Advertisement

Neutron Radiography and Tomography

  • Wolfgang TreimerEmail author
Reference work entry

Abstract

In this chapter, the basics and applications of neutron radiography and neutron tomography are presented, outlining the principles of neutron physics. Then in the subsequent sections, different methods of neutron imaging are described and examples are given.

References

  1. Andersen AH, Kak AC (1984) Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm. Ultrason Imaging 6:81–94CrossRefGoogle Scholar
  2. Anderson IS, et al (eds) (2009) Neutron imaging and applications, neutron scattering applications and techniques. Springer Science and Business Media, LLC.  https://doi.org/10.1007/978-0-387-78693-3-6
  3. Annet JF (2013) Supercunductivity, superfluids and condensates. Oxford University Press, Chapter 3.7Google Scholar
  4. ASTM Standards designation: E 803-91 (Reapproved 1996) Standard test method for determining the L/D ratio of neutron radiography beams. https://www.astm.org/Standards/E803.htm
  5. Aull S, Ebrahimi O, Karakas N, Knobloch J, Kugeler O, Treimer W (2012) Suppressed Meissner-effect in niobium: visualized with polarized neutron radiography. J Phys Conf Ser 340(012001):1–7.  https://doi.org/10.1088/1742-6596/340/1/012001CrossRefGoogle Scholar
  6. Aydiner CC, Uetuendag E, Clausen B, Hanan JC, Winholtz RA, Bourke MAM, Peker A (2005) Residual stresses in a bulk metallic glass – stainless steel composite. Mater Sci Eng A 399:107–113CrossRefGoogle Scholar
  7. Bacon GE (1975) Neutron diffraction., Chapter 3, 3rd edn. Clarendon Press, OxfordzbMATHGoogle Scholar
  8. Badurek G, Hochhold M, Leeb H (1997a) Neutron magnetic tomography – a novel technique. Physica B 234–236:1171–1173CrossRefGoogle Scholar
  9. Badurek G, Hochhold M, Leeb H, Buchelt R, Korinek F (1997b) A proposal to visualize magnetic domains within bulk materials. Physica B 241–243:1207–1209CrossRefGoogle Scholar
  10. Badurek G, Hochhold M, Leeb H, Buchelt R, Korinek F (1998) A proposal to visualize magnetic domains within bulk materials. Physica B 241–243:1207–1209Google Scholar
  11. Badurek G, Buchelt RJ, Kroupa G, Baron M, Villa M (2000) Permanent magnetic field-prism polarizer for perfect crystal neutron interferometers. Physica B 283:389–392CrossRefGoogle Scholar
  12. Boeni P, Miinzer W, Ostermann A (2009) Phys B Condens Matter 404(17):2620–2623CrossRefGoogle Scholar
  13. Bracewell RN (1956) Aust J Phys 9:198MathSciNetCrossRefGoogle Scholar
  14. Brenizer JS (2013) A review of significant advances in neutron imaging from conception to the present. Phys Procedia 43:10–20CrossRefGoogle Scholar
  15. Chadwick J (1932) Possible existence of a neutron. Nature 129:312CrossRefGoogle Scholar
  16. Deans SR (1983) The radon transform and some of its applications. Wiley, New York. ISBN 13: 978-486-46421-7 and 10: 0-486-46241-2Google Scholar
  17. Dhiman I, Ziesche R, Anand VK, Riik L, Song G, Islam ATMN, Tanaka I, Treimer W (2017) Thermodynamics of Meissner effect and flux pinning behavior in the bulk of single-crystal La2−xSrxCuO4 (x=0.09). Phys Rev B 96:104517-1–104517-10CrossRefGoogle Scholar
  18. Ernst C (1997) Untersuchung von π – Flippern mit kalten Neutronen. Diploma thesis, supervisor W. Treimer, FB II, Technische Fachhochschule BerlinGoogle Scholar
  19. Glatter O, Kratky O (1982) Small angle X-ray scattering. Academic Press, LondonGoogle Scholar
  20. Gruenzweig C (2009) Neutron grating interferometry for imaging magnetic structures in bulk ferromagnetic materials. Doctorate thesis ETH Zuerich, Swiss, Dissertation ETH Nr. 18612Google Scholar
  21. Gruenzweig C, David C, Bunk O, Dierolf M, Frei G, KÃijhne G, SchÃd’fer R, Pofahl S, RÃÿnnow HMR, Pfeiffer F (2008a) Bulk magnetic domain structures visualized by neutron dark-field imaging. Appl Phys Lett 93:112504CrossRefGoogle Scholar
  22. Gruenzweig C, David C, Bunk O, Dierolf M, Frei G, Kuehne G, Kohlbrecher J, Schaefer R, Lejcek P, RAynnow HMR, Pfeiffer F (2008b) Phys Rev Lett 101:025504CrossRefGoogle Scholar
  23. Halpern O, Johnson MH (1939) On the magnetic scattering of neutrons. Phys Rev 55:898zbMATHCrossRefGoogle Scholar
  24. Hansen P C and Saxild-Hansen M (2010). AIR Tools - A MATLAB Package of Algebraic Iterative Reconstruction Techniques: Version 1.0 for Matlab 7.8. Kgs. Lyngby, Denmark: Technical University of Denmark, DTU Informatics, Building 321. IMM-Technical Report-2010–15Google Scholar
  25. Hansen PC, Saxild-Hansen M (2012) AIR tools – a MATLAB package of algebraic iterative reconstruction methods. J Comput Appl Math 236:2167–2178MathSciNetzbMATHCrossRefGoogle Scholar
  26. Hayter JB, Mook HA (1989) Discrete thin-film multilayer design for X-ray and neutron supermirrors. J Appl Crystallogr 22:35CrossRefGoogle Scholar
  27. Herman GT (1980) Image reconstruction from projections in computer science and applied mathematics. Academic Press, New YorkGoogle Scholar
  28. Herzig C (1997) Experimentelle Realisierung von 3D-tomographien aus Neutronenradiogra-phien. Diploma thesis, supervisor W. Treimer, FB II, Technische Fachhochschule BerlinGoogle Scholar
  29. Hilger A (2010) Charakterisierung magnetischer Strukturen durch bildgebende Verfahren mit kalten Neutronen. Doctoral thesis, D 83, Technical University BerlinGoogle Scholar
  30. Hochhold M, Leeb H, Badurek G (1996) Tensorial neutron tomography: a first approach. J Magn Magn Mater 157–158:575CrossRefGoogle Scholar
  31. Iavarone M, Moore S, Fedor J, Ciocys S, Karapetrov G, Pearson J, Novosad V, Bader S (2014) Visualizing domain wall and reverse domain superconductivity. Nat Commun 5:4766CrossRefGoogle Scholar
  32. Jericha E, Szeywerth R, Leeb H, Badurek G (2007) Reconstruction techniques for tensorial neutron tomography. Physica B 397:159–161CrossRefGoogle Scholar
  33. Josic L, Lehmann E, Kaestner A (2011) Energy selective neutron imaging in solid state materials science. Nucl Instrum Methods Phys Res Sect A 651:166–170CrossRefGoogle Scholar
  34. Kaczmarz S (1937) Angenaeherte Aufloesung von Systemen linearer Gleichungen. Bulletin de l’Académie Polonaise des Sciences et Lettres A35:355–357Google Scholar
  35. Kak AC, Slaney M (1999) Principles of computerized tomographic imaging. IEEE Press, Inc, New YorkzbMATHGoogle Scholar
  36. Kardjilov N, Manke I, Strobl M, Hilger A, Treimer W, Meissner M, Krist T, Banhart J (2008) Nat Phys 4:399–403CrossRefGoogle Scholar
  37. Keimer B, Belk N, Birgeneau RJ, Cassanho A, Chen CY, Greven M, Kastner MA, Aharony A, Endoh Y, Erwin RW, Shirane G (1992) Magnetic excitations in pure, lightly doped, and weakly metallic La2CuO4. Phys Rev B 46:14034CrossRefGoogle Scholar
  38. Kirkwood HJ, Zhang SY, Tremsin AS, Korsunsky AM, Baimpas N, Abbey B (2015) Neutron strain tomography using the radon transform. Mater Today Proc 2S:S414–S423CrossRefGoogle Scholar
  39. Kraft J (1996) Konstruktion, Aufbau und Test einer Neutronenpolarisations- und analyseeinrich-tung. Diploma thesis, supervisor W. Treimer, FB II, Technische Fachhochschule BerlinGoogle Scholar
  40. Krist T, Kennedy SJ, Hick TJ, Mezei F (1998) Physica B 241–243:82–85Google Scholar
  41. Leeb H, Hochhold AM, Badurek G, Buchelt RJ, Schricker A (1998) Neutron magnetic tomography: a feasibility study. Aust J Phys 51:401–413CrossRefGoogle Scholar
  42. Leeb H, Szeywerth R, Jericha E, Badurek G (2005) Towards manageable magnetic field retrieval in bulk materials. Physica B 356:187–191CrossRefGoogle Scholar
  43. Maass P, Treimer W, Feye-Treimer U (1992) Tomographic Methods for 2D Reconstructions with the Double Crystal Diffractometer. IMPACT, 4(3):250–268zbMATHCrossRefGoogle Scholar
  44. Manke I, Kardjilov N, Hilger A, Strobl M, Dawson M, Banhart J (2009) Polarized neutron imaging at the CONRAD instrument at Helmholtz Centre Berlin. Nucl Instrum Methods Phys Res Sect A 605(1–2):26–29CrossRefGoogle Scholar
  45. Manke I, Kardjilov N, Schaefer R, Hilger A, Strobl M, Dawson M, GrAijnzweig C, Behr G, Hentschel M, David C et al (2010) Three-dimensional imaging of magnetic domains. Nat Commun 1:125CrossRefGoogle Scholar
  46. Messiah A (1999) Quantum mechanics. Dover Publishings, Inc, Mineola., Chapter IIzbMATHGoogle Scholar
  47. Mezei F (1972) Neutron spin echo: a new concept in polarized thermal neutron techniques. Z Physik 255(2):146–160CrossRefGoogle Scholar
  48. Mezei F (1976) Novel polarized neutron devices: supermirror and spin component amplifier. Commun Phys 1:81Google Scholar
  49. Múller KA, Bednorz JG (1987) The discovery of a class of high-temperature superconductors. Science 237:1133CrossRefGoogle Scholar
  50. Pfeiffer F, Weitkamp T, Bunk O, David C (2006) Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources. Nat Phys 2:258CrossRefGoogle Scholar
  51. Poole CP, Farach HA, Prozorov R (2007) Superconductivity, 2nd edn. Elsevier Ltd, p 53. Copyright 1995–2007Google Scholar
  52. Radon J (1917) Ueber die Bestimmung von Funktionen durch ihre Integralwerte lAd’ngs gewisser Mannig-faltigkeiten. Berichte Saechsischer Akademie Der Wissenschaften 29:262Google Scholar
  53. Rauch H, Werner SA (2000) Neutron interferometry in lessons in experimental quantum mechanics. Clarendon Press, Oxford, p 3Google Scholar
  54. Reimann T (2017) Vortex matter beyond SANS, Neutron studies of vortex structures covering a length scale of 0.01 to 10 μm. Doctorate thesis, Technische Universitaet Muenchen Physik-Department, Institut E21, Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II)Google Scholar
  55. Reimann T, Muehlbauer S, Schulz M, Betz B, Kaestner A, Pipich V, Boeni P, Gruenzweig C (2015) Visualizing the morphology of vortex lattice domains in a bulk type-II superconductor. Nat Commun 6:8813CrossRefGoogle Scholar
  56. Reimann T, Muehlbauer S, Horisberger M, Boeni P, Schulz M (2016) The new neutron grating interferometer at the ANTARES beamline: design, principles, and applications. J Appl Crystallogr 49:1488–1500CrossRefGoogle Scholar
  57. Rekveldt MT (1973) Study of ferromagnetic bulk domains by neutron depolarisation in three dimensions. Z Physik 259:391–410CrossRefGoogle Scholar
  58. Rekveldt MT (1976) Correlation in ferromagnetic domain structures studied by means of the neutron depolarization technique. J Magn Magn Mater 1:342CrossRefGoogle Scholar
  59. Rosenfeld A, Kak AC (1982) Digital picture processing, computer science and applied mathematics. Academic Press Inc., New YorkzbMATHGoogle Scholar
  60. Sabine TM, Bertram WK (1999) The use of multiple-scattering data to enhance small-angle neutron scattering experiments. Acta Crystallogr A 55:500CrossRefGoogle Scholar
  61. Sales M, Strobl M, Shinohara T, Tremsin A, Theil Kuhn L, Lionheart WRB, Desai NM, Dahl AB, Schmidt S (2018) Three dimensional polarimetric neutron tomography of magnetic fields. Sci Rep 8:2214.  https://doi.org/10.1038/s41598-018-20461-7CrossRefGoogle Scholar
  62. Santisteban JR, Edwards L, Steuwer A, Withers PJ (2001) Time-of-flight neutron transmission diffraction. J Appl Crystallogr 34:289–297CrossRefGoogle Scholar
  63. Santisteban JR, Edwards L, Fizpatrick ME, Steuwer A, Withers PJ (2002) Engineering applications of Bragg-edge neutron transmission. Appl Phys A Mater Sci Process 74(Suppl):S1433–S1436.  https://doi.org/10.1007/s003390101241CrossRefGoogle Scholar
  64. Schaerpf O (1989) Comparison of theoretical and experimental behaviour of supermirrors and discussion of limitations. Physica B: Condensed Matter, Volumes 156–157, January–February, 631:638Google Scholar
  65. Schaerpf O. The spin of the neutron as a measuring probe.Google Scholar
  66. Schaper J (1996) Untersuchungen zum Refraktionskontrast bei Tomographien mit themischen Neutronen. Diploma thesis, supervisor W. Treimer, FB II, Technische Fachhochschule BerlinGoogle Scholar
  67. Schillingen B (1996) 3D computer tomography with thermal neutrons at FRM garching. J Neutron Res 4:57–63CrossRefGoogle Scholar
  68. Schillinger B, Gebhard R, Haas B, Ludwig W, Rausch C, Wagner U (1996) 3D neutron tomography in material testing and archaeology. In: Proceedings of the 5th world conference on neutron radiography, Berlin, printed 1997, pp 688–693Google Scholar
  69. Schulz M (2010) Radiography with polarised neutrons. Doctorate thesis TU Muenchen, Physik Department E21 (Lehrstuhl fuer Experimentalphysik III)Google Scholar
  70. Schulz M, Neubauer A, Masalovich S, Muehlbauer M, Calzada E, Schillinger B, Pfeiderer C, Boeni P (2010a) Towards a tomographic reconstruction of neutron depolarization data. J Phys Conf Ser 211:012025CrossRefGoogle Scholar
  71. Schulz M, Neubauer A, Muehlbauer M, Calzada E, Schillinger B, Pfeiderer C, Boeni P (2010b) Polarized neutron radiography with a periscope. J Phys Conf Ser 200:112009CrossRefGoogle Scholar
  72. Sears VF (1992) Neutron scattering lengths and cross sections. Neutron News 3(3):26–37.  https://doi.org/10.1080/10448639208218770MathSciNetCrossRefGoogle Scholar
  73. Shi X, Lin PV, Sasagawa T, Dobrosavljević V, Popović D (2014) Two-stage magnetic-field-tuned superconductor insulator transition in underdoped La2−xSrxCuO4. Nat Phys 10:437CrossRefGoogle Scholar
  74. Shinohara T, Sakai K, Ohi M, Kai T, Harada M, Oikawa K, Maekawa F, Suzuki J, Oku T, Takata S, Aizawa K, Arai M, Kiyanagi Y (2011) Quantitative magnetic field imaging by polarized pulsed neutrons at J-PARC. Nucl Instrum Methods Phys Res A 651:121–l25CrossRefGoogle Scholar
  75. Shull CG, Wollan EO, Koehler WC (1951) Neutron scattering and polarization by ferromagnetic materials. Phys Rev 84(5):912–921CrossRefGoogle Scholar
  76. Strobl M (2014) General solution for quantitative dark-field contrast imaging with grating interferometers. Sci Rep 4:7243CrossRefGoogle Scholar
  77. Strobl M, Treimer W, Hilger A (2004a) Small angle scattering signals for (neutron) computerized tomography. Appl Phys Lett 85:448Google Scholar
  78. Strobl M, Treimer W, Hilger A (2004b) First realisation of a three-dimensional refraction contrast computerised neutron tomography. Nucl Instrum Methods Phys Res B 222:653CrossRefGoogle Scholar
  79. Strobl M, Treimer W, Walter P, Keil S, Manke I (2007) Magnetic field induced differential neutron phase contrast imaging. Appl Phys Lett 91:254104CrossRefGoogle Scholar
  80. Strobl M, Grünzweig C, Hilger A, Manke I, Kardjilov N, David C, Pfeiffer F (2008a) Neutron dark-field tomography. Phys Rev Lett 101:123902CrossRefGoogle Scholar
  81. Surkau R, Becker J, Ebert M, Grossmann T, Heil W, Hofmann D, Humblot H, Leduc M, Otten EW, Rohe D, Siemensmeyer K, Steiner M, Tasset F, Trautmann N (1997) Realization of a broad band neutron spin filter with compressed, polarized 3He gas. Nucl Instrum Methods Phys Res A 384(2–3):444–450CrossRefGoogle Scholar
  82. Takagi H, Ido T, Ishibashi S, Uota M, Uchida S, Tokura Y (1989) Superconductor-to-nonsuperconductor transition in (La1−xSrx)2CuO4 as investigated by transport and magnetic measurements. Phys Rev B 40:2254CrossRefGoogle Scholar
  83. Tarascon J-M, Greene L, McKinnon W, Hull G, Geballe T (1987) Superconductivity at 40 K in the oxygen-defect perovskites La2−xSrxCuO4−y. Science 235:1373CrossRefGoogle Scholar
  84. Treimer W (1998) On double crystal diffractometry. Cryst Res Technol 33:643CrossRefGoogle Scholar
  85. Treimer W (2014) Radiography and tomography with polarized neutrons. J Magn Magn Mater 350:188–198CrossRefGoogle Scholar
  86. Treimer W, Feye-Treimer U (1998) Two-dimensional reconstruction of small angle scattering pattern from rocking curves. Physica B 241–243:128–1230Google Scholar
  87. Treimer W, Feye-Treimer U (2011) On coherence in neutron imaging. Nucl Instrum Methods Phys Res A 651:117–120CrossRefGoogle Scholar
  88. Treimer W, Maass P, Strothmann H, Feye-Treimer U (1991) High-resolution neutron small-angle scattering with a double-crystal diffractometer and 2D reconstruction. Physica B 174:532–536zbMATHCrossRefGoogle Scholar
  89. Treimer W, Höfer A, Strothmann H (1997) The use of a multi-double-crystal diffractometer to investigate nickel domains. J Appl Crystallogr 30:849–853CrossRefGoogle Scholar
  90. Treimer W, Feye-Treimer U, Herzig C (1998) On neutron tomography. Physica B 241–243:1297–1203Google Scholar
  91. Treimer W, Strobl M, Hilger A, Seifert C, Feye-Treimer U (2003) Refraction as imaging signal for computerized (neutron) tomography. Appl Phys Lett 83:389CrossRefGoogle Scholar
  92. Treimer W, Hilger A, Kardjilov N, Strobl M (2005a) Review about old and new imaging signals for neutron computerized tomography. Nucl Instrum Methods Phys Res Sect A 542(2005):367–375CrossRefGoogle Scholar
  93. Treimer W, Kardjilov N, Feye-Treimer U, Hilger A, Manke I, Strobl M (2005b) Absorption- and phase-based imaging signals for neutron tomography. In: Kramer B (ed) Advances in solid state physics, vol 45. Springer Verlag, Berlin/Heidelberg/New York, pp 407–420. ISSN 1438-4329Google Scholar
  94. Treimer W, Kardjilov N, Feye-Treimer U, Hilger A, Manke I, Strobl M (2005c) Adv Solid State Phys 45. Ed. Bernhard Kramer, Springer Verlag, pp 407–420Google Scholar
  95. Treimer W, Strobl M, Hilger A, Peschke HJ (2005d) Neutron tomography using small angle scattering data. IEEE 52(1):386–388Google Scholar
  96. Treimer W, Seidel SO, Ebrahimi O (2010) Neutron tomography using a crystal monochromator. Nucl Instrum Methods Phys Res A 621:502–505CrossRefGoogle Scholar
  97. Treimer W, Ebrahimi O, Karakas N, Seidel SO (2011) PONTO- an instrument for imaging with polarized neutrons. Nucl Instrum Methods Phys Res A 651:53–56.  https://doi.org/10.1016/j.nima.2011.01.009CrossRefGoogle Scholar
  98. Treimer W, Ebrahimi O, Karakas N (2012a) Observation of partial Meissner effect and flux pinning in superconducting lead containing non-superconducting parts. Appl Phys Lett 101:162603-1–162603-4CrossRefGoogle Scholar
  99. Treimer W, Ebrahimi O, Karakas N, Prozorov R (2012b) Polarized neutron imaging and three-dimensional calculation of magnetic flux trapping in bulk of superconductors. Phys Rev B 85(18):184522-1–184522-9CrossRefGoogle Scholar
  100. Treimer W, Ebrahimi O, Karakas N (2014) PONTO: an instrument for high resolution radiography and tomography with polarized neutrons. Neutron News 25(2):15–18.  https://doi.org/10.1080/10448632.2014.902698CrossRefGoogle Scholar
  101. Tremsin AS, McPhate JB, Vallerga JV, Siegmund OHW, Feller WB, Lehmann E, Butler LG, Dawson M (2011) High-resolution neutron microtomography with noiseless neutron counting detector. Nucl Instrum Methods Phys Res A 652:400–403CrossRefGoogle Scholar
  102. Van Hemelryck Tessa, Wuyts Sarah, Goossens Maggie, Batenburg Kees, Joost, Sijbers Jan (2007) The implementation of iterative reconstruction algorithms in Matlab. Masters thesis, University College of AntwerpGoogle Scholar
  103. Withers PJ, Turski M, Edwards L, Bouchard PJ, Buttle DJ (2008) Recent advances in residual stress measurement. Int J Press Vessel Pip 85:118–127CrossRefGoogle Scholar
  104. Woracek R (2015) Energy selective neutron imaging for the characterization of polycrystalline materials. PhD dissertation, University of Tennessee. http://trace.tennessee.edu/utkgraddiss/3375
  105. Woracek R, Penumadu D, Kardjilov N, Hilger A, Strobl M, Wimpory RC, Manke I, Banhart J (2011) Neutron Bragg-edge-imaging for strain mapping under in situ tensile loading. J Appl Phys 109:093506CrossRefGoogle Scholar
  106. Woracek R, Penumadu D, Kardjilov N, Hilger A, Boin M, Banhart J, Manke I (2015) Neutron Bragg edge tomography for phase mapping. Phys Procedia 69:227–236CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department Mathematics-Physics-ChemistryUniversity of Applied Sciences Beuth Hochschule für Technik BerlinBerlinGermany

Section editors and affiliations

  • Nathan Ida
    • 1
  • Norbert Meyendorf
    • 2
  1. 1.Department of Electrical and Computer EngineeringUniversity of AkronAkronUSA
  2. 2.Chemical Materials and Bio EngineeringUniversity of DaytonDaytonUSA

Personalised recommendations