Micromagnetic Materials Characterization

  • Klaus SzielaskoEmail author
  • Ralf Tschuncky
Reference work entry


Micromagnetic materials characterization is receiving growing industrial acceptance and application due to significant improvements in sensor technology, data processing, and ease of use. The fundamental similarity between the interaction of microstructure with dislocations and magnetic domain walls is the basis of all micromagnetic approaches. This similarity leads to correlated interactions with magnetic and mechanical loads, resulting in, for example, the classical analogy between magnetic and mechanical hardness. In practical devices, a set of micromagnetic parameters is being determined in order to obtain a unique “fingerprint” of the material. In a calibration procedure, the multiparametric fingerprint is then mathematically related to target parameters such as hardness, hardening depth, strength, yield point, or residual stress. The multiparameter approach is preferred due to the fact that several material properties affect the magnetic behavior, so that a single measuring parameter will never be a unique function of a given target property. The main challenge is that sensor and part geometry are reflected in the magnetic parameter values, which makes it hard to collect calibration-relevant knowledge across several applications. Together with a growing variety of high-performance steel grades available today, this results in a need for individual, application-specific calibration. State-of-the-art micromagnetic testing systems address this issue by means of simplified, accelerated, and interactive calibration procedures and well-selected micromagnetic parameters of increased significance. The path pursued by developers today leads towards increasingly user-friendly devices with low calibration effort.


  1. Altpeter I, Becker R, Dobmann G, Kern R, Theiner WA, Yashan A (2002) Robust solutions of inverse problems in electromagnetic non-destructive evaluation. Inverse Problems 18:1907–1921MathSciNetCrossRefGoogle Scholar
  2. Barkhausen H (1919) Zwei mit Hilfe der neuen Verstärker entdeckte Erscheinungen. Phys Z 20:401–403Google Scholar
  3. Chang AM, Hallen HD, Harriott L, Hess HF, Kao HL, Kwo J, Miller RE, Wolfe R, Van Der Ziel J, Chang TY (1992) Scanning hall probe microscopy. Appl Phys Lett 61(16):1974. Scholar
  4. Cullity BD (1972) Introduction to magnetic materials. Addison-Wesley, ReadingGoogle Scholar
  5. Dobmann G, Pitsch H (1988) Verfahren zum zerstörungsfreien Messen magnetischer Eigenschaften eines Prüfkörpers sowieVorrichtung zum zerstörungs-freien Messen magnetischer Eigenschaften eines Prüfkörpers. German patent DE3037932A1, April 23, 1988Google Scholar
  6. Heptner H, Stroppe H (1972) Magnetische und magnetinduktive Werkstoffprüfung. VEB Deutscher Verlag für Grundstoffindustrie, LeipzigGoogle Scholar
  7. Kneller E (1962) Ferromagnetismus. Springer, BerlinCrossRefGoogle Scholar
  8. Maxwell JC (1865) A dynamical theory of the electromagnetic field. Philos Trans R Soc Lond 155:459–512CrossRefGoogle Scholar
  9. Pitsch H (1990) Die Entwicklung und Erprobung der Oberwellenanalyse im Zeitsignal der magnetischen Tangentialfeldstärke als neues Modul des 3MA-Ansatzes. Doctoral dissertation, Saarland University, SarbrückenGoogle Scholar
  10. Stork D (2001) Pattern classification. Wiley, New YorkzbMATHGoogle Scholar
  11. Szielasko K (2009) Development of metrological modules for electromagnetic multiparameter materials characterization and testing. Doctoral dissertation, Saarland University, Saarbrücken (in German)Google Scholar
  12. Szielasko K, Kopp M, Tschuncky R, Lugin S, Altpeter I (2004) Barkhausenrausch- und Wirbelstrom mikroskopie zur ortsaufgelösten Charakterisierung von dünnen Schichten. DGZfP annual conference 2004 V13Google Scholar
  13. Szielasko K, Mironenko I, Altpeter I, Herrmann HG, Boller C (2013) Minimalistic devices and sensors for micromagnetic materials characterization. IEEE Trans Magn 49(1):101–104CrossRefGoogle Scholar
  14. Szielasko K, Kopp M, Tschuncky R and Herrmann HG (2014) Zerstörungsfreie Bestimmung von Werkstoffeigenschaften mit mikromagnetischen Multiparameter-Prüfverfahren. In: Werkstoffe in der Fertigung 1/2014, pp 45–46. ISSN 0939-2629/B 25800Google Scholar
  15. Tschuncky R (2011) Sensor- und geräteunabhängige Kalibrierung elektromagnetischer zerstörungsfreier Prüfverfahren zur praxisorientierten Werkstoffcharakterisierung. Doctoral dissertation, Saarland University, SaarbrückenGoogle Scholar
  16. Tschuncky R, Szielasko K, Altpeter I (2016) Hybrid methods for materials characterization. In: Hübschen G, Altpeter I, Tschuncky R, Herrmann HG (eds) Materials characterization using nondestructive evaluation (NDE) methods. Woodhead Publishing, Cambridge, pp 263–291CrossRefGoogle Scholar
  17. Weiss P (1907) L’Hypothese du Champ Moléculaire et de la Proprieté Ferromagnétique. J Phys 6:661–690zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Fraunhofer Institute for Nondestructive Testing IZFPSaarbrückenGermany

Section editors and affiliations

  • Ida Nathan
    • 1
  • Norbert Meyendorf
    • 2
  1. 1.Department of Electrical and Computer EngineeringUniversity of AkronAkronUSA
  2. 2.Center for Nondestructive EvaluationIowa State UniversityAmesUSA

Personalised recommendations