Advertisement

X-Ray Phase Contrast Methods

  • Sheridan MayoEmail author
  • Marco Endrizzi
Reference work entry

Abstract

X-ray phase-contrast methods for imaging and tomography have considerable advantages over conventional absorption contrast. They enable excellent imaging contrast for both high- and low-density materials within the same sample and offer additional imaging modes which can highlight low-contrast boundaries, subtle density gradients, and fine-scale texture. Phase-contrast methods encompass a family of techniques implemented both in the laboratory and at synchrotron sources which utilize a range of tools to make visible the phase shift imposed on an X-ray beam by the sample. This chapter describes the main phase-contrast techniques used, their particular strengths, and a range of applications for each, together with some of the mathematical methods used in the analysis of phase-contrast data.

References

  1. Albertin F, Astolfo A, Stampanoni M, Peccenini E, Hwu Y, Kaplan F, Margaritondo G (2015) Ancient administrative handwritten documents: x-ray analysis and imaging. J Synchrotron Radiat 22:446–451.  https://doi.org/10.1107/s1600577515000314CrossRefGoogle Scholar
  2. Altapova V, Helfen L, Myagotin A, Hanschke D, Moosmann J, Gunneweg J, Baumbach T (2012) Phase contrast laminography based on Talbot interferometry. Opt Express 20:6496–6508.  https://doi.org/10.1364/oe.20.006496CrossRefGoogle Scholar
  3. Ando M, Hosoya S (1972) An attempt at x-ray phase-contrast microscopy. In: Proceedings of the 6th international conference on x-ray optics and microanalysis. University of Tokyo Press, Tokyo, pp 63–68Google Scholar
  4. Andrukh T, Monaenkova D, Rubin B, Lee WK, Kornev KG (2014) Meniscus formation in a capillary and the role of contact line friction. Soft Matter 10:609–615.  https://doi.org/10.1039/c3sm52164hCrossRefGoogle Scholar
  5. Appel A, Anastasio MA, Brey EM (2011) Potential for imaging engineered tissues with x-ray phase contrast. Tissue Eng Part B Rev 17:321–330.  https://doi.org/10.1089/ten.teb.2011.0230CrossRefGoogle Scholar
  6. Appel AA, Ibarra V, Somo SI, Larson JC, Garson AB, Guan HF, McQuilling JP, Zhong Z, Anastasio MA, Opara EC, Brey EM (2016) Imaging of hydrogel microsphere structure and foreign body response based on endogenous x-ray phase contrast. Tissue Eng Part C Methods 22:1038–1048.  https://doi.org/10.1089/ten.tec.2016.0253CrossRefGoogle Scholar
  7. Arfelli F, Astolfo A, Rigon L, Menk RH (2018) A Gaussian extension for diffraction enhanced imaging. Sci Rep 8:362.  https://doi.org/10.1038/s41598-017-18367-xCrossRefGoogle Scholar
  8. Arzilli F, Polacci M, Landi P, Giordano D, Baker DR, Mancini L (2016) A novel protocol for resolving feldspar crystals in synchrotron x-ray microtomographic images of crystallized natural magmas and synthetic analogs. Am Mineral 101:2301–2311.  https://doi.org/10.2138/am-2016-5788CrossRefGoogle Scholar
  9. Astolfo A, Endrizzi M, Vittoria FA, Diemoz PC, Price B, Haig I, Olivo A (2017) Large field of view, fast and low dose multimodal phase-contrast imaging at high x-ray energy. Sci Rep 7:2187CrossRefGoogle Scholar
  10. Barigou M, Douaire M (2013) X-ray micro-computed tomography for resolving food microstructures. In: Morris VJ, Groves K (eds) Food microstructures: microscopy, measurement and modelling. Woodhead Publishing series in food science technology and nutrition, vol 254. Elsevier Science, Burlington, pp 246–272.  https://doi.org/10.1533/9780857098894.1.246CrossRefGoogle Scholar
  11. Becker J, Flueckiger R, Reum M, Buechi FN, Marone F, Stampanoni M (2009) Determination of material properties of gas diffusion layers: experiments and simulations using phase contrast tomographic microscopy. J Electrochem Soc 156:B1175–B1181.  https://doi.org/10.1149/1.3176876CrossRefGoogle Scholar
  12. Berujon S, Wang H, Sawhney K (2012) X-ray multimodal imaging using a random-phase object. Phys Rev A 86:063813.  https://doi.org/10.1103/PhysRevA.86.063813CrossRefGoogle Scholar
  13. Berujon S, Wang H, Alcock S, Sawhney K (2014) At-wavelength metrology of hard x-ray mirror using near field speckle. Opt Express 22:6438–6446.  https://doi.org/10.1364/OE.22.006438CrossRefGoogle Scholar
  14. Bie BX, Huang JY, Fan D, Sun T, Fezzaa K, Xiao XH, Qi ML, Luo SN (2017) Orientation-dependent tensile deformation and damage of a T700 carbon fiber/epoxy composite: a synchrotron-based study. Carbon 121:127–133.  https://doi.org/10.1016/j.carbon.2017.05.083CrossRefGoogle Scholar
  15. Blankenburg C, Rack A, Daul C, Ohser J (2017) Torsion estimation of particle paths through porous media observed by in-situ time-resolved microtomography. J Microsc 266:141–152.  https://doi.org/10.1111/jmi.12524CrossRefGoogle Scholar
  16. Bonse U, Hart M (1965) An x-ray interferometer. Appl Phys Lett 6:155–156.  https://doi.org/10.1063/1.1754212CrossRefGoogle Scholar
  17. Born M, Wolf E (1980) Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Elsevier, AmsterdamzbMATHGoogle Scholar
  18. Bronnikov AV (1999) Reconstruction formulas in phase-contrast tomography. Opt Commun 171:239–244.  https://doi.org/10.1016/S0030-4018(99)00575-1CrossRefGoogle Scholar
  19. Buffiere JY, Savelli S, Maire E (2000) Characterisation of MMCp and cast aluminium alloys. X-ray tomography in material science. Hermes Science Publications, ParisGoogle Scholar
  20. Burvall A, Lundstrom U, Takman PAC, Larsson DH, Hertz HM (2011) Phase retrieval in x-ray phase-contrast imaging suitable for tomography. Opt Express 19:10359–10376.  https://doi.org/10.1364/oe.19.010359CrossRefGoogle Scholar
  21. Carrel M, Beltran MA, Morales VL, Derlon N, Morgenroth E, Kaufmann R, Holzner M (2017) Biofilm imaging in porous media by laboratory x-ray tomography: combining a non-destructive contrast agent with propagation-based phase-contrast imaging tools. PLoS One 12:e0180374.  https://doi.org/10.1371/journal.pone.0180374CrossRefGoogle Scholar
  22. Carroll AJ, van Riessen GA, Balaur E, Dolbnya IP, Tran GN, Peele AG (2017) An iterative method for near-field Fresnel region polychromatic phase contrast imaging. J Opt 19.  https://doi.org/10.1088/2040-8986/aa72c4CrossRefGoogle Scholar
  23. Cedola A, Campi G, Pelliccia D, Bukreeva I, Fratini M, Burghammer M, Rigon L, Arfelli F, Chen RC, Dreossi D, Sodini N, Mohammadi S, Tromba G, Cancedda R, Mastrogiacomo M (2014) Three dimensional visualization of engineered bone and soft tissue by combined x-ray micro-diffraction and phase contrast tomography. Phys Med Biol 59:189–201.  https://doi.org/10.1088/0031-9155/59/1/189CrossRefGoogle Scholar
  24. Chapman D, Thomlinson W, Johnston RE, Washburn D, Pisano E, Gmur N, Zhong Z, Menk R, Arfelli F, Sayers D (1997) Diffraction enhanced x-ray imaging. Phys Med Biol 42:2015–2025.  https://doi.org/10.1088/0031-9155/42/11/001CrossRefGoogle Scholar
  25. Clauser JF, Reinsch MW (1992) New theoretical and experimental results in Fresnel optics with applications to matter-wave and x-ray interferometry. Appl Phys B Lasers Opt 54:380–395CrossRefGoogle Scholar
  26. Cloetens P, Guigay JP, De Martino C, Baruchel J, Schlenker M (1997) Fractional Talbot imaging of phase gratings with hard x rays. Opt Lett 22:1059–1061CrossRefGoogle Scholar
  27. Cloetens P, Ludwig W, Baruchel J, Van Dyck D, Van Landuyt J, Guigay JP, Schlenker M (1999) Holotomography: quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays. Appl Phys Lett 75:2912–2914.  https://doi.org/10.1063/1.125225CrossRefGoogle Scholar
  28. Coindreau O, Mulat C, Germain C, Lachaud J, Vignoles GL (2011) Benefits of x-ray CMT for the modeling of C/C composites. Adv Eng Mater 13:178–185.  https://doi.org/10.1002/adem.201000233CrossRefGoogle Scholar
  29. Connor DM, Zhong Z (2014) Diffraction-enhanced imaging. Curr Radiol Rep 2:55.  https://doi.org/10.1007/s40134-014-0055-yCrossRefGoogle Scholar
  30. Coolidge W (1917) X-ray tube. US Patent, US1211092AGoogle Scholar
  31. David C, Nohammer B, Solak H-H, Ziegler E (2002) Differential x-ray phase contrast imaging using a shearing interferometer. Appl Phys Lett 81:3287–3289CrossRefGoogle Scholar
  32. Diemoz PC, Endrizzi M, Zapata CE, Pešić ZD, Rau C, Bravin A, Robinson IK, Olivo A (2013) X-ray phase-contrast imaging with nanoradian angular resolution. Phys Rev Lett 110:138105CrossRefGoogle Scholar
  33. Diemoz PC, Vittoria FA, Hagen CK, Endrizzi M, Coan P, Brun E, Wagner UH, Rau C, Robinson IK, Bravin A et al (2015) Single-image phase retrieval using an edge illumination x-ray phase-contrast imaging setup. J Synchrotron Radiat 22:1072–1077CrossRefGoogle Scholar
  34. Diemoz PC, Hagen CK, Endrizzi M, Minuti M, Bellazzini R, Urbani L, De Coppi P, Olivo A (2017) Single-shot x-ray phase-contrast computed tomography with nonmicrofocal laboratory sources. Phys Rev Appl 7:044029CrossRefGoogle Scholar
  35. Donepudi VR, Cesareo R, Brunetti A, Zhong Z, Yuasa T, Akatsuka T, Takeda T, Gigante GE (2010) Cork embedded internal features and contrast mechanisms with Dei using 18, 20, 30, 36, and 40 keV synchrotron x-rays. Res Nondestruct Eval 21:171–183.  https://doi.org/10.1080/09349847.2010.493990CrossRefGoogle Scholar
  36. Du Y, Liu X, Huang J, Lei Y, Zhao Z, Lin D, Guo J, Li J, Niu H (2015) Sampling grating approach for x-ray differential phase contrast imaging. Opt Express 23:12712–12719.  https://doi.org/10.1364/OE.23.012712CrossRefGoogle Scholar
  37. Duke D, Swantek A, Kastengren A, Fezzaa K, Powell C (2015) Recent developments in x-ray diagnostics for cavitation. SAE Int J Fuels Lubr 8:135–146.  https://doi.org/10.4271/2015-01-0918CrossRefGoogle Scholar
  38. Eastwood DS, Bradley RS, Tariq F, Cooper SJ, Taiwo OO, Gelb J, Merkle A, Brett DJL, Brandon NP, Withers PJ, Lee PD, Shearing PR (2014) The application of phase contrast x-ray techniques for imaging Li-ion battery electrodes. Nucl Instrum Methods Phys Res Sect B 324:118–123.  https://doi.org/10.1016/j.nimb.2013.08.066CrossRefGoogle Scholar
  39. Eberhardt SH, Marone F, Stampanoni M, Buchi FN, Schmidt TJ (2014) Quantifying phosphoric acid in high-temperature polymer electrolyte fuel cell components by x-ray tomographic microscopy. J Synchrotron Radiat 21:1319–1326.  https://doi.org/10.1107/s1600577514016348CrossRefGoogle Scholar
  40. Einarsdottir H, Emerson MJ, Clemmensen LH, Scherer K, Willer K, Bech M, Larsen R, Ersboll BK, Pfeiffer F (2016) Novelty detection of foreign objects in food using multi-modal x-ray imaging. Food Control 67:39–47.  https://doi.org/10.1016/j.foodcont.2016.02.023CrossRefGoogle Scholar
  41. Endrizzi M (2018) X-ray phase-contrast imaging. Nucl Instrum Methods Phys Res Sect A 878:88–98.  https://doi.org/10.1016/j.nima.2017.07.036CrossRefGoogle Scholar
  42. Endrizzi M, Olivo A (2014) Absorption, refraction and scattering retrieval with an edge-illumination-based imaging setup. J Phys D Appl Phys 47:505102CrossRefGoogle Scholar
  43. Endrizzi M, Diemoz PC, Millard TP, Louise Jones J, Speller RD, Robinson IK, Olivo A (2014) Hard x-ray dark-field imaging with incoherent sample illumination. Appl Phys Lett 104:024106CrossRefGoogle Scholar
  44. Endrizzi M, Basta D, Olivo A (2015a) Laboratory-based x-ray phase-contrast imaging with misaligned optical elements. Appl Phys Lett 107:124103CrossRefGoogle Scholar
  45. Endrizzi M, Murat BIS, Fromme P, Olivo A (2015b) Edge-illumination x-ray dark-field imaging for visualising defects in composite structures. Compos Struct 134:895–899CrossRefGoogle Scholar
  46. Endrizzi M, Vittoria F, Olivo A (2018) Single-shot x-ray phase retrieval through hierarchical data analysis and a multi-aperture analyser. J Imaging 4:76CrossRefGoogle Scholar
  47. Fatima A, Kulkarni VK, Banda NR, Agrawal AK, Singh B, Sarkar PS, Tripathi S, Shripathi T, Kashyap Y, Sinha A (2016) Non-destructive evaluation of teeth restored with different composite resins using synchrotron based micro-imaging. J Xray Sci Technol 24:119–132.  https://doi.org/10.3233/xst-160530CrossRefGoogle Scholar
  48. Fioravanti M, Di Giulio G, Signorini G, Rognoni GR, Sodini N, Tromba G, Zanini F (2017) Non-invasive wood identification of historical musical bows. IAWA J 38:285–296.  https://doi.org/10.1163/22941932-20170172CrossRefGoogle Scholar
  49. Franco M, Yokaichiya F, Kardjilov N, Ferraz ACD (2015) Microfocus x-ray imaging of Brazil nuts for quality control. Semina Cienc Agrar 36:2565–2575.  https://doi.org/10.5433/1679-0359.2015v36n4p2565CrossRefGoogle Scholar
  50. Fu J, Liu C (2016) In-line phase contrast computed tomography of carbon/carbon composites. In: 2016 IEEE international conference on information and automationGoogle Scholar
  51. Gabor D (1948) A new microscopic principle. Nature 161:777–778.  https://doi.org/10.1038/161777a0CrossRefGoogle Scholar
  52. Garcia-Moreno F, Kamm PH, Neu T, Heim K, Rack A, Banhart J (2017) In situ x-ray tomography of aqueous foams: analysis of columnar foam generation. Colloids Surf A Physicochem Eng Asp 534:78–84.  https://doi.org/10.1016/j.colsurfa.2017.03.011CrossRefGoogle Scholar
  53. Gkoumas S, Wang ZT, Abis M, Arboleda C, Tudosie G, Donath T, Bronnimann C, Schulze-Briese C, Stampanoni M (2016) Grating-based interferometry and hybrid photon counting detectors: towards a new era in x-ray medical imaging. Nucl Instrum Methods Phys Res Sect A 809:23–30.  https://doi.org/10.1016/j.nima.2015.08.017CrossRefGoogle Scholar
  54. Goetz K, Kalashnikov MP, Mikhailov YA, Sklizkov GV, Fedotov SI, Foerster E, Zaumseil P (1979) Measurements of the parameters of shell targets for laser thermonuclear fusion using an x-ray Schlieren method. Sov J Quantum Electron 9:607CrossRefGoogle Scholar
  55. Greenfeld I, Fezzaa K, Rafailovich MH, Zussman E (2012) Fast x-ray phase-contrast imaging of electrospinning polymer jets: measurements of radius, velocity, and concentration. Macromolecules 45:3616–3626.  https://doi.org/10.1021/ma300237jCrossRefGoogle Scholar
  56. Gresil M, Revol V, Kitsianos K, Kanderakis G, Koulalis I, Sauer MO, Tretout H, Madrigal AM (2017) EVITA project: comparison between traditional non-destructive techniques and phase contrast x-ray imaging applied to aerospace carbon fibre reinforced polymer. Appl Compos Mater 24:513–524.  https://doi.org/10.1007/s10443-016-9540-1CrossRefGoogle Scholar
  57. Gui J-Y, Zhou B, Zhong Y-H, Du A, Shen J (2011) Fabrication of gradient density SiO(2) aerogel. J Sol-Gel Sci Technol 58:470–475.  https://doi.org/10.1007/s10971-011-2415-xCrossRefGoogle Scholar
  58. Guigay JP (1977) Fourier-transform analysis of Fresnel diffraction patterns and in-line holograms. Optik 49:121–125Google Scholar
  59. Guo EY, Zeng G, Kazantsev D, Rockett P, Bent J, Kirkland M, Van Dalen G, Eastwood DS, St. John D, Lee PD (2017) Synchrotron x-ray tomographic quantification of microstructural evolution in ice cream – a multiphase soft solid. RSC Adv 7:15561–15573.  https://doi.org/10.1039/c7ra00642jCrossRefGoogle Scholar
  60. Gureyev TE, Evans R, Stevenson AW, Wilkins SW, Appita (1999) X-ray phase-contrast microscopy of wood and paper. In: 53rd Appita annual conference, proceedings, vols 1 and 2Google Scholar
  61. Hagen CK, Diemoz PC, Endrizzi M, Rigon L, Dreossi D, Arfelli F, Lopez FCM, Longo R, Olivo A (2014a) Theory and preliminary experimental verification of quantitative edge illumination x-ray phase contrast tomography. Opt Express 22:7989–8000CrossRefGoogle Scholar
  62. Hagen CK, Munro PRT, Endrizzi M, Diemoz PC, Olivo A (2014b) Low-dose phase contrast tomography with conventional x-ray sources. Med Phys 41:070701CrossRefGoogle Scholar
  63. Hagen CK, Maghsoudlou P, Totonelli G, Diemoz PC, Endrizzi M, Rigon L, Menk R-H, Arfelli F, Dreossi D, Brun E et al (2015) High contrast microstructural visualization of natural acellular matrices by means of phase-based x-ray tomography. Sci Rep 5:18156CrossRefGoogle Scholar
  64. Heycock CT, Neville FH (1898) Rontgen ray photography and alloys. J Chem Soc 73:714–723CrossRefGoogle Scholar
  65. Hofmann R, Moosmann J, Baumbach T (2011) Criticality in single-distance phase retrieval. Opt Express 19:25881–25890.  https://doi.org/10.1364/oe.19.025881CrossRefGoogle Scholar
  66. Holmstad R, Goel A, Ramaswamy S, Gregersen OW (2006) Visualization and characterization of high resolution 3D images of paper samples. Appita J 59:370–377Google Scholar
  67. Hu ZW, De Carlo F (2008) Noninvasive three-dimensional visualization of defects and crack propagation in layered foam structures by phase-contrast microimaging. Scr Mater 59:1127–1130.  https://doi.org/10.1016/j.scriptamat.2008.07.043CrossRefGoogle Scholar
  68. Hu ZH, Sun M, Lv M, Wang LH, Shi JY, Xiao TQ, Cao Y, Wang J, Fan CH (2016) Deciphering buried air phases on natural and bioinspired superhydrophobic surfaces using synchrotron radiation-based x-ray phase-contrast imaging. NPG Asia Mater 8.  https://doi.org/10.1038/am.2016.122CrossRefGoogle Scholar
  69. Hudspeth M, Claus B, Dubelman S, Black J, Mondal A, Parab N, Funnell C, Hai F, Qi ML, Fezzaa K, Luo SN, Chen W (2013) High speed synchrotron x-ray phase contrast imaging of dynamic material response to split Hopkinson bar loading. Rev Sci Instrum 84:025102.  https://doi.org/10.1063/1.4789780CrossRefGoogle Scholar
  70. Izadifar Z, Chapman LD, Chen XB (2014) Computed tomography diffraction-enhanced imaging for in situ visualization of tissue scaffolds implanted in cartilage. Tissue Eng Part C Methods 20:140–148.  https://doi.org/10.1089/ten.tec.2013.0138CrossRefGoogle Scholar
  71. Jacobsen C, Howells M, Kirz J, Rothman S (1990) X-ray holographic microscopy using photoresists. J Opt Soc Am A Opt Image Sci Vis 7:1847–1861.  https://doi.org/10.1364/JOSAA.7.001847CrossRefGoogle Scholar
  72. Jerjen I, Revol V, Brunner AJ, Schuetz P, Kottler C, Kaufmann R, Luethi T, Nicoletti G, Urban C, Sennhauser U (2013) Detection of stress whitening in plastics with the help of x-ray dark field imaging. Polym Test 32:1094–1098.  https://doi.org/10.1016/j.polymertesting.2013.06.008CrossRefGoogle Scholar
  73. Johanson Z, Boisvert C, Maksimenko A, Currie P, Trinajstic K (2015) Development of the Synarcual in the Elephant Sharks (Holocephali; Chondrichthyes): implications for vertebral formation and fusion. PLoS One 10.  https://doi.org/10.1371/journal.pone.0135138CrossRefGoogle Scholar
  74. Kagias M, Wang Z, Villanueva-Perez P, Jefimovs K, Stampanoni M (2016) 2D-omnidirectional hard-x-ray scattering sensitivity in a single shot. Phys Rev Lett 116:093902.  https://doi.org/10.1103/PhysRevLett.116.093902CrossRefGoogle Scholar
  75. Kallon GK, Wesolowski M, Vittoria FA, Endrizzi M, Basta D, Millard TP, Diemoz PC, Olivo A (2015) A laboratory based edge-illumination x-ray phase-contrast imaging setup with two-directional sensitivity. Appl Phys Lett 107:204105CrossRefGoogle Scholar
  76. Kashyap YS, Agrawal A, Sarkar PS, Shukla M, Roy T, Sinha A (2011) Study of pyro-carbon coated alumina kernel using mixed contrast transfer based x-ray phase retrieval technique. NDT&E Int 44:41–46.  https://doi.org/10.1016/j.ndteint.2010.09.004CrossRefGoogle Scholar
  77. Kastner J, Plank B, Requena G (2012) Non-destructive characterisation of polymers and Al-alloys by polychromatic cone-beam phase contrast tomography. Mater Charact 64:79–87.  https://doi.org/10.1016/j.matchar.2011.12.004CrossRefGoogle Scholar
  78. Khlifa I, Vabre A, Hocevar M, Fezzaa K, Fuzier S, Roussette O, Coutier-Delgosha O (2017) Fast x-ray imaging of cavitating flows. Exp Fluids 58.  https://doi.org/10.1007/s00348-017-2426-7
  79. Kobayashi T, Toda H (2007) Strength and fracture of aluminium alloys. In: Chandra TTKMMRC (ed) THERMEC 2006, Pts 1–5, vols 539–543. Materials Science Forum, pp 127–134Google Scholar
  80. Kohn VG, Argunova TS, Je JH (2014) Capsule-like voids in SiC single crystal: phase contrast imaging and computer simulations. AIP Adv 4.  https://doi.org/10.1063/1.4896512CrossRefGoogle Scholar
  81. Kono Y, Kenney-Benson C, Shibazaki Y, Park C, Wang YB, Shen GY (2015) X-ray imaging for studying behavior of liquids at high pressures and high temperatures using Paris-Edinburgh press. Rev Sci Instrum 86.  https://doi.org/10.1063/1.4927227CrossRefGoogle Scholar
  82. Kostenko A, Sharma H, Dere EG, King A, Ludwig W, van Oel W, Stallinga S, van Vliet LJ, Offerman SE (2012) Three-dimensional morphology of cementite in steel studied by x-ray phase-contrast tomography. Scr Mater 67:261–264.  https://doi.org/10.1016/j.scriptamat.2012.04.034CrossRefGoogle Scholar
  83. Kozioziemski BJ, Koch JA, Barty A, Martz HE, Lee WK, Fezzaa K (2005) Quantitative characterization of inertial confinement fusion capsules using phase contrast enhanced x-ray imaging. J Appl Phys 97:063103.  https://doi.org/10.1063/1.1862764CrossRefGoogle Scholar
  84. Lee JS, Park SJ, Lee JH, Weon BM, Fezzaa K, Je JH (2015) Origin and dynamics of vortex rings in drop splashing. Nat Commun 6.  https://doi.org/10.1038/ncomms9187
  85. Li T, Fan D, Lu L, Huang JY, Zhao F, Qi ML, Sun T, Fezzaa K, Xiao XH, Zhou XM, Suo T, Chen W, Li YL, Zhu MH, Luo SN (2015) Dynamic fracture of C/SiC composites under high strain-rate loading: microstructures and mechanisms. Carbon 91:468–478.  https://doi.org/10.1016/j.carbon.2015.05.015CrossRefGoogle Scholar
  86. Li HY, Kingston AM, Myers GR, Beeching L, Sheppard AP (2018) Linear iterative near-field phase retrieval (LIPR) for dual-energy x-ray imaging and material discrimination. J Opt Soc Am A Opt Image Sci Vis 35:A30–A39.  https://doi.org/10.1364/josaa.35.000a30CrossRefGoogle Scholar
  87. Lohmann M, Dix W, Metge J, Reime B, Schlüter J, Vogel B, Vogel H (2002) HASYLAB annual report 2002. http://hasyweb.desy.de/science/annual_reports/2002_report/
  88. Lomas H, Jenkins DR, Mahoney MR, Pearce R, Roest R, Steel K, Mayo S (2017) Examining mechanisms of metallurgical coke fracture using micro-CT imaging and analysis. Fuel Process Technol 155:183–190.  https://doi.org/10.1016/j.fuproc.2016.05.039CrossRefGoogle Scholar
  89. Maksimcuka J, Obata A, Sampson WW, Blanc R, Gao CX, Withers PJ, Tsigkou O, Kasuga T, Lee PD, Poologasundarampillai G (2017) X-ray tomographic imaging of tensile deformation modes of electrospun biodegradable polyester fibers. Front Mater 4.  https://doi.org/10.3389/fmats.2017.00043
  90. Malecki A, Potdevin G, Biernath T, Eggl E, Garcia EG, Baum T, Noel PB, Bauer JS, Pfeiffer F (2013) Coherent superposition in grating-based directional dark-field imaging. PLoS One 8.  https://doi.org/10.1371/journal.pone.0061268CrossRefGoogle Scholar
  91. Malecki A, Eggl E, Schaff F, Potdevin G, Baum T, Garcia EG, Bauer JS, Pfeiffer F (2014) Correlation of x-ray dark-field radiography to mechanical sample properties. Microsc Microanal 20:1528–1533.  https://doi.org/10.1017/s1431927614001718CrossRefGoogle Scholar
  92. Marenzana M, Hagen CK, Borges PDN, Endrizzi M, Szafraniec MB, Vincent TL, Rigon L, Arfelli F, Menk R-H, Olivo A (2014) Synchrotron-and laboratory-based x-ray phase-contrast imaging for imaging mouse articular cartilage in the absence of radiopaque contrast agents. Philos Trans R Soc Lond A 372:20130127CrossRefGoogle Scholar
  93. Mason-Smith N, Duke DJ, Kastengren AL, Traini D, Young PM, Chen Y, Lewis DA, Edgington-Mitchell D, Honnery D (2017) Revealing pMDI spray initial conditions: flashing, atomisation and the effect of ethanol. Pharm Res 34:718–729.  https://doi.org/10.1007/s11095-017-2098-2CrossRefGoogle Scholar
  94. Mayo SC, Stevenson AW, Wilkins SW (2012) In-line phase-contrast x-ray imaging and tomography for materials science. Materials 5:937–965.  https://doi.org/10.3390/ma5050937CrossRefGoogle Scholar
  95. Mayo SC, McCann T, Day L, Favaro J, Tuhumury H, Thompson D, Maksimenko A (2016) Rising dough and baking bread at the Australian synchrotron. In: DeJonge MD, Paterson DJ, Ryan CG (eds) Xrm 2014: proceedings of the 12th international conference on x-ray microscopy. AIP conference proceedings, vol 1696.  https://doi.org/10.1063/1.4937500
  96. Messe O, Lachambre J, King A, Buffiere JY, Rae CMF (2014) Investigation of fatigue crack propagation in nickel superalloy using diffraction contrast tomography and phase contrast tomography. In: Clark G, Wang CH (eds) 11th international fatigue congress, Pts 1 and 2, vols 891–892. Advanced Materials Research, pp 923–928.  https://doi.org/10.4028/www.scientific.net/AMR.891-892.923CrossRefGoogle Scholar
  97. Miklos R, Nielsen MS, Einarsdottir H, Lametsch R (2016) Grating-based x-ray tomography of 3D food structures. In: Chinesta F, Cueto E, Abisset-Chavanne E (eds) Proceedings of the 19th international ESAFORM conference on material forming. AIP conference proceedings, vol 1769.  https://doi.org/10.1063/1.4963604
  98. Miller EA, White TA, McDonald BS, Seifert A (2013) Phase contrast x-ray imaging signatures for security applications. IEEE Trans Nucl Sci 60:416–422.  https://doi.org/10.1109/tns.2012.2227803CrossRefGoogle Scholar
  99. Miyagi M, Kawahito Y, Kawakami H, Shoubu T (2017) Dynamics of solid-liquid interface and porosity formation determined through x-ray phase-contrast in laser welding of pure Al. J Mater Process Technol 250:9–15.  https://doi.org/10.1016/j.jmatprotec.2017.06.033CrossRefGoogle Scholar
  100. Mocella V, Brun E, Ferrero C, Delattre D (2015) Revealing letters in rolled Herculaneum papyri by x-ray phase-contrast imaging. Nat Commun 6.  https://doi.org/10.1038/ncomms6895
  101. Modregger P, Cremona TP, Benarafa C, Schittny JC, Olivo A, Endrizzi M (2016) Small angle x-ray scattering with edge-illumination. Sci Rep 6:30940CrossRefGoogle Scholar
  102. Modregger P, Kagias M, Irvine SC, Brönnimann R, Jefimovs K, Endrizzi M, Olivo A (2017) Interpretation and utility of the moments of small-angle x-ray scattering distributions. Phys Rev Lett 118:265501CrossRefGoogle Scholar
  103. Momose A (2005) Recent advances in x-ray phase imaging. Jpn J Appl Phys 44:6355CrossRefGoogle Scholar
  104. Momose A, Kawamoto S, Koyama I, Hamaishi Y, Takai K, Suzuki Y (2003) Demonstration of x-ray Talbot interferometry. Jpn J Appl Phys 42:L866CrossRefGoogle Scholar
  105. Moon S, Komada K, Sato K, Yokohata H, Wada Y, Yasuda N (2015) Ultrafast x-ray study of multi-hole GDI injector sprays: effects of nozzle hole length and number on initial spray formation. Exp Thermal Fluid Sci 68:68–81.  https://doi.org/10.1016/j.expthermflusci.2015.03.027CrossRefGoogle Scholar
  106. Moreau JD, Cloetens P, Gomez B, Daviero-Gomez V, Nraudeau D, Lafford TA, Tafforeau P (2014) Multiscale 3D virtual dissections of 100-million-year-old flowers using x-ray synchrotron micro-and nanotomography. Microsc Microanal 20:305–312.  https://doi.org/10.1017/s1431927613014025CrossRefGoogle Scholar
  107. Morgan KS, Paganin DM, Siu KKW (2011) Quantitative single-exposure x-ray phase contrast imaging using a single attenuation grid. Opt Express 19:19781–19789.  https://doi.org/10.1364/OE.19.019781CrossRefGoogle Scholar
  108. Morgan KS, Donnelley M, Farrow N, Fouras A, Yagi N, Suzuki Y, Takeuchi A, Uesugi K, Boucher RC, Siu KKW, Parsons DW (2014) In vivo x-ray imaging reveals improved airway surface hydration after a therapy designed for cystic fibrosis. Am J Respir Crit Care Med 190:469–471.  https://doi.org/10.1164/rccm.201405-0855LECrossRefGoogle Scholar
  109. Morgan KS, Petersen TC, Donnelley M, Farrow N, Parsons DW, Paganin DM (2016) Capturing and visualizing transient x-ray wavefront topological features by single-grid phase imaging. Opt Express 24:24435–24450.  https://doi.org/10.1364/oe.24.024435CrossRefGoogle Scholar
  110. Munro PRT, Ignatyev K, Speller RD, Olivo A (2012) Phase and absorption retrieval using incoherent x-ray sources. Proc Natl Acad Sci 109:13922–13927CrossRefGoogle Scholar
  111. Myers GR, Paganin DM, Gureyev TE, Mayo SC (2008) Phase-contrast tomography of single-material objects from few projections. Opt Express 16:908–919.  https://doi.org/10.1364/OE.16.000908CrossRefGoogle Scholar
  112. Nesterets YI, Gureyev TE, Dimmock MR (2018) Optimisation of a propagation-based x-ray phase-contrast micro-CT system. J Phys D Appl Phys 51.  https://doi.org/10.1088/1361-6463/aaaceeCrossRefGoogle Scholar
  113. Nugent KA, Gureyev TE, Cookson DF, Paganin D, Barnea Z (1996) Quantitative phase imaging using hard x rays. Phys Rev Lett 77:2961–2964.  https://doi.org/10.1103/PhysRevLett.77.2961CrossRefGoogle Scholar
  114. Olivo A, Speller R (2006) Experimental validation of a simple model capable of predicting the phase contrast imaging capabilities of any x-ray imaging system. Phys Med Biol 51:3015–3030.  https://doi.org/10.1088/0031-9155/51/12/001CrossRefGoogle Scholar
  115. Olivo A, Speller R (2007) A coded-aperture technique allowing x-ray phase contrast imaging with conventional sources. Appl Phys Lett 91:074106CrossRefGoogle Scholar
  116. Olivo A, Arfelli F, Cantatore G, Longo R, Menk RH, Pani S, Prest M, Poropat P, Rigon L, Tromba G et al (2001) An innovative digital imaging set-up allowing a low-dose approach to phase contrast applications in the medical field. Med Phys 28:1610–1619CrossRefGoogle Scholar
  117. Olivo A, Bohndiek S, Griffiths J, Konstantinidis A, Speller R (2009) A non-free-space propagation x-ray phase contrast imaging method sensitive to phase effects in two directions simultaneously. Appl Phys Lett 94:044108CrossRefGoogle Scholar
  118. Olivo A, Gkoumas S, Endrizzi M, Hagen CK, Szafraniec MB, Diemoz PC, Munro PRT, Ignatyev K, Johnson B, Horrocks JA et al (2013) Low-dose phase contrast mammography with conventional x-ray sources. Med Phys 40:090701CrossRefGoogle Scholar
  119. Olubamiji AD, Izadifar Z, Chen DX (2014) Synchrotron imaging techniques for bone and cartilage tissue engineering: potential, current trends, and future directions. Tissue Eng Part B Rev 20:503–522.  https://doi.org/10.1089/ten.teb.2013.0493CrossRefGoogle Scholar
  120. Paganin D, Mayo SC, Gureyev TE, Miller PR, Wilkins SW (2002) Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J Microsc (Oxford) 206:33–40.  https://doi.org/10.1046/j.1365-2818.2002.01010.xMathSciNetCrossRefGoogle Scholar
  121. Pamukcu AS, Gualda GAR, Rivers ML (2013) Quantitative 3D petrography using x-ray tomography 4: assessing glass inclusion textures with propagation phase-contrast tomography. Geosphere 9:1704–1713.  https://doi.org/10.1130/ges00915.1CrossRefGoogle Scholar
  122. Parab ND, Black JT, Claus B, Hudspeth M, Sun JZ, Fezzaa K, Chen WNW (2014) Observation of crack propagation in glass using x-ray phase contrast imaging. Int J Appl Glass Sci 5:363–373.  https://doi.org/10.1111/ijag.12092CrossRefGoogle Scholar
  123. Paris JL, Kamke FA, Xiao XH (2015) X-ray computed tomography of wood-adhesive bondlines: attenuation and phase-contrast effects. Wood Sci Technol 49:1185–1208.  https://doi.org/10.1007/s00226-015-0750-8CrossRefGoogle Scholar
  124. Parish RW (1986) Microfocus x-ray technology- a review of developments and application. In: Thompson DO, Chimenti DE (eds) Review of progress in quantitative nondestructive evaluation, Vol 5A, Plenum Press, New York, pp 1–20Google Scholar
  125. Peris D, Hava J (2016) New species from Late Cretaceous New Jersey amber and stasis in subfamily Attageninae (Insecta: Coleoptera: Dermestidae). J Paleontol 90:491–498.  https://doi.org/10.1017/jpa.2016.51CrossRefGoogle Scholar
  126. Perreau M (2012) Description of a new genus and two new species of Leiodidae (Coleoptera) from Baltic amber using phase contrast synchrotron x-ray microtomography. Zootaxa 3455:81–88CrossRefGoogle Scholar
  127. Pfeiffer F (2018) X-ray ptychography. Nat Photonics 12:9–17.  https://doi.org/10.1038/s41566-017-0072-5CrossRefGoogle Scholar
  128. Pfeiffer F, Weitkamp T, Bunk O, David C (2006) Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources. Nat Phys 2:258–261CrossRefGoogle Scholar
  129. Pfeiffer F, Bech M, Bunk O, Kraft P, Eikenberry EF, Brönnimann Ch, Grünzweig C, David C (2008) Hard-x-ray dark-field imaging using a grating interferometer. Nat Mater 7:134–137CrossRefGoogle Scholar
  130. Pietsch P, Wood V (2017) X-ray tomography for lithium ion battery research: a practical guide. In: Clarke DR (ed) Annual review of materials research, vol 47, pp 451–479.  https://doi.org/10.1146/annurev-matsci-070616-123957CrossRefGoogle Scholar
  131. Pitts KF, McCann TH, Mayo S, Favaro J, Day L (2016) Effect of the sugar replacement by citrus fibre on the physical and structural properties of wheat-corn based extrudates. Food Bioprocess Technol 9:1803–1811.  https://doi.org/10.1007/s11947-016-1764-4CrossRefGoogle Scholar
  132. Prade F, Chabior M, Malm F, Grosse CU, Pfeiffer F (2015) Observing the setting and hardening of cementitious materials by x-ray dark-field radiography. Cem Concr Res 74:19–25.  https://doi.org/10.1016/j.cemconres.2015.04.003CrossRefGoogle Scholar
  133. Rafsanjani A, Stiefel M, Jefimovs K, Mokso R, Derome D, Carmeliet J (2014) Hygroscopic swelling and shrinkage of latewood cell wall micropillars reveal ultrastructural anisotropy. J R Soc Interface 11.  https://doi.org/10.1098/rsif.2014.0126CrossRefGoogle Scholar
  134. Rao DV, Bhaskaraiah M, Cesareo R, Brunetti A, Akatsuka T, Yuasa T, Zhong Z, Takeda T, Gigante GE (2013) Synchrotron-based non-destructive diffraction-enhanced imaging systems to image walnut at 20 keV. J Food Meas Charact 7:13–21.  https://doi.org/10.1007/s11694-012-9134-zCrossRefGoogle Scholar
  135. Reischig P, Helfen L, Wallert A, Baumbach T, Dik J (2013) High-resolution non-invasive 3D imaging of paint microstructure by synchrotron-based x-ray laminography. Appl Phys A Mater Sci Process 111:983–995.  https://doi.org/10.1007/s00339-013-7687-2CrossRefGoogle Scholar
  136. Revol V, Plank B, Kaufmann R, Kastner J, Kottler C, Neels A (2013) Laminate fibre structure characterisation of carbon fibre-reinforced polymers by x-ray scatter dark field imaging with a grating interferometer. NDT&E Int 58:64–71.  https://doi.org/10.1016/j.ndteint.2013.04.012CrossRefGoogle Scholar
  137. Reza S, Pelzer G, Weber T, Frojdh C, Bayer F, Anton G, Rieger J, Thim J, Michel T, Norlin B (2014) Investigation on the directional dark-field signals from paperboards using a grating interferometer. J Instrum 9.  https://doi.org/10.1088/1748-0221/9/04/c04032CrossRefGoogle Scholar
  138. Roentgen W (1896) On a new kinds of rays. Science 3:227–231.  https://doi.org/10.1126/science.3.59.227CrossRefGoogle Scholar
  139. Rusu LC, Seche E, Freimann PC, Hoinoiu B, Negrutiu ML, Ardelean L, Sinescu C (2014) Synchrotron radiation x-ray micro-CT evaluation of bone augmentation. Rev Chim 65:1114–1116Google Scholar
  140. Rutishauser S, Rack A, Weitkamp T, Kayser Y, David C, Macrander AT (2013) Heat bump on a monochromator crystal measured with x-ray grating interferometry. J Synchrotron Radiat 20:300–305.  https://doi.org/10.1107/s0909049513001817CrossRefGoogle Scholar
  141. Sarapata A, Ruiz-Yaniz M, Zanette I, Rack A, Pfeiffer F, Herzen J (2015) Multi-contrast 3D x-ray imaging of porous and composite materials. Appl Phys Lett 106.  https://doi.org/10.1063/1.4918617CrossRefGoogle Scholar
  142. Sasov A, Ceulemans T, van Dyck D (2001) Desk-top x-ray microtomography. In: Tobin KW, Lakhani F (eds) Metrology-based control for micro-manufacturing, vol 4275. SPIE – International Society Optical Engineering, Bellingham, pp 147–154CrossRefGoogle Scholar
  143. Schmahl G, Rudolph D, Schneider G, Guttmann P, Niemann B (1994) Phase-contrast x-ray microscopy studies. Optik 97:181–182Google Scholar
  144. Schropp A, Hoppe R, Meier V, Patommel J, Seiboth F, Ping Y, Hicks DG, Beckwith MA, Collins GW, Higginbotham A, Wark JS, Lee HJ, Nagler B, Galtier EC, Arnold B, Zastrau U, Hastings JB, Schroer CG (2015) Imaging shock waves in diamond with both high temporal and spatial resolution at an XFEL. Sci Rep 5.  https://doi.org/10.1038/srep11089
  145. Sinnett-Jones PE, Browne M, Ludwig W, Buffiere JY, Sinclair I (2005) Microtomography assessment of failure in acrylic bone cement. Biomaterials 26:6460–6466.  https://doi.org/10.1016/j.biomaterials.2005.04.064CrossRefGoogle Scholar
  146. Snigirev A, Snigireva I, Kohn V, Kuznetsov S, Schelokov I (1995) On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation. Rev Sci Instrum 66:5486–5492.  https://doi.org/10.1063/1.1146073CrossRefGoogle Scholar
  147. Soriano C, Archer M, Azar D, Creaser P, Delclos X, Godthelp H, Hand S, Jones A, Nel A, Neraudeau D, Ortega-Blanco J, Perez-de la Fuente R, Perrichot V, Saupe E, Kraemer MS, Tafforeau P (2010) Synchrotron x-ray imaging of inclusions in amber. C R Palevol 9:361–368.  https://doi.org/10.1016/j.crpv.2010.07.014CrossRefGoogle Scholar
  148. Stock SR (2008) Recent advances in x-ray microtomography applied to materials. Int Mater Rev 53:129–181.  https://doi.org/10.1179/174328008x277803CrossRefGoogle Scholar
  149. Sun F, Moroni R, Dong K, Markotter H, Zhou D, Hilger A, Zielke L, Zengerle R, Thiele S, Banhart J, Manke I (2017) Study of the mechanisms of internal short circuit in a Li/Li cell by synchrotron x-ray phase contrast tomography. ACS Energy Lett 2:94–104.  https://doi.org/10.1021/acsenergylett.6b00589CrossRefGoogle Scholar
  150. Suortti P, Keyrilainen J, William T (2013) Analyser-based x-ray imaging for biomedical research. J Phys D Appl Phys 46:494002CrossRefGoogle Scholar
  151. Tafforeau P, Boistel R, Boller E, Bravin A, Brunet M, Chaimanee Y, Cloetens P, Feist M, Hoszowska J, Jaeger JJ, Kay RF, Lazzari V, Marivaux L, Nel A, Nemoz C, Thibault X, Vignaud P, Zabler S (2006) Applications of x-ray synchrotron microtomography for non-destructive 3D studies of paleontological specimens. Appl Phys A Mater Sci Process 83:195–202.  https://doi.org/10.1007/s00339-006-3507-2CrossRefGoogle Scholar
  152. Takashima K, Hoshino M, Uesugi K, Yagi N, Matsuda S, Nakahira A, Osumi N, Kohzuki M, Onodera H (2015) X-ray phase-contrast computed tomography visualizes the microstructure and degradation profile of implanted biodegradable scaffolds after spinal cord injury. J Synchrotron Radiat 22:136–142.  https://doi.org/10.1107/s160057751402270xCrossRefGoogle Scholar
  153. Takeya S, Yoneyama A, Ueda K, Mimachi H, Takahashi M, Sano K, Hyodo K, Takeda T, Gotoh Y (2012) Anomalously preserved clathrate hydrate of natural gas in pellet form at 253 K. J Phys Chem C 116:13842–13848.  https://doi.org/10.1021/0302269vCrossRefGoogle Scholar
  154. Takeya S, Yoneyama A, Ueda K, Hyodo K, Yamawaki H, Fujihisa H, Gotoh Y, Takeda T (2013) Phase-contrast x-ray images of ice and water on carbon paper for fuel cells measured by diffraction-enhanced imaging technique. Jpn J Appl Phys 52.  https://doi.org/10.7567/jjap.52.048002CrossRefGoogle Scholar
  155. Talbot HF (1836) LXXVI. Facts relating to optical science. No. IV. Lond Edinb Philos Mag J Sci 9:401–407Google Scholar
  156. Teague MR (1983) Deterministic phase-retrieval – a Green-function solution. J Opt Soc Am 73:1434–1441.  https://doi.org/10.1364/josa.73.001434CrossRefGoogle Scholar
  157. Toda H, Tomizato F, Harasaki R, Seo D, Kobayashi M, Takeuchi A, Uesugi K (2016) 3D fracture behaviours in dual-phase stainless steel. ISIJ Int 56:883–892.  https://doi.org/10.2355/isijinternational.ISIJINT-2015-631CrossRefGoogle Scholar
  158. Trtik P, Dual J, Keunecke D, Mannes D, Niemz P, Stahli P, Kaestner A, Groso A, Stampanoni M (2007) 3D imaging of microstructure of spruce wood. J Struct Biol 159:46–55.  https://doi.org/10.1016/j.jsb.2007.02.003CrossRefGoogle Scholar
  159. Turner LD, Dhal BB, Hayes JP, Mancuso AP, Nugent KA, Paterson D, Scholten RE, Tran CQ, Peele AG (2004) X-ray phase imaging: demonstration of extended conditions with homogeneous objects. Opt Express 12:2960–2965.  https://doi.org/10.1364/opex.12.002960CrossRefGoogle Scholar
  160. Uehara M, Yashiro W, Momose A (2013) Effectiveness of x-ray grating interferometry for non-destructive inspection of packaged devices. J Appl Phys 114.  https://doi.org/10.1063/1.4823982CrossRefGoogle Scholar
  161. Vavrik D, Jakubek J, Jandejsek I, Krejci F, Kumpova I, Zemlicka J (2015) Visualization of delamination in composite materials utilizing advanced x-ray imaging techniques. J Instrum 10.  https://doi.org/10.1088/1748-0221/10/04/c04012CrossRefGoogle Scholar
  162. Vittoria FA, Kallon GKN, Basta D, Diemoz PC, Robinson IK, Olivo A, Endrizzi M (2015) Beam tracking approach for single-shot retrieval of absorption, refraction, and dark-field signals with laboratory x-ray sources. Appl Phys Lett 106.  https://doi.org/10.1063/1.4922189CrossRefGoogle Scholar
  163. Vittoria FA, Endrizzi M, Kallon GK, Hagen CK, Iacoviello F, De Coppi P, Olivo A (2017) Multimodal phase-based x-ray microtomography with nonmicrofocal laboratory sources. Phys Rev Appl 8.  https://doi.org/10.1103/PhysRevApplied.8.064009
  164. Vladimirov P, Ferrero C, Chakin V, Kurinskiy P, Moeslang A, Pieritz R, Weitkamp T, Brun E (2015) Microstructure of out-of-pile annealed neutron irradiated beryllium studied by x-ray tomography. Acta Mater 88:293–301.  https://doi.org/10.1016/j.actamat.2015.01.045CrossRefGoogle Scholar
  165. Wagner A, Sachse A, Keller M, Aurich M, Wetzel WD, Hortschansky P, Schmuck K, Lohmann M, Reime B, Metge J, Arfelli F, Menk R, Rigon L, Muehleman C, Bravin A, Coan P, Mollenhauer J (2006) Qualitative evaluation of titanium implant integration into bone by diffraction enhanced imaging. Phys Med Biol 51:1313–1324.  https://doi.org/10.1088/0031-9155/51/5/019CrossRefGoogle Scholar
  166. Wang K, Lei HL, Li J, Lin W, Qi XB, Tang YJ, Liu YQ (2014) Characterization of inertial confinement fusion targets using x-ray phase contrast imaging. Opt Commun 332:9–13.  https://doi.org/10.1016/j.optcom.2014.06.066CrossRefGoogle Scholar
  167. Wang SX, Hu RF, Gao K, Wali F, Zan GB, Wang DJ, Pan ZY, Wei SQ (2017) Non-destructive study of fruits using grating-based x-ray imaging. Nucl Sci Tech 28.  https://doi.org/10.1007/s41365-016-0169-4
  168. Weitkamp T, Diaz A, David C, Pfeiffer F, Stampanoni M, Cloetens P, Ziegler E (2005) X-ray phase imaging with a grating interferometer. Opt Express 13:6296–6304CrossRefGoogle Scholar
  169. Wen H, Bennett EE, Hegedus MM, Rapacchi S (2009) Fourier x-ray scattering radiography yields bone structural information. Radiology 251:910–918.  https://doi.org/10.1148/radiol.2521081903CrossRefGoogle Scholar
  170. Wen HH, Bennett EE, Kopace R, Stein AF, Pai V (2010) Single-shot x-ray differential phase-contrast and diffraction imaging using two-dimensional transmission gratings. Opt Lett 35:1932–1934.  https://doi.org/10.1364/OL.35.001932CrossRefGoogle Scholar
  171. Wilkins SW, Gureyev TE, Gao D, Pogany A, Stevenson AW (1996) Phase-contrast imaging using polychromatic hard x-rays. Nature 384:335–338.  https://doi.org/10.1038/384335a0CrossRefGoogle Scholar
  172. Wu Y, Takano H, Momose A (2017) In situ observation of polymer blend phase separation by x-ray Talbot-Lau interferometer. In: Proceedings of the SPIE – Developments in X-ray tomography XI, vol 10391Google Scholar
  173. Xiao XH, Fusseis F, De Carlo F (2012) X-ray fast tomography and its applications in dynamical phenomena studies in geosciences at advanced photon source. In: Stock SR (ed) Developments in x-ray tomography viii, vol 8506. Proceedings of SPIE.  https://doi.org/10.1117/12.936331
  174. Xue Y, Xiao T, Du G, Tong Y, Liu H, Deng B, Xie H, Xu H (2013) Observation of cavitation and water-refilling processes in plants with x-ray phase contrast microscopy. Nucl Sci Tech 24:060101Google Scholar
  175. Yin ZJ, Zhu MY, Bottjer DJ, Zhao FC, Tafforeau P (2016) Meroblastic cleavage identifies some Ediacaran Doushantuo (China) embryo-like fossils as metazoans. Geology 44:735–738.  https://doi.org/10.1130/g38262.1CrossRefGoogle Scholar
  176. Young ML, Rao R, Almer JD, Haeffner DR, Lewis JA, Dunand DC (2009) Effect of ceramic preform geometry on load partitioning in Al(2)O(3)-Al composites with three-dimensional periodic architecture. Mater Sci Eng A 526:190–196.  https://doi.org/10.1016/j.msea.2009.07.033CrossRefGoogle Scholar
  177. Zabler S, Rack T, Rack A, Nelson K (2012) Fatigue induced deformation of taper connections in dental titanium implants. Int J Mater Res 103:207–216.  https://doi.org/10.3139/146.110666CrossRefGoogle Scholar
  178. Zamir A, Diemoz PC, Vittoria FA, Hagen CK, Endrizzi M, Olivo A (2017) Edge illumination x-ray phase tomography of multi-material samples using a single-image phase retrieval algorithm. Opt Express 25:11984–11996CrossRefGoogle Scholar
  179. Zanette I, Weitkamp T, Donath T, Rutishauser S, David C (2010) Two-dimensional x-ray grating interferometer. Phys Rev Lett 105:248102CrossRefGoogle Scholar
  180. Zanette I, Zhou T, Burvall A, Lundstrom U, Larsson DH, Zdora M, Thibault P, Pfeiffer F, Hertz HM (2014) Speckle-based x-ray phase-contrast and dark-field imaging with a laboratory source. Phys Rev Lett 112.  https://doi.org/10.1103/PhysRevLett.112.253903
  181. Zbib MB, Parab ND, Chen WNW, Bahr DF (2015) New pulverization parameter derived from indentation and dynamic compression of brittle microspheres. Powder Technol 283:57–65.  https://doi.org/10.1016/j.powtec.2015.04.066CrossRefGoogle Scholar
  182. Zdora MC, Thibault P, Deyhle H, Vila-Comamala J, Rau C, Zanette I (2018) Tunable x-ray speckle-based phase-contrast and dark-field imaging using the unified modulated pattern analysis approach. J Instrum 13.  https://doi.org/10.1088/1748-0221/13/05/c05005CrossRefGoogle Scholar
  183. Zoofan B, Kim JY, Rokhlin SI, Frankel GS (2006) Phase-contrast x-ray imaging for nondestructive evaluation of materials. J Appl Phys 100:014502.  https://doi.org/10.1063/1.2209889CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.CSIRO ManufacturingClaytonAustralia
  2. 2.University College LondonLondonUK

Section editors and affiliations

  • Ida Nathan
    • 1
  • Norbert Meyendorf
    • 2
  1. 1.Department of Electrical and Computer EngineeringUniversity of AkronAkronUSA
  2. 2.Center for Nondestructive EvaluationIowa State UniversityAmesUSA

Personalised recommendations