Encyclopedia of Pathology

Living Edition
| Editors: J.H.J.M. van Krieken

HER2 in Breast Cancer

  • Laura Annaratone
  • Ivana Sarotto
  • Caterina MarchiòEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-28845-1_4710-1

Synonyms

Definition

HER2, whose official name is “erb-b2 receptor tyrosine kinase 2,” is a tyrosine kinase receptor belonging to the human epidermal growth factor receptor family. It represents the second member of this family (and therefore called HER2), and it is an orphan receptor, meaning that no specific ligands are known for this receptor.

Features

About 15% of all invasive breast carcinomas present HER2 overexpression and/or HER2 gene amplification, thus identifying a subset of breast carcinomas that can be treated in a targeted fashion. It has been shown that HER2-positive breast carcinomas are often poorly differentiated and of no special types (NST) (Invasive Carcinoma NST).

Ductal carcinoma in situ (DCIS) of high nuclear grade with comedonecrosis (Ductal Carcinoma In Situ) is frequently HER2-positive and may be associated with an invasive carcinoma. However, HER2 overexpression in DCIS is not considered for anti-HER2 therapy. Cells of Paget disease of the nipple (Paget...

This is a preview of subscription content, log in to check access.

References and Further Reading

  1. Arriola, E., Marchio, C., Tan, D. S., Drury, S. C., Lambros, M. B., Natrajan, R., Rodriguez-Pinilla, S. M., Mackay, A., Tamber, N., Fenwick, K., Jones, C., Dowsett, M., Ashworth, A., & Reis-Filho, J. S. (2008). Genomic analysis of the HER2/TOP2A amplicon in breast cancer and breast cancer cell lines. Laboratory Investigation, 88, 491–503.CrossRefGoogle Scholar
  2. Ballard, M., Jalikis, F., Krings, G., Schmidt, R. A., Chen, Y. Y., Rendi, M. H., Dintzis, S. M., Jensen, K. C., West, R. B., Sibley, R. K., Troxell, M. L., & Allison, K. H. (2017). ‘Non-classical’ HER2 FISH results in breast cancer: A multi-institutional study. Modern Pathology, 30, 227–235.CrossRefGoogle Scholar
  3. Bose, R., Kavuri, S. M., Searleman, A. C., Shen, W., Shen, D., Koboldt, D. C., Monsey, J., Goel, N., Aronson, A. B., Li, S., Ma, C. X., Ding, L., Mardis, E. R., & Ellis, M. J. (2013). Activating HER2 mutations in HER2 gene amplification negative breast cancer. Cancer Discovery, 3, 224–237.CrossRefGoogle Scholar
  4. Ciriello, G., Gatza, M. L., Beck, A. H., Wilkerson, M. D., Rhie, S. K., Pastore, A., Zhang, H., McLellan, M., Yau, C., Kandoth, C., Bowlby, R., Shen, H., Hayat, S., Fieldhouse, R., Lester, S. C., Tse, G. M., Factor, R. E., Collins, L. C., Allison, K. H., Chen, Y. Y., Jensen, K., Johnson, N. B., Oesterreich, S., Mills, G. B., Cherniack, A. D., Robertson, G., Benz, C., Sander, C., Laird, P. W., Hoadley, K. A., King, T. A., Network, T. R., & Perou, C. M. (2015). Comprehensive molecular portraits of invasive lobular breast cancer. Cell, 163, 506–519.CrossRefGoogle Scholar
  5. Cocco, E., Javier Carmona, F., Razavi, P., Won, H. H., Cai, Y., Rossi, V., Chan, C., Cownie, J., Soong, J., Toska, E., Shifman, S. G., Sarotto, I., Savas, P., Wick, M. J., Papadopoulos, K. P., Moriarty, A., Cutler, R. E., Jr., Avogadri-Connors, F., Lalani, A. S., Bryce, R. P., Chandarlapaty, S., Hyman, D. M., Solit, D. B., Boni, V., Loi, S., Baselga, J., Berger, M. F., Montemurro, F., & Scaltriti, M. (2018). Neratinib is effective in breast tumors bearing both amplification and mutation of ERBB2 (HER2). Science Signaling, 11, pii: eaat9773.CrossRefGoogle Scholar
  6. Curtis, C., Shah, S. P., Chin, S. F., Turashvili, G., Rueda, O. M., Dunning, M. J., Speed, D., Lynch, A. G., Samarajiwa, S., Yuan, Y., Graf, S., Ha, G., Haffari, G., Bashashati, A., Russell, R., McKinney, S., METABRIC Group, Langerod, A., Green, A., Provenzano, E., Wishart, G., Pinder, S., Watson, P., Markowetz, F., Murphy, L., Ellis, I., Purushotham, A., Borresen-Dale, A. L., Brenton, J. D., Tavare, S., Caldas, C., & Aparicio, S. (2012). The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature, 486, 346–352.CrossRefGoogle Scholar
  7. Ercolani, C., Marchio, C., Di Benedetto, A., Fabi, A., Perracchio, L., Vici, P., Sperati, F., Buglioni, S., Arena, V., Pescarmona, E., Sapino, A., Terrenato, I., & Mottolese, M. (2017). Breast carcinomas with low amplified/equivocal HER2 by Ish: Potential supporting role of multiplex ligation-dependent probe amplification. Journal of Experimental & Clinical Cancer Research, 36, 143.CrossRefGoogle Scholar
  8. Fang, Y., Jiang, Y., Wang, X., Yang, X., Gao, Y., & Wang, J. (2014). Somatic mutations of the HER2 in metastatic breast cancer. Tumour Biology, 35, 11851–11854.CrossRefGoogle Scholar
  9. Fehrenbacher, L., Cecchini, R., Geyer, C., Rastogi, P., Costantino, J., Atkins, J., Polikoff, J., Boileau, J.-F., Provencher, L., Stokoe, C., Moore, T., Robidoux, A., Borges, V., Albain, K., Swain, S., Paik, S., Mamounas, E., & Wolmark, N. (2018). Abstract GS1-02: NSABP B-47 (NRG oncology): Phase III randomized trial comparing adjuvant chemotherapy with adriamycin (A) and cyclophosphamide (C) → weekly paclitaxel (WP), or docetaxel (T) and C with or without a year of trastuzumab (H) in women with node-positive or high-risk node-negative invasive breast cancer (IBC) expressing HER2 staining intensity of IHC 1+ or 2+ with negative FISH (HER2-Low IBC). Cancer Research, 78(4 Supplement), GS1-02-GS01-02.CrossRefGoogle Scholar
  10. Hyman, D. M., Piha-Paul, S. A., Won, H., Rodon, J., Saura, C., Shapiro, G. I., Juric, D., Quinn, D. I., Moreno, V., Doger, B., Mayer, I. A., Boni, V., Calvo, E., Loi, S., Lockhart, A. C., Erinjeri, J. P., Scaltriti, M., Ulaner, G. A., Patel, J., Tang, J., Beer, H., Selcuklu, S. D., Hanrahan, A. J., Bouvier, N., Melcer, M., Murali, R., Schram, A. M., Smyth, L. M., Jhaveri, K., Li, B. T., Drilon, A., Harding, J. J., Iyer, G., Taylor, B. S., Berger, M. F., Cutler, R. E., Jr., Xu, F., Butturini, A., Eli, L. D., Mann, G., Farrell, C., Lalani, A. S., Bryce, R. P., Arteaga, C. L., Meric-Bernstam, F., Baselga, J., & Solit, D. B. (2018). HER kinase inhibition in patients with HER2- and HER3-mutant cancers. Nature, 554, 189–194.CrossRefGoogle Scholar
  11. Isola, J., Tanner, M., Forsyth, A., Cooke, T. G., Watters, A. D., & Bartlett, J. M. (2004). Interlaboratory comparison of HER-2 oncogene amplification as detected by chromogenic and fluorescence in situ hybridization. Clinical Cancer Research, 10, 4793–4798.CrossRefGoogle Scholar
  12. Kancha, R. K., von Bubnoff, N., Bartosch, N., Peschel, C., Engh, R. A., & Duyster, J. (2011). Differential sensitivity of ERBB2 kinase domain mutations towards lapatinib. PLoS One, 6, e26760.CrossRefGoogle Scholar
  13. Lee, J. W., Soung, Y. H., Seo, S. H., Kim, S. Y., Park, C. H., Wang, Y. P., Park, K., Nam, S. W., Park, W. S., Kim, S. H., Lee, J. Y., Yoo, N. J., & Lee, S. H. (2006). Somatic mutations of ERBB2 kinase domain in gastric, colorectal, and breast carcinomas. Clinical Cancer Research, 12, 57–61.CrossRefGoogle Scholar
  14. Lien, H. C., Chen, Y. L., Juang, Y. L., & Jeng, Y. M. (2015). Frequent alterations of HER2 through mutation, amplification, or overexpression in pleomorphic lobular carcinoma of the breast. Breast Cancer Research and Treatment, 150, 447–455.CrossRefGoogle Scholar
  15. Ma, C. X., Bose, R., Gao, F., Freedman, R. A., Telli, M. L., Kimmick, G., Winer, E., Naughton, M., Goetz, M. P., Russell, C., Tripathy, D., Cobleigh, M., Forero, A., Pluard, T. J., Anders, C., Niravath, P. A., Thomas, S., Anderson, J., Bumb, C., Banks, K. C., Lanman, R. B., Bryce, R., Lalani, A. S., Pfeifer, J., Hayes, D. F., Pegram, M., Blackwell, K., Bedard, P. L., Al-Kateb, H., & Ellis, M. J. C. (2017). Neratinib efficacy and circulating tumor DNA detection of HER2 mutations in HER2 nonamplified metastatic breast cancer. Clinical Cancer Research, 23, 5687–5695.CrossRefGoogle Scholar
  16. Marchio, C., Lambros, M. B., Gugliotta, P., Di Cantogno, L. V., Botta, C., Pasini, B., Tan, D. S., Mackay, A., Fenwick, K., Tamber, N., Bussolati, G., Ashworth, A., Reis-Filho, J. S., & Sapino, A. (2009). Does chromosome 17 centromere copy number predict polysomy in breast cancer? A fluorescence in situ hybridization and microarray-based CGH analysis. Journal of Pathology, 219, 16–24.CrossRefGoogle Scholar
  17. Marchio, C., Dell’Orto, P., Annaratone, L., Geyer, F. C., Venesio, T., Berrino, E., Verdun di Cantogno, L., Garofoli, A., Rangel, N., Casorzo, L., dell’Aglio, C., Gugliotta, P., Trisolini, E., Beano, A., Pietribiasi, F., Orlassino, R., Cassoni, P., Pich, A., Montemurro, F., Mottolese, M., Vincent-Salomon, A., Penault-Llorca, F., Medico, E., Ng, C. K. Y., Viale, G., & Sapino, A. (2018). The dilemma of HER2 double-equivocal breast carcinomas: Genomic profiling and implications for treatment. American Journal of Surgical Pathology, 42, 1190–1200.CrossRefGoogle Scholar
  18. Moelans, C. B., de Weger, R. A., & van Diest, P. J. (2010). Absence of chromosome 17 polysomy in breast cancer: Analysis by CEP17 chromogenic in situ hybridization and multiplex ligation-dependent probe amplification. Breast Cancer Research and Treatment, 120, 1–7.CrossRefGoogle Scholar
  19. Park, Y. H., Shin, H. T., Jung, H. H., Choi, Y. L., Ahn, T., Park, K., Lee, A., Do, I. G., Kim, J. Y., Ahn, J. S., Park, W. Y., & Im, Y. H. (2015). Role of HER2 mutations in refractory metastatic breast cancers: Targeted sequencing results in patients with refractory breast cancer. Oncotarget, 6, 32027–32038.PubMedPubMedCentralGoogle Scholar
  20. Petrelli, F., Tomasello, G., Barni, S., Lonati, V., Passalacqua, R., & Ghidini, M. (2017). Clinical and pathological characterization of HER2 mutations in human breast cancer: A systematic review of the literature. Breast Cancer Research and Treatment, 166, 339–349.CrossRefGoogle Scholar
  21. Press, M. F., Sauter, G., Buyse, M., Fourmanoir, H., Quinaux, E., Tsao-Wei, D. D., Eiermann, W., Robert, N., Pienkowski, T., Crown, J., Martin, M., Valero, V., Mackey, J. R., Bee, V., Ma, Y., Villalobos, I., Campeau, A., Mirlacher, M., Lindsay, M. A., & Slamon, D. J. (2016). HER2 gene amplification testing by fluorescent in situ hybridization (FISH): Comparison of the ASCO-College of American pathologists guidelines with FISH scores used for enrollment in Breast Cancer International Research Group Clinical Trials. Journal of Clinical Oncology, 34, 3518–3528.CrossRefGoogle Scholar
  22. Ragazzi, M., Bisagni, A., Gasparini, E., Kuhn, E., Bassano, C., Tamagnini, I., Foroni, M., Bortesi, M., Falco, G., Ferrari, G., Braglia, L., Savoldi, L., Bologna, A., Di Cicilia, R., Bisagni, G., & Gardini, G. (2017). Impact of 2013 ASCO/CAP guidelines on HER2 determination of invasive breast cancer: A single institution experience using frontline dual-color FISH. Breast, 34, 65–72.CrossRefGoogle Scholar
  23. Rondon-Lagos, M., Verdun Di Cantogno, L., Rangel, N., Mele, T., Ramirez-Clavijo, S. R., Scagliotti, G., Marchio, C., & Sapino, A. (2014). Unraveling the chromosome 17 patterns of FISH in interphase nuclei: An in-depth analysis of the HER2 amplicon and chromosome 17 centromere by karyotyping, FISH and M-FISH in breast cancer cells. BMC Cancer, 14, 922.CrossRefGoogle Scholar
  24. Ross, J. S., Wang, K., Sheehan, C. E., Boguniewicz, A. B., Otto, G., Downing, S. R., Sun, J., He, J., Curran, J. A., Ali, S., Yelensky, R., Lipson, D., Palmer, G., Miller, V. A., & Stephens, P. J. (2013). Relapsed classic E-cadherin (CDH1)-mutated invasive lobular breast cancer shows a high frequency of HER2 (ERBB2) gene mutations. Clinical Cancer Research, 19, 2668–2676.CrossRefGoogle Scholar
  25. Sapino, A., Maletta, F., Verdun di Cantogno, L., Macri, L., Botta, C., Gugliotta, P., Scalzo, M. S., Annaratone, L., Balmativola, D., Pietribiasi, F., Bernardi, P., Arisio, R., Viberti, L., Guzzetti, S., Orlassino, R., Ercolani, C., Mottolese, M., Viale, G., & Marchio, C. (2014). Gene status in HER2 equivocal breast carcinomas: Impact of distinct recommendations and contribution of a polymerase chain reaction-based method. The Oncologist, 19, 1118–1126.CrossRefGoogle Scholar
  26. Valent, A., Penault-Llorca, F., Cayre, A., & Kroemer, G. (2013). Change in HER2 (ERBB2) gene status after taxane-based chemotherapy for breast cancer: Polyploidization can lead to diagnostic pitfalls with potential impact for clinical management. Cancer Genetics, 206, 37–41.CrossRefGoogle Scholar
  27. Wolff, A. C., Hammond, M. E., Hicks, D. G., Dowsett, M., McShane, L. M., Allison, K. H., Allred, D. C., Bartlett, J. M., Bilous, M., Fitzgibbons, P., Hanna, W., Jenkins, R. B., Mangu, P. B., Paik, S., Perez, E. A., Press, M. F., Spears, P. A., Vance, G. H., Viale, G., Hayes, D. F., American Society of Clinical Oncology, & College of American Pathologists. (2013). Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. Journal of Clinical Oncology, 31, 3997–4013.CrossRefGoogle Scholar
  28. Wolff, A. C., Hammond, M. E. H., Allison, K. H., Harvey, B. E., Mangu, P. B., Bartlett, J. M. S., Bilous, M., Ellis, I. O., Fitzgibbons, P., Hanna, W., Jenkins, R. B., Press, M. F., Spears, P. A., Vance, G. H., Viale, G., McShane, L. M., & Dowsett, M. (2018). Human epidermal growth Factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. Journal of Clinical Oncology, 36, 2105–2122.CrossRefGoogle Scholar
  29. Yeh, I. T., Martin, M. A., Robetorye, R. S., Bolla, A. R., McCaskill, C., Shah, R. K., Gorre, M. E., Mohammed, M. S., & Gunn, S. R. (2009). Clinical validation of an array CGH test for HER2 status in breast cancer reveals that polysomy 17 is a rare event. Modern Pathology, 22, 1169–1175.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Laura Annaratone
    • 1
  • Ivana Sarotto
    • 2
  • Caterina Marchiò
    • 1
    • 2
    Email author
  1. 1.Department of Medical SciencesUniversity of TurinTurinItaly
  2. 2.Pathology DivisionCandiolo Cancer Institute, FPO-IRCCSCandioloItaly