Advertisement

Motion-Induced Eddy Current Testing

  • Hartmut BrauerEmail author
  • Marek Ziolkowski
Reference work entry

Abstract

Nondestructive material testing and evaluation is a vast interdisciplinary field as well as a challenge due to the variety of applications. Whereas the focus of nondestructive testing is to identify anomalies within a specimen, the reconstruction of defect properties and their influence on the materials usability is the focus of nondestructive evaluation. In this chapter the technology of motion-induced eddy current testing (MIECT) is introduced. In contrast to traditional eddy current testing (ECT) methods, MIECT makes use of relative motion between the object under test and permanent magnets. The induced eddy currents interact with the applied magnetic field and result in a Lorentz force, depending on the impressed magnetic induction, the electrical conductivity, and the measuring velocity. Because permanent magnets produce considerably stronger magnetic fields than current-carrying ECT coils, even deep internal defects can be detected using the Lorentz force eddy current testing (LET). It is shown how the electromagnetic fields can be described theoretically and simulated numerically, as well as how imperfections/defects in non-ferromagnetic, conducting specimens can be detected using an appropriate laboratory environment. Comparative studies have shown that LET applied to metallic composite material or friction stir welds is a promising and competitive alternative to traditional ECT methods enabling the contactless evaluation of moving electrical conductors.

References

  1. Achenbach JD (2000) Quantitative nondestructive evaluation. Int J Solids Struct 37(1–2):13–27zbMATHCrossRefGoogle Scholar
  2. Amati N, Tonoli A, Canova A, Cavalli F, Padovani M (2007) Dynamic behavior of torsional eddy-current dampers: sensitivity of the design parameters. IEEE Trans Magn 43(7):3266–3277CrossRefGoogle Scholar
  3. American Welding Society (2016) Specification of friction stir welding of aluminum alloys for aerospace. AWS D17.3/D17.3MGoogle Scholar
  4. Antunes OJ, Bastos JPA, Sadowski N, Razek A, Santandrea L, Bouillault F, Rapetti F (2006a) Comparison between non-conforming movement methods. IEEE Trans Magn 42(4):599–602CrossRefGoogle Scholar
  5. Antunes OJ, Bastos JPA, Sadowski N, Razek A, Santandrea L, Bouillault F, Rapetti F (2006b) Torque calculation with conforming and non- conforming movement interface. IEEE Trans Magn 42(4):983–986CrossRefGoogle Scholar
  6. Biddlecombe CS, Simkin J, Jay AP, Sykulski JK, Lepaul S (1998) Transient Electromagnetic Analysis Coupled to Electric Circuits and Motion. IEEE Trans Magn 34(5):3182–3185CrossRefGoogle Scholar
  7. Binns KJ, Lawrenson PJ, Trowbridge CW (1992) The analytical and numerical solution of electric and magnetic fields. Wiley, ChichesterGoogle Scholar
  8. Bird J, Lipo TA (2009) Modeling the 3-D rotational and translational motion of a Halbach rotor above a split-sheet guideway. IEEE Trans Magn 45(9):3233–3242CrossRefGoogle Scholar
  9. Brauer H, Ziolkowski M (2008) Eddy current testing of metallic sheets with defects using force measurements. Serb J Electr Eng 5(1):11–20CrossRefGoogle Scholar
  10. Brauer H, Porzig K, Mengelkamp J, Carlstedt M, Ziolkowski M, Toepfer H (2014) Lorentz force eddy current testing: a novel NDE – technique. COMPEL 33(6):1965–1977zbMATHCrossRefGoogle Scholar
  11. Brauer H, Gorges S, Ziolkowski M (2017) Bewegungsinduzierte Wirbelstrompruefung von Verbundmaterialien. In: Proceedings of the DGZfP- Jahrestagung, Koblenz, Germany, pp 1–8Google Scholar
  12. Buffa A, Maday Y, Rapetti F (2000) Calculation of eddy currents in moving structures by a sliding mesh-finite element method. IEEE Trans Magn 36(4):1356–1359CrossRefGoogle Scholar
  13. Carlstedt M (2016) A contribution to the experimental validation in Lorentz force eddy current testing. Dissertation, Technische Universität Ilmenau, IlmenauGoogle Scholar
  14. Carlstedt M, Porzig K, Ziolkowski M, Uhlig RP, Brauer H, Toepfer H (2013) Comparison of Lorentz force eddy current testing and common eddy current testing – measurements and simulations. Stud Appl Electromag XVII 39(1):218–225Google Scholar
  15. Carlstedt M, Porzig K, Uhlig RP, Zec M, Ziolkowski M, Brauer H (2014) Application of Lorentz force eddy current testing and eddy current testing on moving nonmagnetic conductors. Int J Appl Electromagn Mech 45(1):519–526CrossRefGoogle Scholar
  16. Chady T, Spychalski I (2017) Eddy current transducer with rotating permanent magnets. In: 22nd International Workshop on Electromagnetic Nondestructive Evaluation (ENDE 2017), Saclay, France, p 2Google Scholar
  17. Chari MVK, Konrad A, Palmo MA, D’Angelo J (1990) Simulation analysis of magnetic sensor for nondestructive testing by boundary element method. IEEE Trans Magn 26(2):877–880CrossRefGoogle Scholar
  18. COMSOL Inc., Burlington. Comsol Multiphysics, 2018Google Scholar
  19. Davat B, Ren Z, Lajoie-Mazenc M (1985) The movement in field modeling. IEEE Trans Magn 21(6):2296–2298CrossRefGoogle Scholar
  20. Dawes CJ, Thomas WM (1996) Friction stir process welds aluminum alloys. Weld J 75(3):41–45Google Scholar
  21. Demenko A (1996) Movement simulation in finite element analysis of electric machine dynamics. IEEE Trans Magn 32(3):1553–1556CrossRefGoogle Scholar
  22. Donoso G, Ladera CL, Martín P (2011) Damped fall of magnets inside a conducting pipe. Am J Phys 79(2):193–200CrossRefGoogle Scholar
  23. dos Santos TG, Ramos PM, dos Santos Vilaca P (2008) Nondestructive testing of friction stir welding: comparison of planar eddy current probes. In: Proceedings of the 16th IMEKO TC4 Symposium, Florence, Italy, pp 507–512Google Scholar
  24. Geirinhas Ramos HM, Rocha T, Pasadas D, A. Lopes Ribeiro (2013) Velocity induced eddy currents technique to inspect cracks in moving conducting media. In: IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, The Depot, Minneapolis, pp 931–934Google Scholar
  25. German Institute for Standardization (2015) Ruehrreibschweißen – Aluminium – Teil 5: Qualitaets- und Pruefungsanforderungen. DIN EN ISO 25239-5Google Scholar
  26. Golovanov C, Coulomb JL, Marechal Y, Meunier G (1998) 3D mesh connection techniques applied to movement simulation. IEEE Trans Magn 34(5):3359–3362CrossRefGoogle Scholar
  27. Gorges S, Brauer H, Ziolkowski M, Carlstedt M, Weise K, Schmidt R, Mengelkamp J (2016) Motion-induced eddy current testing of composite materials. In: Proceedings of the 19th World Conference on Non-destructive Testing (WCNDT), Munich, Germany, Fr.1.FGoogle Scholar
  28. Haus H, Melcher JR (1989) Electromagnetic fields and energy. Prentice-Hall, Englewood CliffsGoogle Scholar
  29. Hellier CJ (2013) Handbook of nondestructive evaluation, 2nd edn. McGraw-Hill Education LLC, New YorkGoogle Scholar
  30. Ida N (1995) Numerical modeling for non-destructive evaluation, 1st edn. Chapman & Hall, LondonGoogle Scholar
  31. Ida N, Bastos JPA (1997) Electromagnetics and calculation of fields, 2nd edn. New York, NY, SpringerCrossRefGoogle Scholar
  32. Jiles DC (1990) Review of magnetic methods for nondestructive evaluation (Part 2). NDT Int 23(2):83–92Google Scholar
  33. Konstantin Weise (2016) Advanced modeling in Lorentz force eddy current testing. Dissertation, Technische Universität Ilmenau, IlmenauGoogle Scholar
  34. Kim YG, Fujii H, Tsumura T, Komazaki T, Nakata K (2006) Three defect types in friction stir welding of aluminum die casting alloy. Mater Sci Eng A Struct 415(1–2):250–254CrossRefGoogle Scholar
  35. Kirpo M, Tympel S, Boeck T, Krasnov D, Thess A (2011) Electromagnetic drag on a magnetic dipole near a translating conducting bar. J Appl Phys 109(11):113921CrossRefGoogle Scholar
  36. Lai HC, Rodger D, Leonard PJ (1991) A finite element method for problems with moving parts. In: Proceedings of 8th International Conference on Computation in Electromagnetics (CEM91), London, UK, pp 211–213Google Scholar
  37. Leonard PJ, Lai HC, Hainsworth G, Rodger D, Eastham JF (1993) Analysis of the performance of tubular pulsed coil induction launchers. IEEE Trans Magn 29(1):686–690CrossRefGoogle Scholar
  38. Marechal Y, Meunier G, Coulomb JL, Magnin H (1992) A general purpose tool for restoring inter-element continuity. IEEE Trans Magn 28(2):1728–1731CrossRefGoogle Scholar
  39. ME-Meßsysteme (2014) Data sheet – K3D40. ME-Meßsysteme GmbHGoogle Scholar
  40. Mengelkamp J (2016) Forward and inverse calculation methods for Lorentz force evaluation applied to laminated composites. Dissertation, Technische Universität Ilmenau, IlmenauGoogle Scholar
  41. Mengelkamp J, Ziolkowski M, Weise K, Carlstedt M, Brauer H (2015) Permanent magnet modeling for Lorentz force evaluation. IEEE Trans Magn 51(7):6301211CrossRefGoogle Scholar
  42. Mengelkamp J, Lattner D, Haueisen J, Carlstedt M, Weise K, Brauer H, Ziolkowski M, Eichardt R (2016) Lorentz force evaluation with differential evolution. IEEE Trans Magn 52(5):6001310CrossRefGoogle Scholar
  43. Mengelkamp J, Carlstedt M, Weise K, Ziolkowski M, Brauer H, Haueisen J (2017) Current density reconstructions for Lorentz force evaluation. Res Nondestruct Eval 28(2):76–100CrossRefGoogle Scholar
  44. Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R Rep 50(1–2):1–78CrossRefGoogle Scholar
  45. Mishra RS, De PS, Kumar N (2014) Friction stir welding and processing: science and engineering. Springer International Publishing, ChamCrossRefGoogle Scholar
  46. Mook G, Hesse O, Uchanin V (2007) Deep penetrating eddy currents and probes. Materials Testing, 49(5):258–264CrossRefGoogle Scholar
  47. Mook G, Michel F, Simonin J (2011) Electromagnetic imaging using probe arrays. Strojniški vestnik 57(3):227–236CrossRefGoogle Scholar
  48. Muramatsu K, Nakata T, Takahashi N, Fujiwara K (1996) Linear AC steady- state eddy current analysis of high speed conductor using moving coordinate system. IEEE Trans Magn 32(3):749–752CrossRefGoogle Scholar
  49. Muramatsu K, Takahashi N, Hashio T, Yamada C, Ogawa M, Kobayashi S, Kuwahara T (1999) 3-D eddy current analysis in moving conductor of permanent magnet type of retarder using moving coordinate system. IEEE Trans Energy Convers 14(4):1312–1317CrossRefGoogle Scholar
  50. Ooi B-T (1977) A dynamic circuit theory of the repulsive magnetic levitation system. IEEE Trans Power Appar Syst 96(4):1094–1100CrossRefGoogle Scholar
  51. Ooi B-T, Jain OP (1979) Force transients at guideway butt joints in repulsive magnetic levitation system. IEEE Trans Power Appar Syst PAS-98(1):323–330CrossRefGoogle Scholar
  52. Petković B (2013) Assessment of linear inverse problems in magnetocardiography and Lorentz force eddy current testing. Dissertation, Technische Universität Ilmenau, IlmenauGoogle Scholar
  53. Petković B, Haueisen J, Zec M, Uhlig RP, Brauer H, Ziolkowski M (2013) Lorentz force evaluation: a new approximation method for defect reconstruction. NDT & E Int 59:57–67CrossRefGoogle Scholar
  54. Pietras A, Weglowski MS (2014) Imperfections in FSW joints and NDT methods of their detection. Biul Inst Spawalnictwa w Gliwicach 58(2):23–32Google Scholar
  55. Pitkänen J, Haapalainen J, Lipponen A, Sarkimo M (2014) NDT of friction stir welding PLFW1 to PLFW5 (FSWL98, FSWL100, FSWL101, FSWL102, FSWL103) NDT Data ReportGoogle Scholar
  56. Porzig K, Carlstedt M, Ziolkowski M, Brauer H, Toepfer H (2014) Reverse engineering of ECT probes for nondestructive evaluation of moving conductors. AIP Conf Proc 1581:1519–1525CrossRefGoogle Scholar
  57. Preston TW, Reece ABJ, Sangha PS (1988) Induction motor analysis by time-stepping techniques. IEEE Trans Magn 24(1):471–474CrossRefGoogle Scholar
  58. Ramos HG, Lopes Ribeiro A (2014) Present and future impact of magnetic sensors in NDE. Procedia Eng 86(1):406–419CrossRefGoogle Scholar
  59. Ramos HG, Rocha T, Pasadas D, Ribeiro AL (2013) Faraday induction effect applied to the detection of defects in a moving plate. Rev Prog Q 32(1):1490–1497Google Scholar
  60. Reddy NR, Reddy GM (2016) Friction stir welding of aluminium alloys – a review. Int J Mech Eng Technol 7(2):73–80Google Scholar
  61. Reitz JR (1970) Forces on moving magnets due to eddy currents. J Appl Phys 41(5):2067–2071CrossRefGoogle Scholar
  62. Reitz JR, Davis LC (1972) Force on a rectangular coil moving above a conducting slab. J Appl Phys 43(4):1547–1553CrossRefGoogle Scholar
  63. Rocha TJ (2017) Velocity induced eddy current testing. Dissertation, Instituto Superior Te’cnico Lisboa, LisboaGoogle Scholar
  64. Rocha TJ, Ramos HG, Lopes Ribeiro A, Pasadas DJ, Angani CS (2015a) Studies to optimize the probe response for velocity induced eddy current testing in aluminium. Measurement 67(1):108–115CrossRefGoogle Scholar
  65. Rocha TJ, Ramos HG, Lopes Ribeiro A, Pasadas DJ (2015b) Magnetic sensors assessment in velocity induced eddy current testing. Sensors Actuators A Phys 228(1):55–61CrossRefGoogle Scholar
  66. Rodger D, Eastham J (1985) Characteristics of a linear induction tachometer – a 3D moving conductor eddy current problem. IEEE Trans Magn 21(6):2412–2415CrossRefGoogle Scholar
  67. Rodger D, Lai HC, Leonard PJ (1990) Coupled elements for problems involving movement (switched reluctance motor). IEEE Trans Magn 26(2):548–550CrossRefGoogle Scholar
  68. Rodger D, Leonard PJ, Eastham JF (1991) Modelling electromagnetic rail launchers at speed using 3D finite elements. IEEE Trans Magn 27(1):314–317CrossRefGoogle Scholar
  69. Roemer U, Schoeps S, Weiland T (2014) Approximation of moments for the nonlinear magnetoquasistatic problem with material uncertainties. IEEE Trans Magn 50(2):417–420CrossRefGoogle Scholar
  70. Rosado LS, Santos TG, Piedade M’s, Ramos PM, Vilaça P (2010) Advanced technique for non-destructive testing of friction stir welding of metals. Measurement 43(8):1021–1030CrossRefGoogle Scholar
  71. Saslow WM (1992) Maxwell’s theory of eddy currents in thin conducting sheets, and applications to electromagnetic shielding and MAGLEV. Am J Phys 60(8):693–711CrossRefGoogle Scholar
  72. Shi Y, Zhang C, Li R, Cai M, Jia G (2015) Theory and application of magnetic flux leakage pipeline detection. Sensors 15(12):31036–31055CrossRefGoogle Scholar
  73. Storn R, Price K (1997) Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359MathSciNetzbMATHCrossRefGoogle Scholar
  74. Tan Y, Wang X, Moreau R (2015) An innovative contactless method for detecting defects in electrical conductors by measuring a change in electromagnetic torque. Meas Sci Technol 26:035 602CrossRefGoogle Scholar
  75. TETRA Gesellschaft für Sensorik, Robotik und Automation mbH. Betriebsanleitung: BASALT-C MMP-15, 2015Google Scholar
  76. Thess A, Votyakov E, Kolesnikov Y (2006) Lorentz force velocimetry. Phys Rev Lett 96(16):164501CrossRefGoogle Scholar
  77. Thess A, Votyakov E, Knaepen B, Zikanov O (2007) Theory of the Lorentz force flowmeter. New J Phys 9(8):299CrossRefGoogle Scholar
  78. Thomas WM, Nicholas ED, Needham JC, Murch MG, Temple-Smith P, Dawes CJ (1991) Friction stir butt welding. International Patent Application: PCT/GB92/02203Google Scholar
  79. Trowbridge CW, Sykulski JK (2006) Some key developments in computational electromagnetics and their attribution. IEEE Trans Magn 42(4):503–508CrossRefGoogle Scholar
  80. Uhlig RP (2014) An experimental validation of Lorentz force eddy current testing. Universitätsverlag Ilmenau, IlmenauGoogle Scholar
  81. Uhlig RP, Zec M, Ziolkowski M, Brauer H (2011) Lorentz force eddy current testing: validation of numerical results. Proc Electrotech Inst 251:135–145Google Scholar
  82. Uhlig RP, Zec M, Brauer H, Thess A (2012a) Lorentz force eddy current testing: a prototype model. J Nondestruct Eval 31(4):357–372CrossRefGoogle Scholar
  83. Uhlig RP, Zec M, Ziolkowski M, Brauer H, Thess A (2012b) Lorentz force sigmometry: a contactless method for electrical conductivity measurements. J Appl Phys 111(9):094914CrossRefGoogle Scholar
  84. Voellner G (2010) Rührreibschweißen mit Schwerlast-Industrierobotern. Forschungsberichte IWB. Herbert Utz Verlag, MünchenGoogle Scholar
  85. Weise K, Schmidt R, Carlstedt M, Ziolkowski M, Brauer H, Toepfer H (2015a) Optimal magnet design for Lorentz force eddy current testing. IEEE Trans Magn 51(9):6201415CrossRefGoogle Scholar
  86. Weise K, Ziolkowski M, Carlstedt M, Brauer H, Toepfer H (2015b) Oscillatory Motion of Permanent Magnets Above a Conducting Slab. IEEE Trans Magn 51(10):7209113CrossRefGoogle Scholar
  87. Yamazaki K (1997) Generalization of 3D eddy current analysis for moving conductors due to coordinate systems and gauge conditions. IEEE Trans Magn 33(2):1259–1262MathSciNetCrossRefGoogle Scholar
  88. Yamazaki K (1999) 3D eddy current formulation for moving conductors with variable velocity of coordinate system using edge finite elements. IEEE Trans Magn 35(3):1594–1597CrossRefGoogle Scholar
  89. Ying P, Jiangjun R, Zhang Y, Yan G (2007) A composite grid method for moving conductor eddy-current problem. IEEE Trans Magn 43(7):3259–3265CrossRefGoogle Scholar
  90. Zec M (2013) Theory and numerical modelling of Lorentz force eddy current testing. Dissertation, Technische Universität IlmenauGoogle Scholar
  91. Zec M, Uhlig RP, Ziolkowski M, Brauer H (2013) Finite element analysis of nondestructive testing eddy current problems with moving parts. IEEE Trans Magn 49(8):4785–4794CrossRefGoogle Scholar
  92. Zec M, Uhlig RP, Ziolkowski M, Brauer H (2014) Three-dimensional numerical investigations of Lorentz force eddy current testing. Stud Appl Electromagn XVI 38(1):83–93Google Scholar
  93. Zec M, Uhlig RP, Ziolkowski M, Brauer H (2015) Differentieller sensor, Prüfsystem und Verfahren zur Detektion von Anomalien in elektrisch leitfähigen Materialien. Patent EP2893336 A1, Institut Dr. Foerster GmbH & Co. KGGoogle Scholar
  94. Ziółkowski M (2015) Modern methods for selected electromagnetic field problems. Wydawnictwo Uczelniane Zachodniopomorskiego Uniwersytetu Technologicznego, SzczecinGoogle Scholar
  95. Ziolkowski M, Brauer H (2010) Fast computation technique of forces acting on moving permanent magnet. IEEE Trans Magn 46(8):2927–2930CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Technische Universitaet IlmenauIlmenauGermany
  2. 2.West Pomeranian University of Technology SzczecinSzczecinPoland

Section editors and affiliations

  • Ida Nathan
    • 1
  • Norbert Meyendorf
    • 2
  1. 1.Department of Electrical and Computer EngineeringUniversity of AkronAkronUSA
  2. 2.Center for Nondestructive EvaluationIowa State UniversityAmesUSA

Personalised recommendations