Advertisement

Digital Image Correlation Techniques for NDE and SHM

  • Christopher NiezreckiEmail author
  • Javad Baqersad
  • Alessandro Sabato
Reference work entry

Abstract

Monitoring and analyzing the integrity of structures, infrastructure, and machines is essential for economic, operational, and safety reasons. The assessment of structural integrity and dynamic conditions of those systems is important to ensure safe operation and achieve or even extend the design service life. Recent advancements in camera technology, optical sensors, and image processing algorithms have made optically based and noncontact measurement techniques such as photogrammetry and digital image correlation (DIC) appealing methods for nondestructive evaluation (NDE) and structural health monitoring (SHM). Conventional sensors (e.g., accelerometers, strain gages, string potentiometers, LVDTs) provide results only at a discrete number of points. Moreover, these sensors need wiring, can be time-consuming to install, may require additional instrumentations (e.g., power amplifiers, data acquisition), and are difficult to implement on large-sized structures without interfering with their functionality or may require instrumentation having a large number of data channels. On the contrary, optical techniques can provide accurate quantitative information about full-field displacement, strain, geometry, and the dynamics of a structure without contact or interfering with the structure’s functionality. This chapter presents a summary review of the efforts made in both academia and industry to leverage the use of DIC systems for NDE and SHM applications in the fields of civil, aerospace, and energy engineering systems. The chapter also summarizes the feasibility of the approaches and presents possible future directions of the measurement approach.

References

  1. Abanto-Bueno J, Lambros J (2002) Investigation of crack growth in functionally graded materials using digital image correlation. Eng Fract Mech 69(14–16):1695–1711.  https://doi.org/10.1016/S0013-7944(02)00058-9CrossRefGoogle Scholar
  2. Alam SY, Loukili A (2017) Transition from energy dissipation to crack openings during continuum–discontinuum fracture of concrete. Int J Fracture 206(1):49–66.  https://doi.org/10.1007/s10704-017-0200-8CrossRefGoogle Scholar
  3. Alam SY, Loukili A, Grondin F (2012) Monitoring size effect on crack opening in concrete by digital image correlation. Eur J Environ Civ En 16(7):818–836.  https://doi.org/10.1080/19648189.2012.672211CrossRefGoogle Scholar
  4. Alam SY, Saliba J, Loukili A (2014) Fracture examination in concrete through combined digital image correlation and acoustic emission techniques. Constr Build Mater 69:232–242.  https://doi.org/10.1016/j.conbuildmat.2014.07.044CrossRefGoogle Scholar
  5. Alam SY, Loukili A, Grondin F, Rozière E (2015) Use of the digital image correlation and acoustic emission technique to study the effect of structural size on cracking of reinforced concrete, vol 143. Eng Fract Mech, pp 17–31.  https://doi.org/10.1016/j.engfracmech.2015.06.03
  6. Annamdas VGM, Chew Y, Pang JHL, Hoh HJ, Zhou K, Song B (2014) Fatigue growth analysis of pre induced surface defects using piezoelectric wafer based impedance method and digital image correlation system. J Nondestruct Eval 33(3):413–426.  https://doi.org/10.1007/s10921-014-0237-9CrossRefGoogle Scholar
  7. ASCE (2017) Infrastructure report card. American Society of Civil Engineering. Available online. https://www.infrastructurereportcard.org/. Accessed 30 Jan 2018
  8. Asl ME, Niezrecki C, Sherwood J, Avitabile P (2017) Experimental and theoretical similitude analysis for flexural bending of scaled-down laminated I-beams. Compos Struct 176:812–822.  https://doi.org/10.1016/j.compstruct.2017.06.017CrossRefGoogle Scholar
  9. Baqersad J, Carr J, Lundstrom T, Niezrecki C, Avitabile P, Slattery M (2012) Dynamic characteristics of a wind turbine blade using 3D digital image correlation. In: Proceedings of the SPIE, Health monitoring of structural and biological systems 7979: 79790L, 20 April 2012, San Diego, CAGoogle Scholar
  10. Baqersad J, Niezrecki C, Avitabile P (2015) Full-field dynamic strain prediction on a wind turbine using displacements of optical targets measured by stereophotogrammetry. Mech Syst Signal Process 62–63:284–295.  https://doi.org/10.1016/j.ymssp.2015.03.021CrossRefGoogle Scholar
  11. Baqersad J, Poozesh P, Niezrecki C, Avitabile P (2016) A noncontacting approach for full-field strain monitoring of rotating structures. J Vib Acoust 138(3):031008.  https://doi.org/10.1115/1.4032721CrossRefGoogle Scholar
  12. Baqersad J, Poozesh P, Niezrecki C, Avitabile P (2017) Photogrammetry and optical methods in structural dynamics – a review. Mech Syst Signal Process 86:17–34  https://doi.org/10.1016/j.ymssp.2016.02.011CrossRefGoogle Scholar
  13. Bartilson DT, Wieghaus KT, Hurlebaus S (2015) Target-less computer vision for traffic signal structure vibration studies. Mech Syst Signal Process 60:571–582.  https://doi.org/10.1016/j.ymssp.2015.01.005CrossRefGoogle Scholar
  14. Bernasconi A, Cosmi F, Zappa E (2010) Combined effect of notches and fibre orientation on fatigue behaviour of short fibre reinforced polyamide. Strain 46(5):435–445.  https://doi.org/10.1111/j.1475-1305.2009.00667.xCrossRefGoogle Scholar
  15. Bolzon G, Buljak V, Zappa E (2012) Characterization of fracture properties of thin aluminum inclusions embedded in anisotropic laminate composites. Frattura ed Integrità Strutturale (19):20–28.  https://doi.org/10.3221/IGF-ESIS.19.02
  16. Bolzon G, Shahmardani M, Liu R, Zappa E (2017a) A combined experimental-numerical investigation of the failure mode of thin metal foils. Procedia Structural Integrity 3:168–171.  https://doi.org/10.1016/j.prostr.2017.04.030CrossRefGoogle Scholar
  17. Bolzon G, Shahmardani M, Liu R, Zappa E (2017b) Failure analysis of thin metal foils. Frattura ed Integrità Strutturale 11(42):328–336.  https://doi.org/10.3221/IGF-ESIS.42.34CrossRefGoogle Scholar
  18. Boulekbache B, Hamrat M, Chemrouk M, Amziane S (2015) Failure mechanism of fibre reinforced concrete under splitting test using digital image correlation. Mater Struct 48(8):2713–2726.  https://doi.org/10.1617/s11527-014-0348-xCrossRefGoogle Scholar
  19. Busca G, Cigada A, Mazzoleni P, Zappa E, Franzi M (2012) Cameras as displacement sensors to get the dynamic motion of a bridge: performance evaluation against traditional approaches. In: Frangopol D (ed) Proceedings of the 6th IABMAS 2012, Jully 8–12, 2012, Stresa, ItalyCrossRefGoogle Scholar
  20. Busca G, Cigada A, Mazzoleni P, Zappa E (2014) Vibration monitoring of multiple bridge points by means of a unique vision-based measuring system. Exp Mech 54(2):255–271.  https://doi.org/10.1007/s11340-013-9784-8CrossRefGoogle Scholar
  21. Calebi M (2000) Seismic instrumentation of buildings. Report No. 00–157, United States Geological SurveyGoogle Scholar
  22. Caminero MA, Pavlopoulou S, López-Pedrosa M, Nicolaisson BG, Pinna C, Soutis C (2012) Using digital image correlation techniques for damage detection on adhesively bonded composite repairs. Adv Compos Lett 21(2):51–57CrossRefGoogle Scholar
  23. Caminero MA, Pavlopoulou S, Lopez-Pedrosa M, Nicolaisson BG, Pinna C, Soutis C (2013a) Analysis of adhesively bonded repairs in composites: damage detection and prognosis. Compos Struct 95:500–517.  https://doi.org/10.1016/j.compstruct.2012.07.028CrossRefGoogle Scholar
  24. Caminero MA, Lopez-Pedrosa M, Pinna C, Soutis C (2013b) Damage monitoring and analysis of composite laminates with an open hole and adhesively bonded repairs using digital image correlation. Compos Part B Eng 53:76–91.  https://doi.org/10.1016/j.compositesb.2013.04.050CrossRefGoogle Scholar
  25. Caminero MA, Lopez-Pedrosa M, Pinna C, Soutis C (2014) Damage assessment of composite structures using digital image correlation. Appl Compos Mater 21(1):91–106.  https://doi.org/10.1007/s10443-013-9352-5CrossRefGoogle Scholar
  26. Caprioli A, Manzoni S, Zappa E (2011) People-induced vibrations of civil structures: image-based measurement of crowd motion. Exp Tech 35(3):71–79.  https://doi.org/10.1111/j.1747-1567.2009.00574.xCrossRefGoogle Scholar
  27. Carr J, Baqersad J, Niezrecki C, Avitabile P (2014) Full-field dynamic strain on wind turbine blade using digital image correlation techniques and limited sets of measured data from photogrammetric targets. Exp Tech.  https://doi.org/10.1111/ext.12129
  28. Catbas FN, Zaurin R, Gul M, Gokce HB (2011) Sensor networks, computer imaging, and unit influence lines for structural health monitoring: case study for bridge load rating. J Bridg Eng 17(4):662–670CrossRefGoogle Scholar
  29. Chiang CH, Shih MH, Chen W, Yu CP (2011). Displacement measurements of highway bridges using digital image correlation methods. In: Proceedings of the SPIE, Precision Engineering Measurements and Instrumentation 8321: 83211G, 16Nov. 2011, Yunnan, China.  https://doi.org/10.1117/12.904303
  30. Cholostiakow S, Di Benedetti M, Guadagnini M, Gowda C, Barros J, Zappa E (2016) Experimental and numerical study on the shear behaviour of geometrically similar FRP RC beams. In: Teng JG, Dai JG (eds) Proceedings of the 8th FRP Composites CICE 2016, The Hong Kong Polytechnic University, pp 1–6Google Scholar
  31. Cholostiakow S, Di Benedetti M, Guadagnini M, Zappa E (2017) Size effect in FRP RC beams with and without shear reinforcement. In: Procof the FRPRCS 2017, 14–15 October 2017, Anaheim, CAGoogle Scholar
  32. Chu TC, Ranson WF, Sutton MA (1985) Applications of digital-image-correlation techniques to experimental mechanics. Exp Mech 25(3):232–244CrossRefGoogle Scholar
  33. Chung HC, Liang J, Kushiyama S, Shinozuka M (2004) Digital image processing for non-linear system identification. Int J Nonlinear Mech 39(5):691–707.  https://doi.org/10.1016/S0020-7462(03)00021-0zbMATHCrossRefGoogle Scholar
  34. Cigada A, Mazzoleni P, Tarabini M, Zappa E (2013) Static and dynamic monitoring of bridges by means of vision-based measuring system. In: Cunha A (ed) Topics in dynamics of bridges, vol 3. Springer, New York, pp 83–92Google Scholar
  35. Di Benedetti M, Cholostiakow S, Fergani H, Zappa E, Cigada A, Guadagnini M (2015) 3D-DIC for strain measurement in small scale GFRP RC specimens. In: Proceedings of the SMAR 2015: 1–8, 7–9 September 2015, Antalya, TurkeyGoogle Scholar
  36. Dizaji MS, Alipour M, Harris DK (2017a) Leveraging vision for structural identification: a digital image correlation based approach. In: Sutton M, Reu PL (eds) International digital imaging correlation society. Springer, New York, pp 121–124.  https://doi.org/10.1007/978-3-319-51439-0_29CrossRefGoogle Scholar
  37. Dizaji MS, Harris DK, Alipour M, Ozbulut OE 2017b En“vision”ing a novel approach for structural health monitoring – a model for full-field structural identification using 3D-digital image correlation. In: Proceedings of the ISHMII 8, 5–8 December 2017, Brisbane, AustraliaGoogle Scholar
  38. Doebling SW, Farrar CR, Prime MB, Shevitz DW (1996) Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review. Report No. LA-13070-MS, Los Alamos National LaboratoryGoogle Scholar
  39. Dong CZ, Ye XW, Jin T (2018) Identification of structural dynamic characteristics based on machine vision technology. Measurement (in press).  https://doi.org/10.1016/j.measurement.2017.09.043CrossRefGoogle Scholar
  40. Drewry MA, Georgiou GA (2007) A review of NDT techniques for wind turbines. Insight-Non-Destruct Test Cond Monit 49(3):137–141.  https://doi.org/10.1784/insi.2007.49.3.137CrossRefGoogle Scholar
  41. Drinkwater BW, Wilcox PD (2006) Ultrasonic arrays for non-destructive evaluation: a review. NDT E Int 39(7):525–541.  https://doi.org/10.1016/j.ndteint.2006.03.006CrossRefGoogle Scholar
  42. Du Y, Diaz FA, Burguete RL, Patterson EA (2011) Evaluation using digital image correlation of stress intensity factors in an aerospace panel. Exp Mec 51(1):45–57.  https://doi.org/10.1007/s11340-010-9335-5CrossRefGoogle Scholar
  43. Dworakowski Z, Kohut P, Gallina A, Holak K, Uhl T (2016) Vision-based algorithms for damage detection and localization in structural health monitoring. Struct Cont Health Monit 23(1):35–50  https://doi.org/10.1002/stc.1755CrossRefGoogle Scholar
  44. Farrar CR, Worden K (2007) An introduction to structural health monitoring. Philos Trans A Math Phys Eng Sci 365(1851):303–315CrossRefGoogle Scholar
  45. Fayyad TM, Lees JM (2014) Application of digital image correlation to reinforced concrete fracture. Proc Mater Sci 3:1585–1590.  https://doi.org/10.1016/j.mspro.2014.06.256CrossRefGoogle Scholar
  46. Feng D, Feng MQ (2015) Model updating of railway bridge using in situ dynamic displacement measurement under trainloads. J Bridg Eng 20(12):04015019.  https://doi.org/10.1061/(ASCE)BE.1943-5592.0000765CrossRefGoogle Scholar
  47. Feng D, Feng MQ (2016) Vision-based multipoint displacement measurement for structural health monitoring. Struc Cont Health Monit 23(5):876–890.  https://doi.org/10.1002/stc.1819CrossRefGoogle Scholar
  48. Feng D, Feng MQ (2017) Identification of structural stiffness and excitation forces in time domain using noncontact vision-based displacement measurement. J Sound Vib 406:15–28.  https://doi.org/10.1016/j.jsv.2017.06.008CrossRefGoogle Scholar
  49. Feng D, Feng MQ, Ozer E, Fukuda Y (2015a) A vision-based sensor for noncontact structural displacement measurement. Sensors 15(7):16557–16575.  https://doi.org/10.3390/s150716557CrossRefGoogle Scholar
  50. Feng MQ, Fukuda Y, Feng D, Mizuta M (2015b) Nontarget vision sensor for remote measurement of bridge dynamic response. J Bridg Eng 20(12):04015023.  https://doi.org/10.1061/(ASCE)BE.1943-5592.0000747CrossRefGoogle Scholar
  51. Feng D, Scarangello T, Feng MQ, Ye Q (2017) Cable tension force estimate using novel noncontact vision-based sensor. Measurement 99:44–52.  https://doi.org/10.1016/j.measurement.2016.12.020CrossRefGoogle Scholar
  52. Fu G, Moosa AG (2002) An optical approach to structural displacement measurement and its application. J Eng Mech 128(5):511–520.  https://doi.org/10.1061/(ASCE)0733-9399(2002)128:5(511)CrossRefGoogle Scholar
  53. Gariboldi E, Naumenko K, Ozhoga-Maslovskaja O, Zappa E (2016) Analysis of anisotropic damage in forged Al–cu–mg–Si alloy based on creep tests, micrographs of fractured specimen and digital image correlations. Mat Sci Eng A 652:175–185.  https://doi.org/10.1016/j.msea.2015.11.090CrossRefGoogle Scholar
  54. Gheitasi A, Harris DK, Hansen M (2018) An experimental-computational correlated study for describing the failure characteristics of concrete across two scale levels: mixture and structural component. Exp Mech 58(1):11–32.  https://doi.org/10.1007/s11340-017-0319-6CrossRefGoogle Scholar
  55. Gholizadeh S (2016) A review of non-destructive testing methods of composite materials. Procedia Structural Integrity 1:50–57.  https://doi.org/10.1016/j.prostr.2016.02.008CrossRefGoogle Scholar
  56. Gholizadeh S, Leman Z, Baharudin BTHT (2015) A review of the application of acoustic emission technique in engineering. SEM 54(6):1075–1095.  https://doi.org/10.12989/sem.2015.54.6.1075CrossRefGoogle Scholar
  57. Giurgiutiu V, Cuc A (2005) Embedded non-destructive evaluation for structural health monitoring, damage detection, and failure prevention. Shock Vib Dig 37(2):83–105CrossRefGoogle Scholar
  58. Glisic B, Inaudi D (eds) (2008) Fiber optic methods for structural health monitoring. Wiley, HobokenGoogle Scholar
  59. Hanke R, Fuchs T, Uhlmann N (2008) X-ray based methods for non-destructive testing and material characterization. Nucl Instrum Methods Phys Res A 591(1):14–18.  https://doi.org/10.1016/j.nima.2008.03.016CrossRefGoogle Scholar
  60. Helfrick MN, Niezrecki C (2007) An investigation of the use of 3-D optical measurements to perform structural health monitoring. In: Proceedings of the 6th IWSHM, Sept. 11–13, Stanford, CAGoogle Scholar
  61. Helfrick MN, Niezrecki C, Avitabile P, Schmidt T (2008) 3D digital image correlation methods for full-field vibration measurement. In: 26th conference and exposition on structural dynamics, vol 1. Curran Associates Inc., Red Hook, pp 87–96Google Scholar
  62. Helfrick MN, Pingle P, Niezrecki C, Avitabile P (2009a) Using full-field vibration measurement techniques for damage detection. In: 27th conference and exposition on structural dynamics, vol 1. Curran Associates Inc., Red Hook, pp 2239–2249Google Scholar
  63. Helfrick MN, Pingle P, Niezrecki C, Avitabile P (2009b) Optical non-contacting vibration measurement of rotating turbine blades. In: 27th conference and exposition on structural dynamics, vol 1. Curran Associates Inc., Red Hook, pp 222–226Google Scholar
  64. Helfrick MN, Niezrecki C, Avitabile P, Schmidt T (2011) 3D digital image correlation methods for full-field vibration measurement. Mech Syst Signal Process 25(3):917–927.  https://doi.org/10.1016/j.ymssp.2010.08.013CrossRefGoogle Scholar
  65. Hohmann BP, Bruck P, Esselman TC, Schmidt T (2012) Digital image correlation (DIC): an advanced nondestructive testing method for life extension of nuclear power plants. Int Atom IAEA-CN-194, 14-18 May 2012, Salt Lake City, UT, 43(32).Google Scholar
  66. Hutt T, Cawley P (2009) Feasibility of digital image correlation for detection of cracks at fastener holes. NDT&Int 42(2):141–149.  https://doi.org/10.1016/j.ndteint.2008.10.008CrossRefGoogle Scholar
  67. Ji YF, Chang CC (2008) Nontarget image-based technique for small cable vibration measurement. J Bridg Eng 13(1):34–42  https://doi.org/10.1061/(ASCE)1084-0702(2008)13:1(34)MathSciNetCrossRefGoogle Scholar
  68. Jones CA, Reynolds P, Zappa E, Manzoni S, Cigada A (2011) Verification of crowd dynamic excitation estimated from image processing techniques. In: Proulx T (ed) Dynamics of civil structures, vol 4. Springer, New York, pp 205–216CrossRefGoogle Scholar
  69. Kahn-Jetter ZL, Chu TC (1990) Three-dimensional displacement measurements using digital image correlation and photogrammic analysis. Exp Mech 30(1):10–16CrossRefGoogle Scholar
  70. Khuc T, Catbas FN (2017) Computer vision-based displacement and vibration monitoring without using physical target on structures. Struct Infrastruc E 13(4):505–516.  https://doi.org/10.1080/15732479.2016.1164729CrossRefGoogle Scholar
  71. Kim SW, Kim NS (2013) Dynamic characteristics of suspension bridge hanger cables using digital image processing. NDT&E Int 59:25–33  https://doi.org/10.1016/j.ndteint.2013.05.002CrossRefGoogle Scholar
  72. Kohut P, Holak K, Uhl T, Ortyl Ł, Owerko T, Kuras P, Kocierz R (2013) Monitoring of a civil structure’s state based on noncontact measurements. SHM 12(5–6):411–429.  https://doi.org/10.1177/1475921713487397Google Scholar
  73. Kohut P, Gaska A, Holak K, Ostrowska K, Sładek J, Uhl T, Dworakowski Z (2014a) A structure's deflection measurement and monitoring system supported by a vision system. TM-Technisches Messen 81(12):635–643.  https://doi.org/10.1515/teme-2014-1057CrossRefGoogle Scholar
  74. Kohut P, Holak K, Uhl T, Mączak J, Szulim P (2014b) Application of vision based damage detection for real civil engineering structure. Key Eng Mat 588:22–32  https://doi.org/10.4028/www.scientific.net/KEM.588.22CrossRefGoogle Scholar
  75. Kohut P, Holak K, Martowicz A, Uhl T (2017) Experimental assessment of rectification algorithm in vision-based deflection measurement system. Nondestruct Test Eva 32(2):200–226.  https://doi.org/10.1080/10589759.2016.1159306CrossRefGoogle Scholar
  76. Koltsida I, Tomor A, Booth C (2013) The use of digital image correlation technique for monitoring masonry arch bridges. In: Radić J, Kušter M, Šavor Z (eds) Proceedings of the 7th international conference on ARCH bridges – ARCH 2013. Zagreb, CroatiaGoogle Scholar
  77. Lagattu F, Brillaud J, Lafarie-Frenot MC (2004) High strain gradient measurements by using digital image correlation technique. Mater Charact 53(1):17–28.  https://doi.org/10.1016/j.matchar.2004.07.009CrossRefGoogle Scholar
  78. Lavatelli A, Zappa E (2016) Modeling uncertainty for a vision system applied to vibration measurements. IEEE Trans Instrum Meas 65(8):1818–1826.  https://doi.org/10.1109/TIM.2016.2541359CrossRefGoogle Scholar
  79. Lavatelli A, Zappa E (2017) A displacement uncertainty model for 2-D DIC measurement under motion blur conditions. IEEE T Instrum and Meas 66(3):451–459.  https://doi.org/10.1109/TIM.2016.2644898CrossRefGoogle Scholar
  80. LeBlanc B, Niezrecki C, Avitabile P (2010) Structural health monitoring of helicopter hard landing using 3D digital image correlation. In: Proceedings of the SPIE, Health monitoring of structural and biological systems 7650: 76501V, 7–11 March 2010, San Diego, CAGoogle Scholar
  81. LeBlanc B, Niezrecki C, Avitabile P, Chen J, Sherwood J, Hughes S (2011a) Full-field inspection of a wind turbine blade using three-dimensional digital image correlation. Proc. SPIE, Industrial and commercial applications of smart structures technologies 8348: 83482I, 29 April 2011, San Diego, CAGoogle Scholar
  82. LeBlanc B, Niezrecki C, Avitabile P, Sherwood J, Chen J (2011b) Surface stitching of a wind turbine blade using digital image correlation. In: Allemang R, De Clerck J, Niezrecki C, Blough JR (eds) Topics in modal analysis II, vol 6. Springer, New York, pp 277–284Google Scholar
  83. LeBlanc B, Niezrecki C, Avitabile P, Chen J, Sherwood J (2013) Damage detection and full surface characterization of a wind turbine blade using three-dimensional digital image correlation. SHM 12(5–6):430–439.  https://doi.org/10.1177/1475921713506766Google Scholar
  84. Lee JJ, Shinozuka M (2006) A vision-based system for remote sensing of bridge displacement. Ndt&E Int 39(5):425–431  https://doi.org/10.1016/j.ndteint.2005.12.003CrossRefGoogle Scholar
  85. Lundstrom T, Niezrecki C, Avitabile P (2011) Rigid body correction using 3D digital photogrammetry for rotating structures. In: Proulx T (ed) Optical measurements, Modeling, and metrology, vol 5. Springer, New York, pp 307–321.  https://doi.org/10.1007/978-1-4614-0228-2_38Google Scholar
  86. Lundstrom T, Baqersad J, Niezrecki C (2013) Using high-speed stereophotogrammetry to collect operating data on a Robinson R44 helicopter. In: Allemang R, De Clerck J, Niezrecki C, Wicks A (eds) Special topics in structural dynamics, vol 6. Springer, New York, pp 401–410CrossRefGoogle Scholar
  87. Lundstrom T, Niezrecki C, Avitabile P (2015) Appropriate rigid body correction of stereophotogrammetry measurements made on rotating systems. Exp Tech 39(6):25–34.  https://doi.org/10.1111/ext.12030CrossRefGoogle Scholar
  88. Lundstrom T, Baqersad J, Niezrecki C (2016) Monitoring the dynamics of a helicopter main rotor with high-speed stereophotogrammetry. Exp Tech 40(3):907–919.  https://doi.org/10.1111/ext.12127CrossRefGoogle Scholar
  89. Luo PF, Chao YJ, Sutton MA, Peters WH (1993) Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision. Exp Mech 33(2):123–132CrossRefGoogle Scholar
  90. Lynch JP (2007) An overview of wireless structural health monitoring for civil structures. Philos Trans A Math Phys Eng Sci 365(1851):345–372CrossRefGoogle Scholar
  91. Malesa M, Szczepanek D, Kujawińska M, Świercz A, Kołakowski P (2010) Monitoring of civil engineering structures using digital image correlation technique. In: Brémand F (ed) Proceedings of the 14th ICEM, Jul. 4–9, Poitiers, France, vol 6, p 31014.  https://doi.org/10.1051/epjconf/20100631014CrossRefGoogle Scholar
  92. Malesa M, Malowany K, Pawlicki J, Kujawinska M, Skrzypczak P, Piekarczuk A, Lusa T, Zagorski A (2016) Non-destructive testing of industrial structures with the use of multi-camera digital image correlation method. Eng Fail Anal 69:122–134.  https://doi.org/10.1016/j.engfailanal.2016.02.002CrossRefGoogle Scholar
  93. Mazzoleni P, Zappa E (2012) Vision-based estimation of vertical dynamic loading induced by jumping and bobbing crowds on civil structures. Mech Syst Signal Pr 33:1–12.  https://doi.org/10.1016/j.ymssp.2012.06.009CrossRefGoogle Scholar
  94. Mazzoleni P, Zappa E, Matta F, Sutton MA (2015) Thermo-mechanical toner transfer for high-quality digital image correlation speckle patterns. Opt Laser Eng 75:72–80.  https://doi.org/10.1016/j.optlaseng.2015.06.009CrossRefGoogle Scholar
  95. McCormick N, Lord J (2012) Digital image correlation for structural measurements. Proc Inst Civ Eng 165(4):185Google Scholar
  96. McGinnis MJ, Pessiki S, Turker H (2005) Application of three-dimensional digital image correlation to the core-drilling method. Exp Mech 45(4):359.  https://doi.org/10.1007/BF02428166CrossRefGoogle Scholar
  97. McGinnis MJ, Smith B, Holloman M, Lisk M, O'Donnell A, Kurama YC (2012) 3-D digital image correlation – an underused asset for structural testing. In: Carrato J, Burns J (eds) Structures congress. ASCE, Chicago, pp 1958–1969.  https://doi.org/10.1061/9780784412367.172Google Scholar
  98. Mokhtari M, Hayatdavoudi A, Nizamutdinov R, Rizvi H, Nath F (2017). Characterization of complex fracture propagation in naturally fractured formations using digital image correlation technique. Proc. SPE hydraulic fracturing technology conference and exhibition, 24–26 January, The Woodlands, TXGoogle Scholar
  99. Murray CA, Take WA, Hoult NA (2014) Measurement of vertical and longitudinal rail displacements using digital image correlation. Can Geotech J 52(2):141–155.  https://doi.org/10.1139/cgj-2013-0403CrossRefGoogle Scholar
  100. NASA (2009) Chopper drop tests new technology. https://www.nasa.gov/topics/aeronautics/features/helo-droptest.html. Accessed 9 Apr 2018
  101. NASA (2017 NASA crashes helicopter to test safety improvements. https://www.nasa.gov/larc/nasa-crashes-helicopter-to-test-safety-improvements. Accessed 9 Apr 2018
  102. Nath F, Salvati PE, Mokhtari M, Seibi A, Hayatdavoudi A (2017). Observation of fracture growth in laminated sandstone and carbonate rock samples under Brazilian testing conditions using digital image correlation technique. In: Proceedings of the SPE hydraulic fracturing technology conference and exhibition, 4–6 October, Lexington, KYGoogle Scholar
  103. Niezrecki C, Avitabile P, Warren C, Pingle P, Helfrick M (2010) A review of digital image correlation applied to structura dynamics. AIP Conference Proceedings 1253(1):219–232  https://doi.org/10.1063/1.3455461CrossRefGoogle Scholar
  104. Niezrecki C, Avitabile P, Chen J, Sherwood J, Lundstrom T, LeBlanc B, Hughes S, Desmond M, Beattie A, Rumsey M, Klute SM, Pedrazzani R, WerlinkR NJ (2014) Inspection and monitoring of wind turbine blade-embedded wave defects during fatigue testing. SHM 13(6):629–643.  https://doi.org/10.1177/1475921714532995CrossRefGoogle Scholar
  105. Nonis C, Niezrecki C, Yu TY, Ahmed S, Su CF, Schmidt T (2013) Structural health monitoring of bridges using digital image correlation. In: Proceedings of the SPIE, Health monitoring of structural and biological systems 8695: 869507, 17 April 2013, San Diego, CA.  https://doi.org/10.1117/12.2009647
  106. Olaszek P (1999) Investigation of the dynamic characteristic of bridge structures using a computer vision method. Measurement 25(3):227–236.  https://doi.org/10.1016/S0263-2241(99)00006-8CrossRefGoogle Scholar
  107. Olson L, Barrows D, Abrego A, Burner A (2010) Blade deflection measurements of a full-scale UH-60A rotor system. 2010 AHS specialists’ conference on aeromechanics, San Francisco, CA, January 20–22, 2010Google Scholar
  108. Omondi B, Aggelis DG, Sol H, Sitters C (2016) Improved crack monitoring in structural concrete by combined acoustic emission and digital image correlation techniques. SHM 15(3):359–378.  https://doi.org/10.1177/1475921716636806Google Scholar
  109. Ozbek M, Rixen DJ (2013) Operational modal analysis of a 2.5 MW wind turbine using optical measurement techniques and strain gauges. Wind Energy 16(3):367–381.  https://doi.org/10.1002/we.1493CrossRefGoogle Scholar
  110. Ozbek M, Mengt F, Rixen DJ, ToorenMJL V (2011) Identification of the dynamics of large wind turbines by using photogrammetry. In: Proulx T (ed) Structural dynamics and renewable energy, vol 1. Springer, New York, pp 351–359CrossRefGoogle Scholar
  111. Ozbek M, Meng F, Rixen DJ (2013) Challenges in testing and monitoring the in-operation vibration characteristics of wind turbines. Mech Syst Signal Process 41(1–2):649–666.  https://doi.org/10.1016/j.ymssp.2013.07.023CrossRefGoogle Scholar
  112. Pan B, Tian L, Song X (2016) Real-time, non-contact and targetless measurement of vertical deflection of bridges using off-axis digital image correlation. Ndt&EInt 79:73–80.  https://doi.org/10.1016/j.ndteint.2015.12.006CrossRefGoogle Scholar
  113. Park SW, Park HS, Kim JH, Adeli H (2015) 3D displacement measurement model for health monitoring of structures using a motion capture system. Measurement 59:352–362.  https://doi.org/10.1016/j.measurement.2014.09.063CrossRefGoogle Scholar
  114. Park K, Torbol M, Kim S (2018) Vision-based natural frequency identification using laser speckle imaging and parallel computing. Comput Aided CivInf 33(1):51–63.  https://doi.org/10.1111/mice.12312CrossRefGoogle Scholar
  115. Parshall J, Whitfield S, Jacobs T (2017) Digital image correlation: a new way to look at hydraulic fracturing. JPT 69(5):4–5.  https://doi.org/10.2118/0517-0022-JPTGoogle Scholar
  116. Paulsen US, Erne O, Moeller T, Sanow G, Schmidt T (2009) Wind turbine operational and emergency stop measurements using point tracking videogrammetry. In: SEM annual conference and exposition, vol 1. Curran Associates Inc, Red Hook, pp 1128–1138Google Scholar
  117. Peddle J, Goudreau A, Carlson E, Santini-Bell E (2011) Bridge displacement measurement through digital image correlation. Bridge Struct 7(4):165–173.  https://doi.org/10.3233/BRS-2011-031CrossRefGoogle Scholar
  118. Peters WH, Ranson WF (1982) Digital imaging techniques in experimental stress analysis. Opt Eng 21(3):213427–213427.  https://doi.org/10.1117/12.7972925CrossRefGoogle Scholar
  119. Peters WH, Ranson WF, Sutton MA, Chu TC, Anderson J (1983) Application of digital correlation methods to rigid body mechanics. Opt Eng 22(6):226738–226738.  https://doi.org/10.1117/12.7973231CrossRefGoogle Scholar
  120. Pieraccini M (2013) Monitoring of civil infrastructures by interferometric radar: a review. Sci World J.  https://doi.org/10.1155/2013/786961CrossRefGoogle Scholar
  121. Poozesh P, Baqersad J, Niezrecki C, Avitabile P, Harvey E, Yarala R (2017) Large-area photogrammetry based testing of wind turbine blades. Mech Syst Signal Process 86:98–115.  https://doi.org/10.1016/j.ymssp.2016.07.021CrossRefGoogle Scholar
  122. Poozesh P, Sabato A, Sarrafi A, Niezrecki C, Avitabile P (2018) A multiple stereo-vision approach using three dimensional digital image correlation for utility-scale wind turbine blades, Proc. IMAC XXXVI, 12 February 2018, Orlando, FLGoogle Scholar
  123. Reagan D, Sabato A, Niezrecki C, Yu TY, Wilson R (2016) An autonomous unmanned aerial vehicle sensing system for structural health monitoring of bridges. In: Proceedings of the SPIE, Nondestructive characterization and monitoring of advanced materials, aerospace, and civil infrastructure, 9804: 980414. 22 April 2016, Las Vegas, NV.  https://doi.org/10.1117/12.2218370
  124. Reagan D, Sabato A, Niezrecki C (2017a). Unmanned aerial vehicle acquisition of three-dimensional digital image correlation measurements for structural health monitoring of bridges. In: Proceedings of the SPIE, Nondestructive characterization and monitoring of advanced materials, aerospace, and civil infrastructure, 10169: 016909, 19 April 2017, Portland, OR.  https://doi.org/10.1117/12.2259985
  125. Reagan D, Sabato A, Niezrecki C (2017b) Feasibility of using digital image correlation for unmanned aerial vehicle structural health monitoring of bridges. SHM (in press).  https://doi.org/10.1177/1475921717735326CrossRefGoogle Scholar
  126. Rehman SKU, Ibrahim Z, Memon SA, Jameel M (2016) Nondestructive test methods for concrete bridges: a review. Constr Build Mater 107:58–86.  https://doi.org/10.1016/j.conbuildmat.2015.12.011CrossRefGoogle Scholar
  127. Reu PL (2011) Experimental and numerical methods for exact subpixel shifting. Exp Mech 51:443–452  https://doi.org/10.1007/s11340-010-9417-4CrossRefGoogle Scholar
  128. Ribeiro D, Calçada R, Ferreira J, Martins T (2014) Non-contact measurement of the dynamic displacement of railway bridges using an advanced video-based system. EngStruct 75:164–180.  https://doi.org/10.1016/j.engstruct.2014.04.051Google Scholar
  129. Rizzo P (2014) Sensing solutions for assessing and monitoring railroad tracks. In: Wang ML, Lynch JP, Sohn H (eds) Sensor technologies for civil infrastructures, vol 2. Woodhead Publishing, Cambridge, pp 497–524CrossRefGoogle Scholar
  130. Rouchier S, Foray G, Godin N, Woloszyn M, Roux JJ (2013) Damage monitoring in fibre reinforced mortar by combined digital image correlation and acoustic emission. Constr Build Mater 38:371–380.  https://doi.org/10.1016/j.conbuildmat.2012.07.106CrossRefGoogle Scholar
  131. Sabato A, Niezrecki C (2017a) Feasibility of digital image correlation for railroad tie inspection and ballast support assessment. Measurement 103:93–105  https://doi.org/10.1016/j.measurement.2017.02.024CrossRefGoogle Scholar
  132. Sabato A, Niezrecki C (2017b) Full-scale damage detection of railroad crossties using digital image correlation. In: Sutton M, Reu PL (eds) International digital imaging correlation society. Springer, New York, pp 117–120.  https://doi.org/10.1007/978-3-319-51439-0_28CrossRefGoogle Scholar
  133. Sabato A, Niezrecki C, Fortino G (2017a) Wireless MEMS-based accelerometer sensor boards for structural vibration monitoring: a review. IEEE Sensors J 17(2):226–235.  https://doi.org/10.1109/JSEN.2016.2630008CrossRefGoogle Scholar
  134. Sabato A, Beale CH, Niezrecki C (2017b). A novel optical investigation technique for railroad track inspection and assessment. In: Proceedings of the SPIE, Nondestructive characterization and monitoring of advanced materials, aerospace, and civil infrastructure, 10169: 101692C.  https://doi.org/10.1117/12.2257831
  135. Sabato A, Poozesh P, Avitabile P, Niezrecki C (2018a) Experimental modal analysis of a utility-scale wind turbine blade using a multi-camera approach. In: Proceedings of the 13th AIVELA, June 19–22, Ancona, ItalyGoogle Scholar
  136. Sabato A, Reddy N, Khan S, Niezrecki C (2018b) A novel camera localization system for extending three-dimensional Digital Image Correlation measurement. In: Proceedings of the SPIE, Nondestructive characterization and monitoring of advanced materials, aerospace, and civil infrastructure, 1 April 2018, Denver, COGoogle Scholar
  137. Salvi J, Matabosch C, Fofi D, Forest J (2007) A review of recent range image registration methods with accuracy evaluation. Image Vis Comput 25(5):578–596.  https://doi.org/10.1016/j.imavis.2006.05.012CrossRefGoogle Scholar
  138. Santos CA, Costa CO, Batista JP (2012a) Calibration methodology of a vision system for measuring the displacements of long-deck suspension bridges. Struc Cont Health Monit 19(3):385–404.  https://doi.org/10.1002/stc.438CrossRefGoogle Scholar
  139. Santos CA, Costa CO, Batista JP (2012b) Long deck suspension bridge monitoring: the vision system calibration problem. Strain 48(2):108–123.  https://doi.org/10.1111/j.1475-1305.2011.00803.xCrossRefGoogle Scholar
  140. Santos CA, Costa CO, Batista JP (2016) A vision-based system for measuring the displacements of large structures: simultaneous adaptive calibration and full motion estimation. Mech Syst Signal Pr 72:678–694.  https://doi.org/10.1016/j.ymssp.2015.10.033CrossRefGoogle Scholar
  141. Schmidt T, Tyson J, Galanulis K (2003a) Pull-field dynamic displacement and strain measurement using advanced 3D image correlation photogrammetry: part I. Exp Tech 27(3):47–50.  https://doi.org/10.1111/j.1747-1567.2003.tb00115.xCrossRefGoogle Scholar
  142. Schmidt T, Tyson J, Galanulis K (2003b) Full-field dynamic displacement and strain measurement using advanced 3D image correlation photogrammetry: part II. Exp Tech 27(4):22–26.  https://doi.org/10.1111/j.1747-1567.2003.tb00118.xCrossRefGoogle Scholar
  143. Schneider O (2005) Analysis of SPR measurements from HART II. Aerosp Sci Technol 9:409–420.  https://doi.org/10.1016/j.ast.2005.01.013zbMATHCrossRefGoogle Scholar
  144. Seo J, Hu JW, Lee J (2015) Summary review of structural health monitoring applications for highway bridges. J Perform Constr Fac 30(4):04015072.  https://doi.org/10.1061/(ASCE)CF.1943-5509.0000824CrossRefGoogle Scholar
  145. Shull PJ (ed) (2016) Nondestructive evaluation: theory, techniques, and applications. CRC Press, New YorkGoogle Scholar
  146. Sirohi J, Lawson MS (2012) Measurement of helicopter rotor blade deformation using digital image correlation. Opt Eng 51(4):043603.  https://doi.org/10.1117/1.OE.51.4.043603CrossRefGoogle Scholar
  147. Sładek J, Ostrowska K, Kohut P, Holak K, Gąska A, Uhl T (2013) Development of a vision based deflection measurement system and its accuracy assessment. Measurement 46(3):1237–1249.  https://doi.org/10.1016/j.measurement.2012.10.021CrossRefGoogle Scholar
  148. Sohn H, Farrar CR, Hemez FM, Czarnecki JJ (2002) A review of structural health review of structural health monitoring literature 1996–2001. Report No. LA-UR-02-2095, Los Alamos National LaboratoryGoogle Scholar
  149. Stasicki B, Boden F (2009), Application of high-speed videography for in-flight deformation measurements of aircraft propellers. In Proc. 28th International Congress on High-Speed Imaging and Photonics, 9–14 November 2008, Canberra, AustraliaGoogle Scholar
  150. Sutton MA, Wolters WJ, Peters WH, Ranson WF, McNeill SR (1983) Determination of displacements using an improved digital correlation method. Image Vis Comput 1(3):133–139  https://doi.org/10.1016/0262-8856(83)90064-1CrossRefGoogle Scholar
  151. Sutton MA, Orteu JJ, Schreier H (eds) (2009) Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. Springer, New YorkGoogle Scholar
  152. Tchakoua P, Wamkeue R, Ouhrouche M, Slaoui-Hasnaoui F, Tameghe TA, Ekemb G (2014) Wind turbine condition monitoring: state-of-the-art review, new trends, and future challenges. Energies 7(4):2595–2630.  https://doi.org/10.3390/en7042595CrossRefGoogle Scholar
  153. Tong W (2005) An evaluation of digital image correlation criteria for strain mapping applications. Strain 41(4):167–175.  https://doi.org/10.1111/j.1475-1305.2005.00227.xCrossRefGoogle Scholar
  154. Udod VA, Van Y, Osipov SP, Chakhlov SV, Usachev EY, Lebedev MB, Temnik AK (2016) State-of-the art and development prospects of digital radiography systems for nondestructive testing, evaluation, and inspection of objects: a review. Russ J Nondestruct 52(9):492–503CrossRefGoogle Scholar
  155. Usamentiaga R, Venegas P, Guerediaga J, Vega L, Molleda J, Bulnes FG (2014) Infrared thermography for temperature measurement and non-destructive testing. Sensors 14(7):12305–12348.  https://doi.org/10.3390/s140712305CrossRefGoogle Scholar
  156. Vanniamparambil PA, Bartoli I, Hazeli K, Cuadra J, Schwartz E, Saralaya R, Kontsos A (2012) An integrated structural health monitoring approach for crack growth monitoring. J Intel Mat Syst Str 23(14):1563–1573.  https://doi.org/10.1177/1045389X12447987CrossRefGoogle Scholar
  157. Vanniamparambil PA, Khan F, Hazeli K, Cuadra J, Schwartz E, Kontsos A, Bartoli I (2013) Novel optico-acoustic nondestructive testing for wire break detection in cables. Struc Cont Health Monit 20(11):1339–1350.  https://doi.org/10.1002/stc.1539CrossRefGoogle Scholar
  158. Warren C, Niezrecki C, Avitabile P (2011a) Determination of wind turbine operating deflection shapes using full-field 3D point-tracking. In: Proulx T (ed) Rotating machinery, structural health monitoring, shock and vibration, vol 5. Springer, New York, pp 217–226CrossRefGoogle Scholar
  159. Warren C, Niezrecki C, Avitabile P (2011b) FRF measurements and mode shapes determined using image-based 3D point-tracking. In: Proulx T (ed) Modal analysis topics, vol 3. Springer, New York, pp 243–252CrossRefGoogle Scholar
  160. Warren C, Niezrecki C, Avitabile P, Pingle P (2011c) Comparison of FRF measurements and mode shapes determined using optically image based, laser, and accelerometer measurements. Mech Syst Signal Process 25(6):2191–2202.  https://doi.org/10.1016/j.ymssp.2011.01.018CrossRefGoogle Scholar
  161. Wu LJ, Casciati F, Casciati S (2014) Dynamic testing of a laboratory model via vision-based sensing. Eng Struct 60:113–125.  https://doi.org/10.1016/j.engstruct.2013.12.002CrossRefGoogle Scholar
  162. Ye XW, Ni YQ, Wai TT, Wong KY, Zhang XM, Xu F (2013) A vision-based system for dynamic displacement measurement of long-span bridges: algorithm and verification. Smart Struct Syst 12(3–4):363–379.  https://doi.org/10.12989/sss.2013.12.3_4.363CrossRefGoogle Scholar
  163. Ye XW, Su YH, Han JP (2014) Structural health monitoring of civil infrastructure using optical fiber sensing technology: a comprehensive review. Sci World J.  https://doi.org/10.1155/2014/652329Google Scholar
  164. Ye XW, Dong CZ, Liu T (2016a) Force monitoring of steel cables using vision-based sensing technology: methodology and experimental verification. Smart Struct Syst 18(3):585–599.  https://doi.org/10.12989/sss.2016.18.3.585CrossRefGoogle Scholar
  165. Ye XW, Dong CZ, Liu T (2016b) Image-based structural dynamic displacement measurement using different multi-object tracking algorithms. Smart Struct Syst 17(6):935–956.  https://doi.org/10.12989/sss.2016.17.6.935CrossRefGoogle Scholar
  166. Ye XW, Dong CZ, Liu T (2016c) A review of machine vision-based structural health monitoring: methodologies and applications. J Sensors 2016.  https://doi.org/10.1155/2016/7103039Google Scholar
  167. Yoneyama S, Kitagawa A, Kitamura K, Kikuta H (2005) Deflection distribution measurement of steel structure using digital image correlation. Proceedings of the SPIE, Optical Diagnostics 5880: 5880G, 18 August 2015, San Diego, CAGoogle Scholar
  168. Yoneyama S, Kitagawa A, Iwata S, Tani K, Kikuta H (2007) Bridge deflection measurement using digital image correlation. Exp Techniques 31(1):34–40.  https://doi.org/10.1111/j.1747-1567.2006.00132.xCrossRefGoogle Scholar
  169. Zappa E, Hasheminejad N (2017) Digital image correlation technique in dynamic applications on deformable targets. Exp Tech 41(4):377–387.  https://doi.org/10.1007/s40799-017-0184-3CrossRefGoogle Scholar
  170. Zappa E, Mazzoleni P, Matinmanesh A (2014a) Uncertainty assessment of digital image correlation method in dynamic applications. Opt Laser Eng 59:140–151.  https://doi.org/10.1016/j.optlaseng.2013.12.016CrossRefGoogle Scholar
  171. Zappa E, Matinmanesh A, Mazzoleni P (2014b) Evaluation and improvement of digital image correlation uncertainty in dynamic conditions. Opt Laser Eng 59:82–92.  https://doi.org/10.1016/j.optlaseng.2014.03.007CrossRefGoogle Scholar
  172. Zappa E, Liu R, Bolzon G, Shahmardani M (2017) High resolution non-contact measurement techniques for three-dimensional deformation processes of paperboard laminates. Mater Tod Proc 4(5):5872–5876.  https://doi.org/10.1016/j.matpr.2017.06.061CrossRefGoogle Scholar
  173. Zaurin R, Catbas FN (2009) Integration of computer imaging and sensor data for structural health monitoring of bridges. Smart Mater Struct 19(1):015019.  https://doi.org/10.1088/0964-1726/19/1/015019CrossRefGoogle Scholar
  174. Zaurin R, Catbas FN (2011) Structural health monitoring using video stream, influence lines, and statistical analysis. SHM 10(3):309–332.  https://doi.org/10.1177/1475921710373290CrossRefGoogle Scholar
  175. Zhang Z (2000) A flexible new technique for camera calibration. IEEE Trans Pattern Anal Mach Intell 22(11):1330–1334.  https://doi.org/10.1109/34.888718CrossRefGoogle Scholar
  176. Zhou HF, Dou HY, Qin LZ, Chen Y, Ni YQ, Ko JM (2014) A review of full-scale structural testing of wind turbine blades. Renew Sust Energ Rev 33:177–187.  https://doi.org/10.1016/j.rser.2014.01.087CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Christopher Niezrecki
    • 1
    Email author
  • Javad Baqersad
    • 2
  • Alessandro Sabato
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of Massachusetts LowellLowellUSA
  2. 2.Department of Mechanical EngineeringKettering UniversityFlintUSA

Section editors and affiliations

  • Ida Nathan
    • 1
  • Norbert Meyendorf
    • 2
  1. 1.Department of Electrical and Computer EngineeringUniversity of AkronAkronUSA
  2. 2.Center for Nondestructive EvaluationIowa State UniversityAmesUSA

Personalised recommendations