Advertisement

Interferometric Methods in NDE

  • Krzysztof PatorskiEmail author
  • Maciej Trusiak
Reference work entry

Abstract

Optical interferometry offers unlimited research and testing possibilities for scientific and technological endeavors. Unprecedented progress in optoelectronics (new light sources and detectors), fiber optics, modern mechanical, and electronic hardware components as well as in computer engineering and informatics aids continuous development of automated, compact, full-field, non-contact, high-speed, and high-accuracy measurement systems. This chapter presents the theoretical description of basic two-beam interference configurations, the fundamentals of decoding the information on the object or phenomenon under test from a fringe pattern (AFPA – automated fringe pattern analysis), and illustrative examples of applications of interferometry in NDE. They include vibration testing of silicon microelements and high-accuracy in-plane displacement measurements for the analyses in experimental mechanics and material engineering.

Notes

Acknowledgments

The support of National Science Center (Poland) grant OPUS 13 2017/25/B/ST7/02049 and Faculty of Mechatronics, Warsaw University of Technology statutory funds is acknowledged.

References

  1. Bernini MB, Federico A, Kaufmann GH (2008) Noise reduction in digital speckle pattern interferometry using bidimensional empirical mode decomposition. Appl Opt 47(14):2592–2598CrossRefGoogle Scholar
  2. Bernini MB, Federico A, Kaufmann GH (2009) Normalization of fringe patterns using the bidimensional empirical mode decomposition and the Hilbert transform. Appl Opt 48(36):6862–6869CrossRefGoogle Scholar
  3. Bhuiyan SMA, Adhami RR, Khan JF (2008) Fast and adaptive bidimensional empirical mode decomposition using order-statistics filter based envelope estimation. EURASIP J Adv Signal Process 2008(164):725356Google Scholar
  4. Bhuiyan SMA, Attoh-Okine NO, Barner KE, Ayenu-Prah AY, Adhami RR (2009) Bidimensional empirical mode decomposition using various interpolation techniques. Adv Adapt Data Anal 01(02):309–338MathSciNetCrossRefGoogle Scholar
  5. Bosseboeuf A, Petitgrand S (2003) Application of microscopic interferometry techniques in the MEMS field. Proc SPIE 5145:1–16CrossRefGoogle Scholar
  6. Bruning JH, Herriott DR, Gallagher JE, Rosenfeld DP, White AD, Brangaccio DJ (1974) Digital wavefront measuring interferometer for testing optical surfaces and lenses. Appl Opt 13:2693–2703CrossRefGoogle Scholar
  7. Cloud G (ed) (1995) Optical methods of engineering analysis. Cambridge University Press, CambridgeGoogle Scholar
  8. Creath K, Schmit J (1996) N-point spatial phase-measurement techniques for non-destructive testing. Opt Lasers Eng 24(5–6):365–379CrossRefGoogle Scholar
  9. Cywińska M, Trusiak M, Mico V, Patorski K (2018) Single-frame fringe pattern analysis using modified variational image decomposition aided by the Hilbert transform for fast full-field quantitative phase imaging. In: Proceedings of SPIE 10677, Unconventional Optical Imaging, 106772BGoogle Scholar
  10. Czarnek R (1991) Three-mirror, four-beam moiré interferometer and its capabilities. Opt Lasers Eng 13(2):93–101CrossRefGoogle Scholar
  11. Durelli AJ, Parks VJ (eds) (1970) Moiré Analysis of Strain. Prentice Hall, Englewood CliffsGoogle Scholar
  12. Felsberg M, Sommer G (2001) The monogenic signal. IEEE Trans Signal Process 12(49):3136–3144MathSciNetCrossRefGoogle Scholar
  13. Gdeisat MA, Burton DR, Lalor MJ (2006) Spatial carrier fringe pattern demodulation by use of a two-dimensional continuous wavelet transform. Appl Opt 45(34):8722–8732CrossRefGoogle Scholar
  14. Ghiglia DC, Pritt MD (eds) (1998) Two-dimensional phase unwrapping: theory, algorithms, and software. Wiley, New YorkzbMATHGoogle Scholar
  15. Gorthi SS, Rastogi P (2010) Fringe projection techniques: whither we are? Opt Lasers Eng 48(2):133–140CrossRefGoogle Scholar
  16. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis. Proc R Soc Lond A454(1971):903–995CrossRefGoogle Scholar
  17. Kai L, Kemao Q (2013) Improved generalized regularized phase tracker for demodulation of a single fringe pattern. Opt Express 21(20):24385–24397CrossRefGoogle Scholar
  18. Kemao Q (2004) Windowed Fourier transform for fringe pattern analysis. Appl Opt 43(13):2695–2702CrossRefGoogle Scholar
  19. Larkin KG, Bone DJ, Oldfield MA (2001) Natural demodulation of two-dimensional fringe patterns. I. General background of the spiral phase quadrature transform. J Opt Soc Am 18(8):1862–1870CrossRefGoogle Scholar
  20. Legarda-Sáenz R, Osten W, Jüptner W (2002) Improvement of the regularized phase tracking technique for the processing of nonnormalized fringe patterns. Appl Opt 41(26):5519–5526CrossRefGoogle Scholar
  21. Ma J, Wang Z, Pan T (2014) Two-dimensional continuous wavelet transform algorithm for phase extraction of two-step arbitrarily phase-shifted interferograms. Opt Lasers Eng 55:205–211CrossRefGoogle Scholar
  22. Malacara D (ed) (2007) Optical shop testing. Wiley, New YorkGoogle Scholar
  23. Malacara D, Servin M, Malacara Z (eds) (1998) Interferogram analysis for optical testing. Marcel Dekker, New YorkGoogle Scholar
  24. Martinez-Carranza J, Falaggis K, Kozacki T (2017) Fast and accurate phase-unwrapping algorithm based on the transport of intensity equation. Appl Opt 56(25):7079–7088CrossRefGoogle Scholar
  25. Millerd JE, Brock NJ, Hayes JB, North-Morris MB, Novak M, Wyant JC (2004) Pixelated phase-mask dynamic interferometer. In: Proceedings of SPIE 5531, Interferometry XII: techniques and analysisGoogle Scholar
  26. Nunes JC, Bouaoune Y, Delechelle E, Niang O, Bunel Ph (2003) Image analysis by bidimensional empirical mode decomposition. Image Vis Comput 21(12):1019–1026CrossRefGoogle Scholar
  27. Patorski K, Kujawinska M (eds) (1993) Handbook of the moirè fringe technique. Elsevier, AmsterdamGoogle Scholar
  28. Patorski K, Trusiak M (2013) Highly contrasted Bessel fringe minima visualization for time-averaged vibration profilometry using Hilbert transform two-frame processing. Opt Express 21(14):16863–16881CrossRefGoogle Scholar
  29. Patorski K, Styk A, Sienicki Z (2004) Time-average interference microscopy for vibration testing of silicon microelements. Proc SPIE 6158:615806-1Google Scholar
  30. Patorski K, Pokorski K, Trusiak M (2011) Fourier domain interpretation of real and pseudo-moiré phenomena. Opt Express 19(27):26065–26078CrossRefGoogle Scholar
  31. Patorski K, Trusiak M, Tkaczyk T (2014) Optically-sectioned two-shot structured illumination microscopy with Hilbert-Huang processing. Opt Express 22(8):9517–9527. Virtual J Biomed Opt 9(6)CrossRefGoogle Scholar
  32. Petitgrand S, Yahiaoui R, Bosseboeuf A, Danaie K (2001) Quantitative time-averaged microscopic interferometry for micromechanical device vibration mode characterization. Proc SPIE 4400:51–60CrossRefGoogle Scholar
  33. Picazo-Bueno JÁ, Trusiak M, García J, Patorski K, Micó V (2018) Hilbert–Huang single-shot spatially multiplexed interferometric microscopy. Opt Lett 43(5):1007–1010CrossRefGoogle Scholar
  34. Pokorski K, Patorski K (2012) Separation of complex fringe patterns using two-dimensional continuous wavelet transform. Appl Opt 51(35):8433–8439CrossRefGoogle Scholar
  35. Pokorski K, Patorski K (2013) Processing and phase analysis of fringe patterns with contrast reversals. Opt Express 21(19):22596–22609CrossRefGoogle Scholar
  36. Post D, Han B, Ifju PG (eds) (1994) High sensitivity moiré: experimental analysis for mechanics and materials science and technology. Springer, New YorkGoogle Scholar
  37. Pryputniewicz RJ (1994) A hybrid approach to deformation analysis. Proc SPIE 2342:282–296CrossRefGoogle Scholar
  38. Pryputniewicz RJ, Stetson KA (1989) Measurement of vibration patterns using electro-optical holography. Proc SPIE 1162:456–467CrossRefGoogle Scholar
  39. Robinson D, Reid G (eds) (1993) Interferogram analysis: digital fringe pattern measurement. Institute of Physics, BristolGoogle Scholar
  40. Saide D, Trusiak M, Patorski K (2017) Evaluation of adaptively enhanced two-shot fringe pattern phase and amplitude demodulation methods. Appl Opt 56(19):5489–5500CrossRefGoogle Scholar
  41. Salbut L, Patorski K, Jozwik M, Kacperski J, Gorecki C, Jacobelli A, Dean T (2003) Active micro-elements testing by interferometry using time-average and quasi-stroboscopic techniques. Proc SPIE 5145:23–32CrossRefGoogle Scholar
  42. Schmidt J, Patorski K, Creath K (1997) Simultaneous registration of in- and out-of-plane displacements in modified grating interferometry. Opt Eng 36(8):2240–2248CrossRefGoogle Scholar
  43. Schwider J (1990) Advanced evaluation techniques in interferometry. In: Wolf E (ed) Progress in optics, vol 28. Elsevier, Burlington, pp 271–359Google Scholar
  44. Servin M, Marroquin JL, Cuevas FJ (1997) Demodulation of a single interferogram by use of a two-dimensional regularized phase-tracking technique. Appl Opt 36(19):4540–4548CrossRefGoogle Scholar
  45. Servin M, Marroquin JL, Cuevas FJ (2001) Fringe-follower regularized phase tracker for demodulation of closed-fringe interferograms. J Opt Soc Am A 18(3):689–695CrossRefGoogle Scholar
  46. Servin M, Quiroga JA, Padilla M (eds) (2014) Fringe pattern analysis for optical metrology: theory, algorithms, and applications. Wiley, New YorkGoogle Scholar
  47. Stetson KA (1984) Holographic vibration analysis. In: Erf RE (ed) Holographic nondestructive testing. Academic, New York, pp 182–220Google Scholar
  48. Takeda M, Ina H, Kobayashi S (1982) Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J Opt Soc Am 72(1):156–160CrossRefGoogle Scholar
  49. Theocaris PS (1969) Moire fringes in strain analysis. Pergamon, OxfordCrossRefGoogle Scholar
  50. Trusiak M, Patorski K (2015) Two-shot fringe pattern phase-amplitude demodulation using Gram-Schmidt orthonormalization with Hilbert-Huang pre-filtering. Opt Express 23(4):4672–4690CrossRefGoogle Scholar
  51. Trusiak M, Patorski K, Wielgus M (2012) Adaptive enhancement of optical fringe patterns by selective reconstruction using FABEMD algorithm and Hilbert spiral transform. Opt Express 20(21):23463–23479CrossRefGoogle Scholar
  52. Trusiak M, Patorski K, Pokorski K (2013) Hilbert-Huang processing for single-exposure two-dimensional grating interferometry. Opt Express 21(23):28359–28379CrossRefGoogle Scholar
  53. Trusiak M, Wielgus M, Patorski K (2014) Advanced processing of optical fringe patterns by automated selective reconstruction and enhanced fast empirical mode decomposition. Opt Lasers Eng 52(1):230–240CrossRefGoogle Scholar
  54. Trusiak M, Mico V, Garcia J, Patorski K (2016a) Quantitative phase imaging by single-shot Hilbert–Huang phase microscopy. Opt Lett 41(18):4344–4347CrossRefGoogle Scholar
  55. Trusiak M, Służewski L, Patorski K (2016b) Single shot fringe pattern phase demodulation using Hilbert-Huang transform aided by the principal component analysis. Opt Express 24(4):4221–4238CrossRefGoogle Scholar
  56. Trusiak M, Styk A, Patorski K (2018) Hilbert–Huang transform based advanced Bessel fringe generation and demodulation for full-field vibration studies of specular reflection micro-objects. Opt Lasers Eng 110:100–112CrossRefGoogle Scholar
  57. Vargas J, Quiroga JA, Sorzano COS, Estrada JC, Carazo JM (2012) Two-step demodulation based on the Gram–Schmidt orthonormalization method. Opt Lett 37(3):443–445CrossRefGoogle Scholar
  58. Walker CA (1994) A historical review of moiré interferometry. Exp Mech 34(2):281–299MathSciNetCrossRefGoogle Scholar
  59. Wang Z, Han B (2004) Advanced iterative algorithm for phase extraction of randomly phase-shifted interferograms. Opt Lett 29(14):1671–1673CrossRefGoogle Scholar
  60. Wang Z, Ma H (2006) Advanced continuous wavelet transform algorithm for digital interferogram analysis and processing. Opt Eng 45(4):045601CrossRefGoogle Scholar
  61. Wielgus M, Patorski K (2011) Evaluation of amplitude encoded fringe patterns using the bidimensional empirical mode decomposition and the 2D Hilbert transform generalizations. Appl Opt 50(28):5513–5523CrossRefGoogle Scholar
  62. Wielgus M, Patorski K, Etchepareborda P, Federico A (2014) Continuous phase estimation from noisy fringe patterns based on the implicit smoothing splines. Opt Express 22:10775–10791CrossRefGoogle Scholar
  63. Wielgus M, Sunderland Z, Patorski K (2015) Two-frame tilt-shift error estimation and phase demodulation algorithm. Opt Lett 40(15):3460–3463CrossRefGoogle Scholar
  64. Williams DC (ed) (1993) Optical methods in engineering metrology. Chapman & Hall, LondonGoogle Scholar
  65. Yi Y, Kim Ch-J (1999) Measurement of mechanical properties for MEMS materials. Meas Sci Technol 10(8):706–716CrossRefGoogle Scholar
  66. Zhang Z, Guo H (2014) Principal-vector-directed fringe-tracking technique. Appl Opt 53(31):7381–7393CrossRefGoogle Scholar
  67. Zhang D, Ma M, Arola DD (2002) Fringe skeletonizing using an improved derivative sign binary method. Opt Lasers Eng 37(1):51–62CrossRefGoogle Scholar
  68. Zhong M, Chen W, Wang T, Su X (2013) Application of two-dimensional S-transform in fringe pattern analysis. Opt Lasers Eng 51(10):1138–1142CrossRefGoogle Scholar
  69. Zhou Y, Li H (2011) Adaptive noise reduction method for DSPI fringes based on bi-dimensional ensemble empirical mode decomposition. Opt Express 19(19):18207–18215CrossRefGoogle Scholar
  70. Zhou X, Podoleanu AG, Yang Z, Yang T, Zao H (2012) Morphological operation-based bi-dimensional empirical mode decomposition for automatic background removal of fringe patterns. Opt Express 20(22):24247–24262CrossRefGoogle Scholar
  71. Zhu X, Chen Z, Tang C (2013) Variational image decomposition for automatic background and noise removal of fringe patterns. Opt Lett 38(3):275–277CrossRefGoogle Scholar
  72. Zhu X, Tang C, Li B, Sun C, Wang L (2014) Phase retrieval from single frame projection fringe pattern with variational image decomposition. Opt Lasers Eng 59(8):25–33CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mechatronics, Institute of Micromechanics and PhotonicsWarsaw University of TechnologyWarsawPoland

Section editors and affiliations

  • Ida Nathan
    • 1
  • Norbert Meyendorf
    • 2
  1. 1.Department of Electrical and Computer EngineeringUniversity of AkronAkronUSA
  2. 2.Center for Nondestructive EvaluationIowa State UniversityAmesUSA

Personalised recommendations