Nonlinear Acoustics

  • Younho ChoEmail author
  • Weibin Li
Reference work entry


Early detection and continuous tracking of material micro-damages have been one of the most demanding techniques in industries. Due to the sensitivity of acoustic nonlinearity to micro-damage, the nonlinear ultrasonic technique has been explored as a promising tool for early detection of micro-damages. In this chapter, we breifly introduce the earlier efforts and recent development of the nonlinear acoustics and their applications for nondestructive testing and evaluation (NDT& E). Some advanced techniques based on measure of nonlinear acoustics for NDT& E are also introduced as potential and attractive means.


  1. Bentahar M, El Agra H, El Guerjouma R, Griffa M, Scalerandi M (2006) Hysteretic elasticity in damaged concrete: quantitative analysis of slow and fast dynamics. Phys Rev B 73(1):014116CrossRefGoogle Scholar
  2. Bermes C, Kim JY, Qu J, Jacobs LJ (2007) Experimental characterization of material nonlinearity using Lamb waves. Appl Phys Lett 90(2):1–4CrossRefGoogle Scholar
  3. Campos-Pozuelo C, Vanhille C, Gallego-Juárez JA (2006) Comparative study of the nonlinear behavior of fatigued and intact samples of metallic alloys. IEEE Trans Ultrason Ferroelectr Freq Control 53(1):175–184CrossRefGoogle Scholar
  4. Cantrell JH, Yost WT (2001) Nonlinear ultrasonic characterization of fatigue microstructures. Int J Fatigue 23:S487–S490CrossRefGoogle Scholar
  5. Chomas J, Dayton P, May D, Ferrara K (2002) Nondestructive subharmonic imaging. IEEE Trans Ultrason Ferroelectr Freq Control 49(7):883–893CrossRefGoogle Scholar
  6. Croxford AJ, Wilcox PD, Drinkwater BW, Nagy PB (2009) The use of non-collinear mixing for nonlinear ultrasonic detection of plasticity and fatigue. J Acoust Soc Am 126:117–122CrossRefGoogle Scholar
  7. de Lima WJN, Hamilton MF (2003) Finite-amplitude waves in isotropic elastic plates. J Sound Vib 265(4):819–839CrossRefGoogle Scholar
  8. Demcenko A, Akkerman R, Nagy PB (2012) Non-collinear wave mixing for nonlinear ultrasonic detection of physical ageing in PVC. NDT&E Int 49(1):34–39CrossRefGoogle Scholar
  9. Deng M (1999) Cumulative second-harmonic generation of Lamb-mode propagation in a solid plate. J Appl Phys 85(6):3051–3058CrossRefGoogle Scholar
  10. Deng M, Pei J (2007) Assessment of accumulated fatigue damage in solid plates using nonlinear Lamb wave approach. Appl Phys Lett 90:121902CrossRefGoogle Scholar
  11. Donskoy DM, Sutin AM (1998) Vibro-acoustic modulation nondestructive evaluation technique. J Intell Mater Syst Struct 9:765–771CrossRefGoogle Scholar
  12. Donskoy D, Sutin A, Ekimov A (2001) Nonlinear acoustic interaction on contact interfaces and its use for nondestructive testing. NDT & E Int 34(4):231–238CrossRefGoogle Scholar
  13. Eiras JN, Kundu T, Popovics J, Monzo J, Paya J (2014) Non-classical nonlinear feature extraction from standard resonance vibration data for damage detection. J Acoust Soc Am – Express Lett 135:EL82–EL87CrossRefGoogle Scholar
  14. Favrie N, Lombard B, Payan C (2015) Fast and slow dynamics in a nonlinear elastic bar excited by longitudinal vibrations. Wave Motion 56:221–238MathSciNetCrossRefGoogle Scholar
  15. Goldberg ZA (1956) On the propagation of plane waves of finite amplitude. Sov Phys (Acoustics) 2:346–352Google Scholar
  16. Guyer RA, Johnson PA (1999) Nonlinear mesoscopic elasticity: evidence for a new class of materials. Phys Today 52(4):30–36CrossRefGoogle Scholar
  17. Guyer RA, McCall KR, Boitnott GN (1995) Hysteresis, discrete memory, and nonlinear wave propagation in rock. Phys Rev Lett 74:3491–3494CrossRefGoogle Scholar
  18. Guyer RA, McCall KR, Van Den Abeele K (1998) Slow elastic dynamics in a resonant bar of rock. Geophys Res Lett 25:1585–1588CrossRefGoogle Scholar
  19. Hamilton MF, Blackstock DT (1998) Nonlinear acoustics. Academic, LondonGoogle Scholar
  20. Herrmann J, Kim J, Jacobs LJ, Qu J, Littles JW, Savage M (2006a) Assessment of material damage in a nickel-base superalloy using nonlinear Rayleigh surface waves. J Appl Phys 99:124913CrossRefGoogle Scholar
  21. Herrmann J, Kim J, Jacobs LJ, Qu J, Littles JW (2006b) Assessment of material damage in a nickel-based superalloy using nonlinear Rayleigh surface wave. J Appl Phys 99(12):1497–1488CrossRefGoogle Scholar
  22. Hess P, Lomonosov AM, Mayer AP (2014) Laser based linear and nonlinear guided elastic waves at surfaces (2D) and wedges (1D). Ultrasonics 54:39–55CrossRefGoogle Scholar
  23. Hikata A, Elbaum C (1966) Generation of ultrasonic second and third harmonics due to dislocations. Phys Rev 144:469–477CrossRefGoogle Scholar
  24. Hilloulin B, Abraham O, Loukili A, Durand O, Tournat V (2014) Small crack detection in cementitious materials using nonlinear coda wave modulation. NDT & E Int 68:98–104CrossRefGoogle Scholar
  25. Hurley DC, Fortunko CM (1997) Determination of the nonlinear ultrasonic parameter using a Michelson interferometer. Meas Sci Technol 8:634–642CrossRefGoogle Scholar
  26. Jhang KY (2000) Applications of nonlinear ultrasonics to the NDE of material degradation. IEEE Trans Ultrason Ferroelectr Freq Control 47:540–548CrossRefGoogle Scholar
  27. Jhang KY, Kim KC (1999) Evaluation of material degradation using nonlinear acoustic effect. Ultrasonics 37:39–44CrossRefGoogle Scholar
  28. Jia X, de Billy M (1992) Observation of the dispersion behavior of surface acoustic waves in a wedge waveguide by laser ultrasonics. Appl Phys Lett 61:2970–2972CrossRefGoogle Scholar
  29. Johnson PA, Rasolofosaon PNJ (1996) Resonance and elastic nonlinear phenomena in rock. J Geophys Res 101(B5):553–564CrossRefGoogle Scholar
  30. Johnson PA, Sutin A (2005) Slow dynamics and anomalous nonlinear fast dynamics in diverse solids. J Acoust Soc Am 117:124–130CrossRefGoogle Scholar
  31. Kim J-Y, Baltazar A, Hu JW, Rokhlin SI (2006a) Hysteretic linear and nonlinear acoustic responses from pressed interfaces. Int J Solids Struct 43(21):6436–6452CrossRefGoogle Scholar
  32. Kim JY, Qu J, Jacobs LJ, Littles JW, Savage MF (2006b) Acoustic nonlinearity parameter due to microplasticity. J Nondestruct Eval 25:28–36CrossRefGoogle Scholar
  33. Klepa A, Staszewski WJ, Jenal RB, Szwedo M, Iwaniec J (2012) Nonlinear acoustics for fatigue crack detection – experimental investigations of vibro-acoustic wave modulations. Struct Health Monit 11:197–211CrossRefGoogle Scholar
  34. Kober J, Prevorovsky Z (2014) Theoretical investigation of nonlinear ultrasonic wave modulation spectroscopy at crack interface. NDT & E Int 61:10–15CrossRefGoogle Scholar
  35. Kuvshinov B, Smit T, Campman XH (2013) Nonlinear interaction of elastic waves in rocks. Geophys J Int 194:1920–1940CrossRefGoogle Scholar
  36. Landau LD, Lifshitz EM (1970) Theory of elasticity. Oxford: Oxford University PressGoogle Scholar
  37. Li W, Cho Y (2014) Thermal fatigue damage assessment in an isotropic pipe using nonlinear ultrasonic guided waves. Exp Mech 54(8):1309–1318CrossRefGoogle Scholar
  38. Li W, Cho Y (2016) Combination of nonlinear ultrasonics and guided wave tomography for imaging the micro-defects. Ultrasonics 65:87–95CrossRefGoogle Scholar
  39. Li W, Cho Y, Achenbach JD (2012a) Detection of thermal fatigue in composites by second harmonic Lamb waves. Smart Mater Struct 21(8):085019CrossRefGoogle Scholar
  40. Li W, Cho Y, Hyun S (2012b) Characteristics of ultrasonic nonlinearity by thermal fatigue. Int J Precis Eng Manuf 13(6):935–940CrossRefGoogle Scholar
  41. Li W, Cho Y, Achenbach JD (2013) Assessment of heat treated Inconel X-750 alloy by nonlinear ultrasonics. Exp Mech 53(5):775–781CrossRefGoogle Scholar
  42. Li W, Deng M, Xiang Y (2017) Review on the second harmonic generation of ultrasonic guided waves in solid media (I): theoretical analyses. Chin Phys B 26:114302CrossRefGoogle Scholar
  43. Liu Y, Khajeh E, Lissenden CJ, Rose JL (2013) Interaction of torsional and longitudinal guided waves in weakly nonlinear circular cylinders. J Acoust Soc Am 133:2541–2553CrossRefGoogle Scholar
  44. Liu P, Sohn H, Kundu T, Yang S (2014) Noncontact detection of fatigue cracks by laser nonlinear wave modulation spectroscopy (LNWMS). NDT & E Int 66:106–116CrossRefGoogle Scholar
  45. Matlack KH, Kim J, Jacobs LJ, Qu J (2015) Review of second harmonic generation measurement techniques for material sate determination in metals. J Nondestruct Eval 34:273CrossRefGoogle Scholar
  46. Moreau A (1995) Detection of acoustic second harmonics in solids using a heterodyne laser interferometer. J Acoust Soc Am 98:2745CrossRefGoogle Scholar
  47. Muller M, Sutin A, Guyer R, Talmant M, Laugier P, Johnson P (2005) Nonlinear resonant ultrasound spectroscopy (NRUS) applied to damage assessment in bone. J Acoust Soc Am 118(6):3946–3952CrossRefGoogle Scholar
  48. Nagy PB (1998) Fatigue damage assessment by nonlinear ultrasonic materials characterization. Ultrasonics 36(1–5):375–381CrossRefGoogle Scholar
  49. Nazarov VE, Radostin AV (2015) Nonlinear acoustic waves in micro-inhomogeneous solids. London: WileyGoogle Scholar
  50. Nazarov VE, Radostin AV, Ostrovsky LA, Soustova IA (2003) Wave processes in media with hysteretic nonlinearity: part 2. Acoust Phys 49(4):444–448CrossRefGoogle Scholar
  51. Ohara Y, Mihara T, Sasaki R, Ogata T, Yamamoto S, Kishimoto Y, Yamanaka K (2007) Imaging of closed crack using nonlinear response of elastic waves at subharmonic frequency. Appl Phys Lett 90:011902CrossRefGoogle Scholar
  52. Ohara Y, Endo H, Mihara T, Yamanaka K (2009) Ultrasonic measurement of closed stress corrosion crack depth using subharmonic phased array. Jpn J Appl Phys 48:07GD01Google Scholar
  53. Padmore TC, Stegeman GI (1976) Surface-wave nonlinearities: nonlinear bulk wave generation by two oppositely directed collinear surface waves. J Appl Phys 47(4):1209–1228CrossRefGoogle Scholar
  54. Pecorari C, Mendelsohn DA (2014) Forced nonlinear vibrations of a one-dimensional bar with arbitrary distributions of hysteretic damage. J Nondestruct Eval 33(2):239–251CrossRefGoogle Scholar
  55. Pruell C, Kim JY, Qu J, Jacobs L (2007) Evaluation of plasticity driven material damage using Lamb waves. Appl Phys Lett 91:231911CrossRefGoogle Scholar
  56. Qu J, Jacobs LJ, Nagy PB (2011) On the acoustic-radiation-induced strain and stress in elastic solids with quadratic nonlinearity (L). J Acoust Soc Am 129(6):3449–3452CrossRefGoogle Scholar
  57. Read TA (1940) The internal friction of single metal crystals. Phys Rev 58:371–380CrossRefGoogle Scholar
  58. Rischbieter F (1967) Measurement of the nonlinear sound response of aluminum with the aid of Rayleigh waves. Acta Acoust United Acust 18(2):109–112Google Scholar
  59. Rushchitsky JJ (2014) Nonlinear elastic waves in materials. London: SpringerGoogle Scholar
  60. Scruby CB, Drain LE (1990) Laser ultrasonics: techniques and applications. Adam Hilger, BristolGoogle Scholar
  61. Solodov IY (1998) Ultrasonics of non-linear contacts: propagation, reflection and NDE-applications. Ultrasonics 36:383–390CrossRefGoogle Scholar
  62. Solodov IY, Korshak BA (2002) Instability, chaos, and “memory” in acoustic-wave-crack interaction. Phys Rev Lett 88:014303CrossRefGoogle Scholar
  63. Srivastava AF, di Scalea L (2009) On the existence of antisymmetric or symmetric Lamb waves at nonlinear higher harmonics. J Sound Vib 323:932–943CrossRefGoogle Scholar
  64. Stratoudaki T, Ellwood R, Sharples S, Clark M, Somekh MG (2011) Measurement of materials nonlinearity using surface acoustic wave parametric interaction and laser ultrasonics. J Acoust Soc Am 129:1721CrossRefGoogle Scholar
  65. Sugawara A, Jinno K, Ohara Y, Yamanaka K (2015) Closed-crack imaging and scattering behavior analysis using confocal subharmonic phased array. Jpn J Appl Phys 54:07HC08CrossRefGoogle Scholar
  66. Ten Cate JA, Shankl TJ (1996) Slow dynamics in the nonlinear elastic response of Berea sandstone. Geophys Res Lett 23:3019–3022CrossRefGoogle Scholar
  67. Van Den Abeele KE-A, Johnson PA, Sutin A (2000a) Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part I: nonlinear wave modulation spectroscopy (NWMS). Res Nondestruct Eval 12:17–30CrossRefGoogle Scholar
  68. Van Den Abeele KE, Carmeliet J, Ten Cate JA, Johnson PA (2000b) Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part II: single-mode nonlinear resonance acoustic spectroscopy. Res Nondestruct Eval 12:31–42CrossRefGoogle Scholar
  69. Zarembo LK, Krasil’nikox VA, Shkol’nik IE (1989) Nonlinear acoustics in a problem of diagnosing the strength of solids. Probl Prochnosti 11:86–92Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Mechanical EngineeringPusan National UniversityBusanSouth Korea
  2. 2.School of Aerospace EngineeringXiamen UniversityXiamenChina

Section editors and affiliations

  • Ida Nathan
    • 1
  • Norbert Meyendorf
    • 2
  1. 1.Department of Electrical and Computer EngineeringUniversity of AkronAkronUSA
  2. 2.Center for Nondestructive EvaluationIowa State UniversityAmesUSA

Personalised recommendations