Terahertz Techniques in NDE

  • Joachim JonuscheitEmail author
Reference work entry


So far, terahertz measurement technology has rarely been used in industry. This book chapter presents therefore the underlying technologies, the resulting possibilities and exemplary applications.

The introduction describes the basic properties of terahertz systems and the advantages of terahertz technology over established techniques such as infrared, X-rays and ultrasound.

The two industrially relevant terahertz techniques, time domain spectrometer and FMCW system, are described in detail. In addition, the metrological basics for their main applications are introduced.

Imaging is required in many applications. Different approaches are presented.

Before the chapter concludes with an outlook on future applications, current application examples are discussed. This concerns applications in the fields of coating thickness measurement, safety, materials research, testing of lightweight materials and inline testing.

An extensive reference list provides a deeper insight into the topics addressed.


  1. Baccouche B, Agostini P, Mohammadzadeh S, Kahl M, Weisenstein C, Jonuscheit J, Keil A, Löffler T, Sauer-Greff W, Urbansky R, Bolívar PH, Friederich F (2017) Three-dimensional terahertz imaging with sparse multistatic line arrays. IEEE J Sel Top Quantum Electron 234:8501411Google Scholar
  2. Böhmler M, Huber A, Eisele M (2016) THz nano-spectroscopy with 25 nm spatial and 10 f. time resolution. In: The 41st international conference on infrared, millimeter, and terahertz waves (IRMMW-THz) 16502507Google Scholar
  3. Bründermann E, Hübers H-W, Kimmitt MFG (eds) (2012) Terahertz techniques. Springer, Berlin/HeidelbergGoogle Scholar
  4. Catapano I, Soldovieri F, Mazzola L, Toscano C (2017) THz imaging as a method to detect defects of aeronautical coating. J Infrared Millimeter Terahertz Waves 3810:1264–1277CrossRefGoogle Scholar
  5. Chen J, Wang J, Cui H (2017) Nondestructive evaluation of glass fiber honeycomb sandwich panel using reflective terahertz imaging. J Sandw Struct Mater 0:1–13. Scholar
  6. Consolino L, Bartalini S, de Natala P (2017) Terahertz frequency metrology for spectroscopic applications: a review. J Infrared Millimeter Terahertz Waves 3811:1289–1315CrossRefGoogle Scholar
  7. Cristofani E, Friederich F, Wohnsiedler S, Beigang R (2014) Non-destructive testing potential evaluation of a THz frequency-modulated continuous-wave imager for composite materials inspection. Opt Eng 53(03). Scholar
  8. Dietz RJB, Vieweg N, Puppe T, Zach A, Globisch B, Göbel T, Leisching T, Schell M (2014) All fiber-coupled THz-TDS system with kHz measurement rate based on electronically controlled optical sampling. Opt Lett 3922:6482–6485CrossRefGoogle Scholar
  9. Dong J, Kim B, Locquet A, McKeon P, Declerq N, Citrin DS (2015) Nondestructive evaluation of forced delamination in glass fiber-reinforced composites by terahertz and ultrasonic waves. Compos Part B Eng 79:667–675CrossRefGoogle Scholar
  10. Dong J, Wu X, Locquet A, Citrin DS (2017) Terahertz super-resolution stratigraphic characterization of multi-layered structures using spares deconvolution. IEEE Trans Terahertz Sci Technol 7:260–267CrossRefGoogle Scholar
  11. Fetterman MR, Grata JA, Dinu R, Koenig M, Visnansky AD, Kiser WL (2007) Electro-optic polymer modulators as passive mm wave detectors. Proc SPIE 6472.
  12. Friederich F, von Spiegel W, Bauer M, Meng F, Thomson MD, Boppel S, Lisauskas A, Hils B, Krozer V, Keil A, Loffler T, Henneberger R, Huhn AK, Spickermann G, Bolivar PH, Roskos HG (2011) THz active imaging systems with real-time capabilities. IEEE Trans Terahertz Sci Technol 1:183–200CrossRefGoogle Scholar
  13. Friederich F, May KH, Baccouche B, Matheis C, Bauer M, Jonuscheit J, Moor M, Denman D, Bramble J, Savage N (2018) Terahertz radome inspection. Photonics. Scholar
  14. HÜBNER Photonics. Accessed 29 May 2018
  15. Jaeschke T, Bredendiek C, Pohl N (2013) A 240 GHz ultra-wideband FMCW radar system with on-chip antennas for high resolution radar imaging. IEEE MTT-S Int Microw Symp.
  16. Jonuscheit J (2014a) Zerstörungsfreie Analyse – Schichtdicken von Mehrsichtsystemen online messen. QZ Jahrg 59:94–96Google Scholar
  17. Jonuscheit J (2014b) Strukturanalyse mittels Terahertz. GIT Labor Fachz 5:27–29Google Scholar
  18. Kaimal H, Devi N, Ray S, Rajagopal P, Balasubramanian K, Pesala B (2018) Non-destructive evaluation of GFRP-wood sandwich structure composite using terahertz imaging. Proc SPIE 10531.
  19. Klatt G, Nagel M, Dekory T, Bartels A (2009) Rapid and precise read-out of terahertz sensors by high-speed asynchronous optical sampling. Electron Lett 45:310–311CrossRefGoogle Scholar
  20. Kolano M, Gräf B, Weber S, Molter D, van Freymann G (2018) Single-laser polarization-controlled optical sampling system for THz-TDS. Opt Lett 436:1351–1354CrossRefGoogle Scholar
  21. Liewald C, Mastel S, Hesler J, Huber AJ, Hillenbrand R, Keilmann F (2018) All-electronic terahertz nanoscopy. Optica 5(2):159–163CrossRefGoogle Scholar
  22. Lisauskas A, Pfeiffer U, Öjefors E, Bolìvar PH, Glaab D, Roskos HG (2009) Rational design of high-responsivity detectors of terahertz radiation based on distributed self-mixing in silicon field-effect transistors. J Appl Phys 105. Scholar
  23. Luukanen A, Grönberg L, Helistö P, Penttilä JS, Seppä H, Sipola H, Dietlein CR, Grossman EN (2007) Passive Euro-American terahertz camera (PEAT-CAM): passive indoors THz imaging at video rates for security applications. Proc SPIE 6548.
  24. Martin CA, Lovberg JA, Dean WH, Ibrahim E (2007) High resolution passive millimeter-wave security screening using few amplifiers. Proc SPIE 6548.
  25. May T, Heinz E, Peiselt K, Zieger G, Born D, Zakosarenko V, Brömel A, Anders S, Meyer H-G (2013) Next generation of a sub-millimetre wave security camera utilising superconducting detectors. IOP Publ J Instrum 8. Scholar
  26. Mittleman D (ed) (2003) Sensing with terahertz radiation. Springer, Berlin/HeidelbergGoogle Scholar
  27. Naftaly M (ed) (2015) Terahertz metrology. Artech House Publishers, Boston/LondonGoogle Scholar
  28. Nagatsuma T, Ducournau G, Renaud CC (2016) Advances in terahertz communications accelerated by photonics. Nat Photonics 10:371–379. Scholar
  29. Öjefors E, Lisauskas A, Glaab D, Roskos HG, Pfeiffer UR (2009) Terahertz imaging detectors in CMOS technology. J Infrared Millimeter Terahertz Waves 30:1269–1280. Scholar
  30. Ortolani M, Lee JS, Schade U, Hübers H-W (2008) Surface roughness effects on the terahertz reflectance of pure explosive materials. Appl Phys Lett 93:081906CrossRefGoogle Scholar
  31. Ospald F, Zouathi W, Beigang R, Matheis C, Jonuscheit J, Recur B, Guillet J-P, Mounaix P, Vleugels W, Bosom PV (2014) Aeronautics composite material inspection with a terahertz time-domain spectroscopy system. Opt Eng SPIE 533:031208Google Scholar
  32. Pfeiffer T, Weber S, Klier J, Bachtler S, Molter D, Jonuscheit J, von Freymann G (2018) Terahertz thickness determination with interferometric vibration correction for industrial applications. Opt Express 2610:12558–12568. Scholar
  33. Reid CB, Pickwell-MacPherson E, Laufer JG, Gibson AP, Hebden JC, Wallace VP (2010) Accuracy and resolution of THz reflection spectroscopy for medical imaging. IOP Publ 5516:4825–4838Google Scholar
  34. Shen YC, Lo T, Taday PF, Cole BF, Tribe WR, Kemp MC (2005) Detection and identification of explosives using terahertz pulsed spectroscopic imaging. Appl Phys Lett 86:241116. Scholar
  35. Sibik J, Zeitler JA (2016) Direct measurement of molecular mobility and crystallization of amorphous pharmaceuticals using terahertz spectroscopy. Adv Drug Deliv Rev 100:147–157CrossRefGoogle Scholar
  36. Skolnik M (2008) Radar handbook, 3rd edn. McGraw-Hill Education, New YorkGoogle Scholar
  37. Stoik CD, Bohn MJ, Blackshire JL (2008) Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy. Opt Express 162:17039–17051CrossRefGoogle Scholar
  38. Tasseva J, Bartolini P, Tascin A, Striova J (2017) Thin layered drawing media probed by THz time-domain spectroscopy. Analyst 142:42–47. Scholar
  39. Tessmann A, Leuther A, Massler H, Hurm V, Kuri M, Zink M, Riessle M, Stulz HP, Schlechtweg M, Ambacher O (2014) A 600 GHz low-noise amplifier module. Int Microw Symp.
  40. Theuer M, Harsha SS, Molter D, Torosyan G, Beigang R (2011) Terahertz time-domain spectroscopy of gases, liquids, and solids. ChemPhysChem 12:2695–2705. Scholar
  41. Wallace VP, MacPherson E, Zeitler JA, Reid C (2008) Three-dimensional imaging of optically opaque materials using nonionizing terahertz radiation. J Opt Soc Am A 2512:3120–3133CrossRefGoogle Scholar
  42. Wilk R, Hochrein T, Koch M, Mei M, Holzwarth R (2011) OSCAT: novel technique for time-resolved experiments without moveable optical delay lines. J Infrared Millimeter Terahertz Waves 325:596–602CrossRefGoogle Scholar
  43. Yasuda Y, Yasui T, Araki T, Abraham E (2006) Real-time two-dimensional terahertz tomography of moving objects. Opt Commun 267:128–126CrossRefGoogle Scholar
  44. Yasui T, Yasuda T, Sawanaka K, Araki T (2005) Terahertz paintmeter for noncontact monitoring of thickness and drying progress in paint film. Appl Opt 4432:6849–6856CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Fraunhofer Institute for Industrial Mathematics ITWMKaiserslauternGermany

Section editors and affiliations

  • Ida Nathan
    • 1
  • Norbert Meyendorf
    • 2
  1. 1.Department of Electrical and Computer EngineeringUniversity of AkronAkronUSA
  2. 2.Center for Nondestructive EvaluationIowa State UniversityAmesUSA

Personalised recommendations