Raman Scattering

  • Rudolph M. Erasmus
  • J. Darrell CominsEmail author
Reference work entry


Raman scattering is an inelastic light-scattering technique that finds wide application in physics, chemistry, geology, engineering, and life sciences. It is a nondestructive evaluation method that gives information on vibrational modes in sample materials and can thus be used for characterization of structure and composition of materials. This includes phase identification (study of polytypes and phase transitions), characterization of residual stress and strain, studies of nanomaterials, radiation damage, catalysis processes, corrosion mechanisms, oxide formation, metabolic process in biological tissues, and many more. Information is obtained at the micron scale in materials, and Raman mapping can be used to determine composition and stress/strain in materials at similar spatial scales. Advances in instrumentation over the past decade or so have made the technique more widely accessible, and a brief overview of dispersive Raman instrumentation is given. The description of the basics of the method focuses on solid materials, and applications focus on phase identification and NDE of stress and strain. The examples covered in more detail include stress determination in diamond and polycrystalline diamond (PCD) tools and in situ characterization of corrosion processes on iron surfaces. The chapter concludes with a short overview of other NDE applications, with citations of relevant literature, and method developments such as tip-enhanced Raman spectroscopy (TERS).



Financial support from the National Research Foundation (NRF) of South Africa under Grant No 2053306, the DST-NRF Centre of Excellence in Strong Materials hosted by the University of the Witwatersrand, the University of the Witwatersrand, Johannesburg, and the African Laser Centre (ALC) is gratefully acknowledged.


  1. Adar F, Mamedov S, Whitley A (2010) Microsc Microanal 16:360–361CrossRefGoogle Scholar
  2. Ager JW, Drory D (1993) Phys Rev B 48:2601–2607CrossRefGoogle Scholar
  3. Ager JW, Veirs DK, Rosenblatt GM (1991) Phys Rev B 43:6491–6499CrossRefGoogle Scholar
  4. Anastassakis E, Pinczuk A, Burstein E, Pollak FH, Cardona M (1970) Solid State Commun 8:133–138CrossRefGoogle Scholar
  5. Austin LA, Osseiran S, Evans CL (2016) Analyst 141:476–503CrossRefGoogle Scholar
  6. Balkanski M, Wallis RF, Haro E (1983) Phys Rev B 28:1928–1934CrossRefGoogle Scholar
  7. Beechem T, Graham S, Kearney SP, Phinney LM, Serrano JR (2007) Rev Sci Instrum 78:061301CrossRefGoogle Scholar
  8. Bergman L, Nemanich RJ (1995) J Appl Phys 78:6709–6719CrossRefGoogle Scholar
  9. Boppart H, van Straaton J, Silvera IF (1985) Phys Rev B Rapid Commun 32:1423–1425CrossRefGoogle Scholar
  10. Borer WJ, Mitra SS, Namjoshi DV (1971) Solid State Commun 9:1377–1381CrossRefGoogle Scholar
  11. Boteler JM, Gupta YM (1993) Phys Rev Lett 71:3497–3500CrossRefGoogle Scholar
  12. Brookes CA (1992) In: Field JE (ed) The properties of natural and synthetic diamond. Academic, London, p 515Google Scholar
  13. Brookes CA, Brookes EJ, Howes VR, Roberts SG, Waddington CP (1990) J Hard Mater 1:3–24Google Scholar
  14. Brüesch P (1982) Phonons: theory and experiments I. Springer, New YorkCrossRefGoogle Scholar
  15. Brüesch P (1986) Phonons: theory and experiments II. Springer, Berlin HeidelbergCrossRefGoogle Scholar
  16. Burke EAJ (2001) Lithos 55:139–158CrossRefGoogle Scholar
  17. Campbell IH, Fauchet PM (1986) Solid State Commun 58:739–741CrossRefGoogle Scholar
  18. Cardona M (1982) In: Cardona M, Güntherodt G (eds) Light scattering in solids II (topics in applied physics 50). Springer, BerlinCrossRefGoogle Scholar
  19. Catledge SA, Vohra YK (1995) J Appl Phys 78:7053–7058CrossRefGoogle Scholar
  20. Catledge SA, Vohra YK, Ladi R, Rai G (1996) Diam Relat Mater 5:1159–1165CrossRefGoogle Scholar
  21. Cohen M (1978) In: Frakenthal RP, Kruger J (eds) Passivity of metals. The Electrochemical Society Inc, New Jersey, pp 521–545Google Scholar
  22. Colomban P (2002) Adv Eng Mater 4:535–542CrossRefGoogle Scholar
  23. Colomban P (2017) J Raman Spectrosc 2017:1–14Google Scholar
  24. Colomban P, Gouadec G, Mathez J, Tschiember J, Pérès P (2006) Compos Part A-Appl S 37:646–651CrossRefGoogle Scholar
  25. Crawford FS Jr (1968) Waves:Berkeley physics course, vol 3. McGraw-Hill, New York, p 376Google Scholar
  26. Cullity BD, Weymouth JW (1978) Elements of X-ray diffraction, 2nd edn. Addison-Wesley, New YorkGoogle Scholar
  27. Datchi F, Canny B (2004) Phys Rev B 69:144106CrossRefGoogle Scholar
  28. de la Vega A, Kinloch IA, Young RJ, Bauhofer W, Schulte K (2011) Compos Sci Technol 71:160–166CrossRefGoogle Scholar
  29. De Wolf I (1996) Semicond Sci Tech 11:139–154CrossRefGoogle Scholar
  30. De Wolf I (2003) Spectrosc Eur 15/2:6–13Google Scholar
  31. De Wolf I (2015) J Appl Phys 118:053101CrossRefGoogle Scholar
  32. De Wolf I, Anastassakis E (1999) J Appl Phys 85:7484–7485CrossRefGoogle Scholar
  33. De Wolf I, Maes HE, Jones SK (1996) J Appl Phys 79:7148–7156CrossRefGoogle Scholar
  34. Dooley KA, McCormack J, Fyhrie DP, Morris MD (2009) J Biomed Opt 14:044018CrossRefGoogle Scholar
  35. Edwards HGM, Vandenabeele P (2016) Philos T Roy Soc A 374:20160052CrossRefGoogle Scholar
  36. Erasmus RM, Comins JD, Fish ML (2000) Diam Relat Mater 9:600–604CrossRefGoogle Scholar
  37. Erasmus RM, Daniel RD, Comins JD (2011a) J Appl Phys 109:013527CrossRefGoogle Scholar
  38. Erasmus RM, Comins JD, Mofokeng V, Martin Z (2011b) Diam Relat Mater 20:907–911CrossRefGoogle Scholar
  39. Evans T, Davey ST, Robertson SH (1984) J Mater Sci 19:2405–2414CrossRefGoogle Scholar
  40. Everall N (2010) Analyst 135:2512–2522CrossRefGoogle Scholar
  41. Everall N (2014) J Raman Spectrosc 45:133–138CrossRefGoogle Scholar
  42. Ferreira NG, Abramof E, Corat EJ, Trava-Airoldi VJ (2003) Carbon 41:1301–1308CrossRefGoogle Scholar
  43. Field JE (1992) In: Field JE (ed) The properties of natural and synthetic diamond. Academic Press, London, p 667Google Scholar
  44. Foucher F, Ammar M-R, Westall F (2015) J Raman Spectrosc 46:873–879CrossRefGoogle Scholar
  45. Frezzotti ML, Tecce F, Casagli A (2012) J Geochem Explor 112:1–20CrossRefGoogle Scholar
  46. Ganesan S, Maradudin AA, Oitmaa J (1970) Ann Phys-New York 56:556–594CrossRefGoogle Scholar
  47. Gries T, Vandenbulcke L, Simon P, Canizares A (2007) J Appl Phys 102:083519CrossRefGoogle Scholar
  48. Griffith WP (1975) In: Karr C (ed) Infrared and Raman spectroscopy of lunar and terrestrial minerals. Academic Press, New YorkGoogle Scholar
  49. Grimsditch MH, Anastassakis E, Cardona M (1978) Phys Rev B 18:901–904CrossRefGoogle Scholar
  50. GuptaYM, Horn PD, Yoo CS (1989) Appl Phys Lett 55:33–35CrossRefGoogle Scholar
  51. Hanfland M, Syassen K, Fahy S, Louie SG, Cohen ML (1985) Phys Rev B 31:6896–6899 Rapid CommCrossRefGoogle Scholar
  52. Harris TK, Brookes EJ, Daniel RD (2001) Diam Relat Mater 10:755–759CrossRefGoogle Scholar
  53. Hart TR, Aggarwal RL, Lax B (1970) Phys Rev B 1:638–642CrossRefGoogle Scholar
  54. Herchen H, Cappelli MA (1993) Phys Rev B 47:14193–14199CrossRefGoogle Scholar
  55. Hou PY, Ager J, Mougin J, Galerie A (2011) Oxid Met 75:229–245CrossRefGoogle Scholar
  56. Imanaka M, Ishikawa R, Sakurai Y, Ochi K (2009) J Mater Sci 44:976–984CrossRefGoogle Scholar
  57. Ishigaki M, Hashimoto K, Sato H, Ozaki Y (2017) Sci Rep-UK 7:43942CrossRefGoogle Scholar
  58. Jaumot J, Gargallo R, de Juan A, Tauler R (2005) Chemometr Intell Lab 76:101–110CrossRefGoogle Scholar
  59. Jothilakshmi R, Ramakrishnan V, Kumar J, Sarua A, Kuball M (2011) J Raman Spectrosc 42:422–428CrossRefGoogle Scholar
  60. Keresztury G (2002) In: Chalmers JM, Griffiths PR (eds) Handbook of vibrational spectroscopy, Theory and instrumentation, vol 1. Wiley, ChichesterGoogle Scholar
  61. Kim JG, Yu J (1998) J Mater Res 13:3027–3033CrossRefGoogle Scholar
  62. Klein MV (1990) In: Horton GK, Maradudin AA (eds) Dynamical properties of solids. North-Holland, AmsterdamGoogle Scholar
  63. Korsakov AV, Toporski J, Dieing T, Yang J, Zelenovskiye PS (2015) J Raman Spectrosc 46:880–888CrossRefGoogle Scholar
  64. Lammer A (1988) Mater Sci Tech-Lond 4:949–955CrossRefGoogle Scholar
  65. Landsberg G, Mandelstam L (1928a) Naturwissenschaften 16:557–558CrossRefGoogle Scholar
  66. Landsberg G, Mandelstam L (1928b) Z Phys 50:769–780CrossRefGoogle Scholar
  67. Lee CJ, Pezzotti G, Okui Y, Nishino S (2004) Appl Surf Sci 228:10–16CrossRefGoogle Scholar
  68. Liu Z, Zhang J, Gao B (2009) Chem Commun 2009:6902–6918CrossRefGoogle Scholar
  69. Long DA (2002) The Raman effect: a unified treatment of the theory of Raman scattering by molecules. Wiley, New YorkCrossRefGoogle Scholar
  70. Loudon R (1964) Adv Phys 13:423–482CrossRefGoogle Scholar
  71. Marcuse D (1980) Principles of quantum electronics. Academic, New YorkGoogle Scholar
  72. McNamara D, Alveen P, Damm S, Carolan D, Rice JH, Murphy N, Ivanković A (2015) Int J Refract Met H 52:114–122CrossRefGoogle Scholar
  73. Mermoux M, Marcus B, Crisci A, Tajani A, Gheeraert E, Bustarret E (2005) J Appl Phys 97:043530CrossRefGoogle Scholar
  74. Mitra SS, Brafman O, Daniels WB, Crawford RK (1969) Phys Rev 186:942–944CrossRefGoogle Scholar
  75. Mohiuddin TMG, Lombardo A, Nair RR, Bonetti A, Savini G, Jalil R, Bonini N, Basko DM, Galiotis C (2009) Phys Rev B 79:205433CrossRefGoogle Scholar
  76. Mohrbacher H, Van Acker K, Blanpain B, Van Houtte P, Celis J-P (1996) J Mater Res 11:1776–1782CrossRefGoogle Scholar
  77. Mossbrucker J, Grotjohn TA (1997) J Vac Sci Technol A 15:1206–1210CrossRefGoogle Scholar
  78. Muraki N, Katagiri G, Sergo V, Pezzotti G, Nishida T (1997) J Mater Sci 32:5419–5423CrossRefGoogle Scholar
  79. Nafie LA (2017) J Raman Spectrosc 48:1692–1717CrossRefGoogle Scholar
  80. Nemanich RJ, Solin SA, Martin RM (1981) Phys Rev B 23:6348–6356CrossRefGoogle Scholar
  81. Nieuwoudt MK, Comins JD, Cukrowski I (2011a) J Raman Spectrosc 42:1335–1339CrossRefGoogle Scholar
  82. Nieuwoudt MK, Comins JD, Cukrowski I (2011b) J Raman Spectrosc 42:1353–1365CrossRefGoogle Scholar
  83. Noguchi N, Abduriyim A, Shimizu I, Kamegata N, Odakea S, Kagia H (2013) J Raman Spectrosc 44:147–154CrossRefGoogle Scholar
  84. Nugent KW, Prawer S (1998) Diam Relat Mater 7:215–221CrossRefGoogle Scholar
  85. Odusote JK, Cornish LA, Chown LH, Erasmus RM (2013) Corros Sci 70:276–284CrossRefGoogle Scholar
  86. Panneerselvam R, Liu G-K, Wang Y-H, Liu J-Y, Ding S-Y, Li J-F, Wu D-Y, Tian Z-Q (2018) Chem Commun 54:10–25CrossRefGoogle Scholar
  87. Parsons BJ (1977) Proc R Soc Lon Ser-A 352:397–417CrossRefGoogle Scholar
  88. Pezzotti G (2007) Expert Rev Med Devic 4:165–189CrossRefGoogle Scholar
  89. Postmus C, Ferraro JR, Mitra SS (1968) Phys Rev 174:983–987CrossRefGoogle Scholar
  90. Rahaman M, Rodriguez RD, Plechinger G, Moras S, Schüller C, Korn T, Zahn DRT (2017) Nano Lett 17:6027–6033CrossRefGoogle Scholar
  91. Raman CV (1928) Indian J Phys 2:387–398Google Scholar
  92. Raman CV, Krishnan KS (1928) Nature 121:501–502CrossRefGoogle Scholar
  93. Richter H, Wang ZP, Ley L (1981) Solid State Commun 39:625–629CrossRefGoogle Scholar
  94. Roberts SG (1988) Philos Mag A 58:347–364CrossRefGoogle Scholar
  95. Sato N (1989) Corros Sci 31:1–19CrossRefGoogle Scholar
  96. Sato N (1997) Corros Sci 27:421–433CrossRefGoogle Scholar
  97. Sharma SK, Mao HK, Bell PM, Xu JA (1985) J Raman Spectrosc 16:350–352CrossRefGoogle Scholar
  98. Sherif E-SM, Erasmus RM, Comins JD (2010) Electrochim Acta 55:3657–3663CrossRefGoogle Scholar
  99. Srikar VT, Swan AK, Ünlü MS, Goldberg BB, Spearing SM (2003) J Microelectromech S 12:779–787CrossRefGoogle Scholar
  100. Stansbury EE, Buchanan RA (2000) Fundamentals of electrochemical corrosion, 1st edn. ASM International (Publishers), OhioGoogle Scholar
  101. Starman LA Jr, Lott JA, Amer MS, Cowan WD, Busbee JD (2003) Sensors Actuat A-Phys 104:107–116CrossRefGoogle Scholar
  102. Tarun A, Hayazawa N, Kawata S (2009) Anal Bioanal Chem 394:1775–1785CrossRefGoogle Scholar
  103. Thorne AP (1988) Spectrophysics, 2nd edn. Chapman and Hall, LondonCrossRefGoogle Scholar
  104. Uehara K, Yamaya S (1988) Int J Refract Met H 7:219–223Google Scholar
  105. Van Camp PE, Van Doren VE, Devreese JT (1992) Solid State Commun 84:731–733CrossRefGoogle Scholar
  106. Vhareta M, Erasmus RM, Comins JD (2014) Diam Relat Mater 45:34–42CrossRefGoogle Scholar
  107. Wei J, Wang A, Lambert JL, Wettergreen D, Cabrol N, Warren-Rhodes K, Zacny K (2015) J Raman Spectrosc 46:810–821CrossRefGoogle Scholar
  108. Whalley E, Lavergne A, Wong PTT (1976) Rev Sci Instrum 47:845–848CrossRefGoogle Scholar
  109. Yeo B-S, Stadler J, Schmid T, Zenobi R, Zhang W (2009) Chem Phys Lett 472:1–13CrossRefGoogle Scholar
  110. Zakroczymski T, Fan C-J, Szklarska-Smialowska Z (1985) J Electrochem Soc 132:2868–2871CrossRefGoogle Scholar
  111. Zhao Q, Wagner HD (2004) Philos T Roy Soc A 362:2407–2424CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Physics, Materials Physics Research Institute and DST-NRF Centre of Excellence in Strong MaterialsUniversity of the WitwatersrandJohannesburgSouth Africa
  2. 2.Microscopy and Microanalysis UnitUniversity of the WitwatersrandJohannesburgSouth Africa

Section editors and affiliations

  • Ida Nathan
    • 1
  • Norbert Meyendorf
    • 2
  1. 1.Department of Electrical and Computer EngineeringUniversity of AkronAkronUSA
  2. 2.Center for Nondestructive EvaluationIowa State UniversityAmesUSA

Personalised recommendations