennett P et al (2013) Prediction of intrapartum fetal compromise using the cerebroumbilical ratio: a prospective observational study. Am J Obstet Gynecol 208:124.e1–124.e6CrossRefGoogle Scholar
  63. Prior T, Paramasivam G, Bennett P et al (2015) Are fetuses that fail to achieve their growth potential at increased risk of intrapartum compromise? Ultrasound Obstet Gynecol 46:460–464CrossRefGoogle Scholar
  64. Pruetz JD, Votava-Smith J, Miller DA (2015) Clinical relevance of fetal hemodynamic monitoring: perinatal implications. Semin Fetal Neonatal Med 20:217–224CrossRefGoogle Scholar
  65. Regnault TR, de Vrijer B, Galan HL et al (2007) Development and mechanisms of fetal hypoxia in severe fetal growth restriction. Placenta 28:714–723CrossRefGoogle Scholar
  66. Savasan ZA, Goncalves LF, Bahado-Singh RO (2014) Second- and third-trimester biochemical and ultrasound markers predictive of ischemic placental disease. Semin Perinatol 38:167–176CrossRefGoogle Scholar
  67. Severi FM, Rizzo G, Bocchi C et al (2000) Intrauterine growth retardation and fetal cardiac function. Fetal Diagn Ther 15:8–19CrossRefGoogle Scholar
  68. Severi FM, Bocchi C, Visentin A et al (2002) Uterine and fetal cerebral Doppler predict the outcome of third-trimester small-for-gestational age fetuses with normal umbilical artery Doppler. Ultrasound Obstet Gynecol 19:225–228CrossRefGoogle Scholar
  69. Seyam YS, Al-Mahmeid MS, Al-Tamimi HK (2002) Umbilical artery Doppler flow velocimetry in intrauterine growth restriction and its relation to perinatal outcome. Int J Gynecol Obstet 77:131–137CrossRefGoogle Scholar
  70. Soregaroli M, Bonera R, Danti L et al (2002) Prognostic role of umbilical artery Doppler velocimetry in growth-restricted fetuses. J Matern Fetal Neonatal Med 11:199–203CrossRefGoogle Scholar
  71. Thompson JL, Kuller JA, Rhee EH (2012) Antenatal surveillance of fetal growth restriction. Obstet Gynecol Surv 67:554e65CrossRefGoogle Scholar
  72. Thornton JG, Hornbuckle J, Vail A, GRIT Study Group et al (2004) Infant wellbeing at 2 years of age in the Growth Restriction Intervention Trial (GRIT): multicentred randomised controlled trial. Lancet 364:513–520CrossRefGoogle Scholar
  73. Turan S, Turan OM, Berg C et al (2007) Computerized fetal heart rate analysis, Doppler ultrasound and biophysical profile score in the prediction of acid-base status of growth-restricted fetuses. Ultrasound Obstet Gynecol 30:750e6Google Scholar
  74. Valiño N, Giunta G, Gallo DM et al (2016) Uterine artery pulsatility index at 30–34 weeks’ gestation in the prediction of adverse perinatal outcome. Ultrasound Obstet Gynecol 47:308–315CrossRefGoogle Scholar
  75. Weiner E, Bar J, Fainstein N et al (2015) Intraoperative findings, placental assessment and neonatal outcome in emergent cesarean deliveries for non-reassuring fetal heart rate. Eur J Obstet Gynecol Reprod Biol 185:103–107CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Silvia Vannuccini
    • 1
  • Caterina Bocchi
    • 1
  • Filiberto Maria Severi
    • 1
  • Felice Petraglia
    • 1
  1. 1.Obstetrics and Gynecology, Department of Molecular and Developmental MedicineUniversity of SienaSienaItaly

Personalised recommendations