Guided Wave Testing

  • Paul FrommeEmail author
Reference work entry


Guided waves can propagate long distances in thin-walled structures, such as pipelines or plates. This allows for the efficient monitoring and testing of large structures and for the detection of hidden or inaccessible defects. Guided wave propagation is dispersive and multi-modal, requiring a thorough understanding of the wave propagation and scattering phenomena from simulations. Guided wave dispersion diagrams, mode shapes, and typical signals are illustrated for the example of isotropic plates. Both low and high frequency guided waves have been used for the testing of plate structures, with different wave modes and applications including tomography and arrays for the detection and localization of defects. For multilayered and anisotropic structures, guided wave propagation becomes more complex, and often the fundamental guided wave modes are employed for defect detection. For pipelines different commercially available testing systems have been developed and long propagation distances up to 100 m have been achieved. Careful selection of guided wave mode and excitation frequency allows the minimization of attenuation due to viscoelastic coatings and in buried pipelines. Synthetic focusing using non-axisymmetric modes improves defect imaging and localization. Experimental methods differ from standard ultrasonic testing, as good control of the excited guided wave mode shape and signal are required to achieve improved sensitivity for small defects. In addition to contact piezoelectric transducers, electromagnetic and laser techniques allow for noncontact measurements. Finite Element Analysis is one of the numerical simulation techniques used to obtain a better understanding of guided wave testing and to improve defect characterization.


  1. Achenbach JD (1973) Wave propagation in elastic solids. Elsevier Science, AmsterdamzbMATHGoogle Scholar
  2. Alleyne D, Cawley P (1991) A 2-dimensional Fourier-transform method for the measurement of propagating multimode signals. J Acoust Soc Am 89(3):1159–1168CrossRefGoogle Scholar
  3. Alleyne D, Jones R, Vogt T (2017) GW test an introduction to long-range screening using guided waves. Mater Eval 75(10):1206–1213Google Scholar
  4. Attarian VA, Cegla FB, Cawley P (2014) Long-term stability of guided wave structural health monitoring using distributed adhesively bonded piezoelectric transducers. Struct Health Monitor 13(3):265–280CrossRefGoogle Scholar
  5. Auld BA (1973) Acoustic fields and waves in solids. Hoboken. Wiley, New YorkGoogle Scholar
  6. Bai H, Shah AH, Popplewell N, Datta SK (2001) Scattering of guided waves by circumferential cracks in steel pipes. J Appl Mech Trans ASME 68(4):619–631zbMATHCrossRefGoogle Scholar
  7. Barshinger JN, Rose JL (2004) Guided wave propagation in an elastic hollow cylinder coated with a viscoelastic material. IEEE Trans Ultrason Ferroelectr Freq Control 51(11):1547–1556CrossRefGoogle Scholar
  8. Bartoli I, Marzani A, Lanza di Scalea F, Viola E (2006) Modeling wave propagation in damped waveguides of arbitrary cross-section. J Sound Vib 295(3–5):685–707CrossRefGoogle Scholar
  9. Brath AJ, Simonetti F, Nagy PB, Instanes G (2017) Guided wave tomography of pipe bends. IEEE Trans Ultrason Ferroelectr Freq Control 64(5):847–858CrossRefGoogle Scholar
  10. Castaings M, Hosten B (2003) Guided waves propagating in sandwich structures made of anisotropic, viscoelastic, composite materials. J Acoust Soc Am 113(5):2622–2634CrossRefGoogle Scholar
  11. Castaings M, Hosten B (2008) Ultrasonic guided waves for health monitoring of high-pressure composite tanks. NDT & E Int 41(8):648–655CrossRefGoogle Scholar
  12. Castaings M, Lowe M (2008) Finite element model for waves guided along solid systems of arbitrary section coupled to infinite solid media. J Acoust Soc Am 123(2):696–708CrossRefGoogle Scholar
  13. Castaings M, Singh D, Viot P (2012) Sizing of impact damages in composite materials using ultrasonic guided waves. NDT & E Int 46:22–31CrossRefGoogle Scholar
  14. Cawley P, Lowe MJS, Alleyne DN, Pavlakovic B, Wilcox PD (2003) Practical long range guided wave testing: applications to pipes and rail. Mater Eval 61(1):66–74Google Scholar
  15. Chakrapani SK, Padiyar MJ, Balasubramaniam K (2012) Crack detection in full size Cz-silicon wafers using Lamb wave air coupled ultrasonic testing (LAC-UT). J Nondestruct Eval 31(1):46–55CrossRefGoogle Scholar
  16. Chan H, Masserey B, Fromme P (2015) High frequency guided ultrasonic waves for hidden fatigue crack growth monitoring in multi-layer model aerospace structures. Smart Mater Struct 24(2), 025037CrossRefGoogle Scholar
  17. Chang ZS, Mal A (1999) Scattering of Lamb waves from a rivet hole with edge cracks. Mech Mater 31(3):197–204CrossRefGoogle Scholar
  18. Chapuis B, Terrien N, Royer D (2010) Excitation and focusing of Lamb waves in a multilayered anisotropic plate. J Acoust Soc Am 127(1):198–203CrossRefGoogle Scholar
  19. Chen X, Michaels JE, Lee SJ, Michaels TE (2012) Load-differential imaging for detection and localization of fatigue cracks using Lamb waves. NDT & E Int 51:142–149CrossRefGoogle Scholar
  20. Cho H, Lissenden CJ (2012) Structural health monitoring of fatigue crack growth in plate structures with ultrasonic guided waves. Struct Health Monitor 11(4):393–404CrossRefGoogle Scholar
  21. Cho YH, Hongerholt DD, Rose JL (1997) Lamb wave scattering analysis for reflector characterization. IEEE Trans Ultrason Ferroelectr Freq Control 44(1):44–52CrossRefGoogle Scholar
  22. Cho YH, Rose JL (1996) A boundary element solution for a mode conversion study on the edge reflection of Lamb waves. J Acoust Soc Am 99(4):2097–2109CrossRefGoogle Scholar
  23. Croxford AJ, Moll J, Wilcox PD, Michaels JE (2010) Efficient temperature compensation strategies for guided wave structural health monitoring. Ultrasonics 50(4–5):517–528CrossRefGoogle Scholar
  24. Dalton RP, Cawley P, Lowe MJS (2001) The potential of guided waves for monitoring large areas of metallic aircraft fuselage structure. J Nondestruct Eval 20(1):29–46CrossRefGoogle Scholar
  25. Damljanovic V, Weaver RL (2004) Propagating and evanescent elastic waves in cylindrical waveguides of arbitrary cross section. J Acoust Soc Am 115(4):1572–1581CrossRefGoogle Scholar
  26. Datta SK, Shah AH (2009) Elastic waves in composite media and structures with applications to ultrasonic nondestructive evaluation introduction. In: Elastic waves in composite media and structures: with applications to ultrasonic nondestructive evaluation. CRC Press, Boca Raton, pp 1–9zbMATHGoogle Scholar
  27. Davies J, Cawley P (2009) The application of synthetic focusing for imaging crack-like defects in pipelines using guided waves. IEEE Trans Ultrason Ferroelectr Freq Control 56(4):759–771CrossRefGoogle Scholar
  28. Demma A, Cawley P, Lowe M (2003) Scattering of the fundamental shear horizontal mode from steps and notches in plates. J Acoust Soc Am 113(4):1880–1891CrossRefGoogle Scholar
  29. Di Scalea FL, Matt H, Bartoli I, Coccia S, Park G, Farrar C (2007) Health monitoring of UAV wing skin-to-spar joints using guided waves and macro fiber composite transducers. J Intell Mater Syst Struct 18(4):373–388CrossRefGoogle Scholar
  30. Diamanti K, Hodgkinson JM, Soutis C (2004) Detection of low-velocity impact damage in composite plates using Lamb waves. Struct Health Monitor 3(1):33–41CrossRefGoogle Scholar
  31. Diligent O, Grahn T, Bostrom A, Cawley P, Lowe MJS (2002) The low-frequency reflection and scattering of the S-0 Lamb mode from a circular through-thickness hole in a plate: finite element, analytical and experimental studies. J Acoust Soc Am 112(6):2589–2601CrossRefGoogle Scholar
  32. Dixon S, Jaques D, Palmer SB, Rowlands G (2004) The measurement of shear and compression waves in curing epoxy adhesives using ultrasonic reflection and transmission techniques simultaneously. Meas Sci Technol 15(5):939–947CrossRefGoogle Scholar
  33. Doherty C, Chiu WK (2012) Scattering of ultrasonic-guided waves for health monitoring of fuel weep holes. Struct Health Monitor 11(1):27–42CrossRefGoogle Scholar
  34. Drozdz M, Moreau L, Castaings M, Lowe MJS, Cawley P (2006). Efficient numerical modelling of absorbing regions for boundaries of guided waves problems. In: Thompson DO, Chimenti DE (eds) Review of progress in quantitative nondestructive evaluation, vols 25a and 25b, vol 820. American Institute of Physics, Melville, pp 126–133Google Scholar
  35. Fan Z, Castaings M, Lowe MJS, Biateau C, Fromme P (2013) Feature-guided waves for monitoring adhesive shear modulus in bonded stiffeners. NDT & E Int 54:96–102CrossRefGoogle Scholar
  36. Fan Z, Lowe MJS (2009) Elastic waves guided by a welded joint in a plate. Proc R Soc Math Phys Eng Sci 465(2107):2053–2068zbMATHCrossRefGoogle Scholar
  37. Fellinger P, Marklein R, Langenberg KJ, Klaholz S (1995) Numerical modeling of elastic-wave propagation and scattering with efit - elastodynamic finite integration technique. Wave Motion 21(1):47–66zbMATHCrossRefGoogle Scholar
  38. Flynn EB, Todd MD, Wilcox PD, Drinkwater BW, Croxford AJ (2011) Maximum-likelihood estimation of damage location in guided-wave structural health monitoring. Proc R Soc Math Phys Eng Sci 467(2133):2575–2596zbMATHCrossRefGoogle Scholar
  39. Freemantle RJ, Challis RE (1998) Combined compression and shear wave ultrasonic measurements on curing adhesive. Meas Sci Technol 9(8):1291–1302CrossRefGoogle Scholar
  40. Fromme P, Pizzolato M, Robyr JL, Masserey B (2018) Lamb wave propagation in monocrystalline silicon wafers. J Acoust Soc Am 143(1):287–295CrossRefGoogle Scholar
  41. Fromme P, Rouge C (2011) Directivity of guided ultrasonic wave scattering at notches and cracks C3. J Phys Conf Ser 269:1CrossRefGoogle Scholar
  42. Fromme P, Sayir MB (2002a) Detection of cracks at rivet holes using guided waves. Ultrasonics 40(1–8):199–203CrossRefGoogle Scholar
  43. Fromme P, Sayir MB (2002b) Measurement of the scattering of a Lamb wave by a through hole in a plate. J Acoust Soc Am 111(3):1165–1170CrossRefGoogle Scholar
  44. Fromme P, Wilcox PD, Lowe MJS, Cawley P (2006) On the development and testing of a guided ultrasonic wave array for structural integrity monitoring. IEEE Trans Ultrason Ferroelectr Freq Control 53(4):777–784CrossRefGoogle Scholar
  45. Giurgiutiu V, Zagrai A, Bao JJ (2002) Piezoelectric wafer embedded active sensors for aging aircraft structural health monitoring. Struct Health Monitor 1(1):41–61CrossRefGoogle Scholar
  46. Graff KF (1975) Wave motion in elastic solids. Oxford University Press, New YorkzbMATHGoogle Scholar
  47. Greve DW, Zheng P, Oppenheim IJ (2008) The transition from Lamb waves to longitudinal waves in plates. Smart Mater Struct 17(3), 035029CrossRefGoogle Scholar
  48. Gridin D, Craster RV, Fong J, Lowe MJS, Beard M (2003) The high-frequency asymptotic analysis of guided waves in a circular elastic annulus. Wave Motion 38(1):67–90MathSciNetzbMATHCrossRefGoogle Scholar
  49. Grondel S, Paget C, Delebarre C, Assaad J, Levin K (2002) Design of optimal configuration for generating a(0) Lamb mode in a composite plate using piezoceramic transducers. J Acoust Soc Am 112(1):84–90CrossRefGoogle Scholar
  50. Guo N, Cawley P (1993) The interaction of Lamb waves with delaminations in composite laminates. J Acoust Soc Am 94(4):2240–2246CrossRefGoogle Scholar
  51. Guy P, Jayet Y, Goujon L (2003) Guided waves interaction with complex delaminations. Application to damage detection in composite structures. In: Kundu T (ed) Smart nondestructive evaluation and health monitoring of structural and biological systems II. SPIE 5047, pp 25–33Google Scholar
  52. Hafezi MH, Alebrahim R, Kundu T (2017) Peri-ultrasound for modeling linear and nonlinear ultrasonic response. Ultrasonics 80:47–57CrossRefGoogle Scholar
  53. Hall JS, Fromme P, Michaels JE (2014) Guided wave damage characterization via minimum variance imaging with a distributed Array of ultrasonic sensors. J Nondestruct Eval 33(3):299–308CrossRefGoogle Scholar
  54. Harker AH (1984) Numerical modelling of the scattering of elastic waves in plates. J Nondestruct Eval 4(2):89–106CrossRefGoogle Scholar
  55. Hayashi T, Kawashima K, Sun ZQ, Rose JL (2005) Guided wave focusing mechanics in pipe. J Pressure Vessel Technol-Trans ASME 127(3):317–321CrossRefGoogle Scholar
  56. Hayashi T, Song WJ, Rose JL (2003) Guided wave dispersion curves for a bar with an arbitrary cross-section, a rod and rail example. Ultrasonics 41(3):175–183CrossRefGoogle Scholar
  57. Herdovics B, Cegla F (2018) Structural health monitoring using torsional guided wave electromagnetic acoustic transducers. Struct Health Monitor 17(1):24–38CrossRefGoogle Scholar
  58. Hirao M, Ogi H (2017) Brief instruction to build EMATs. Electromagnetic acoustic transducers: noncontacting ultrasonic measurements using Emats, 2nd edn. Springer, Tokyo, pp 69–79CrossRefGoogle Scholar
  59. Hosten B, Castaings M (1993) Transfer-matrix of multilayered absorbing and anisotropic media - measurements and simulations of ultrasonic wave-propagation through composite-materials. J Acoust Soc Am 94(3):1488–1495CrossRefGoogle Scholar
  60. Howard R, Cegla F (2017) Detectability of corrosion damage with circumferential guided waves in reflection and transmission. NDT & E Int 91:108–119CrossRefGoogle Scholar
  61. Huthwaite P (2014) Accelerated finite element elastodynamic simulations using the GPU. J Comput Phys 257:687–707MathSciNetzbMATHCrossRefGoogle Scholar
  62. Jezzine K, Imperiale A, Demaldent E, Le Bourdais F, Calmon P, Dominguez N (2018) Modeling approaches for the simulation of ultrasonic inspections of anisotropic composite structures in the CIVA software platform. In: Chimenti DE, Bond LJ (eds) 44th annual review of progress in quantitative nondestructive evaluation, vol 37, American Institute of Physics, Melville, 1949Google Scholar
  63. Jian X, Dixon S, Edwards RS, Morrison J (2006) Coupling mechanism of an EMAT. Ultrasonics 44:E653–E656CrossRefGoogle Scholar
  64. Kawashima K (1976) Experiments with 2 types of electromagnetic ultrasonic transducers. J Acoust Soc Am 60(2):365–373CrossRefGoogle Scholar
  65. Kazys R, Demcenko A, Zukauskas E, Mazeika L (2006) Air-coupled ultrasonic investigation of multi-layered composite materials. Ultrasonics 44:E819–E822CrossRefGoogle Scholar
  66. Khalili P, Cawley P (2016) Excitation of single-mode Lamb waves at high-frequency-thickness products. IEEE Trans Ultrason Ferroelectr Freq Control 63(2):303–312CrossRefGoogle Scholar
  67. Konstantinidis G, Drinkwater BW, Wilcox PD (2006) The temperature stability of guided wave structural health monitoring systems. Smart Mater Struct 15(4):967–976CrossRefGoogle Scholar
  68. Kostson E, Fromme P (2009) Fatigue crack growth monitoring in multi-layered structures using guided ultrasonic waves. J Phys Conf Ser 195Google Scholar
  69. Kundu T, Das S, Martin SA, Jata KV (2008) Locating point of impact in anisotropic fiber reinforced composite plates. Ultrasonics 48(3):193–201CrossRefGoogle Scholar
  70. Le Crom B, Castaings M (2010) Shear horizontal guided wave modes to infer the shear stiffness of adhesive bond layers. J Acoust Soc Am 127(4):2220–2230CrossRefGoogle Scholar
  71. Leckey CAC, Rogge MD, Parker FR (2014) Guided waves in anisotropic and quasi-isotropic aerospace composites: three-dimensional simulation and experiment. Ultrasonics 54(1):385–394CrossRefGoogle Scholar
  72. Leckey CAC, Wheeler KR, Hafiychuk VN, Hafiychuk H, Timucin DA (2018) Simulation of guided-wave ultrasound propagation in composite laminates: benchmark comparisons of numerical codes and experiment. Ultrasonics 84:187–200CrossRefGoogle Scholar
  73. Lee BC, Staszewski WJ (2007) Lamb wave propagation modelling for damage detection: II. Damage monitoring strategy. Smart Mater Struct 16(2):260–274CrossRefGoogle Scholar
  74. Leinov E, Lowe MJS, Cawley P (2015) Investigation of guided wave propagation and attenuation in pipe buried in sand. J Sound Vib 347:96–114CrossRefGoogle Scholar
  75. Leleux A, Micheau P, Castaings M (2013) Long range detection of defects in composite plates using Lamb waves generated and detected by ultrasonic phased array probes. J Nondestruct Eval 32(2):200–214Google Scholar
  76. Leonard KR, Malyarenko EV, Hinders MK (2002) Ultrasonic Lamb wave tomography. Inverse Problem 18(6):1795–1808MathSciNetzbMATHCrossRefGoogle Scholar
  77. Levine RM, Michaels JE (2013) Model-based imaging of damage with Lamb waves via sparse reconstruction. J Acoust Soc Am 133(3):1525–1534CrossRefGoogle Scholar
  78. Li J, Rose JL (2001) Implementing guided wave mode control by use of a phased transducer array. IEEE Trans Ultrason Ferroelectr Freq Control 48(3):761–768CrossRefGoogle Scholar
  79. Lindgren E, Aldrin JC, Jata K, Scholes B, Knopp J (2007) Ultrasonic plate waves for fatigue crack detection in multi-layered metallic structures. In: Kundu T (eds) Health monitoring of structural and biological systems 2007. Proceedings of SPIE 6532Google Scholar
  80. Liu GL, Qu JM (1998) Guided circumferential waves in a circular annulus. J Appl Mech-Trans ASME 65(2):424–430CrossRefGoogle Scholar
  81. Loveday PW (2012) Guided wave inspection and monitoring of railway track. J Nondestruct Eval 31(4):303–309CrossRefGoogle Scholar
  82. Lovstad A, Cawley P (2012) The reflection of the fundamental torsional mode from pit clusters in pipes. NDT & E Int 46:83–93CrossRefGoogle Scholar
  83. Lowe MJS, Alleyne DN, Cawley P (1998) The mode conversion of a guided wave by a part-circumferential notch in a pipe. J Appl Mech-Trans ASME 65(3):649–656CrossRefGoogle Scholar
  84. Lowe MJS, Cawley P (1994) The applicability of plate wave techniques for the inspection of adhesive and diffusion bonded joints. J Nondestruct Eval 13(4):185–200CrossRefGoogle Scholar
  85. Lowe MJS, Diligent O (2002) Low-frequency reflection characteristics of the s(0) Lamb wave from a rectangular notch in a plate. J Acoust Soc Am 111(1):64–74CrossRefGoogle Scholar
  86. Lu Y, Michaels JE (2009) Feature extraction and sensor fusion for ultrasonic structural health monitoring under changing environmental conditions. IEEE Sensors J 9(11):1462–1471CrossRefGoogle Scholar
  87. Madariaga R (1976) Dynamics of an expanding circular fault. Bull Seismol Soc Am 66(3):639–666Google Scholar
  88. Mal AK, Xu PC, Bar Cohen Y (1989) Analysis of leaky Lamb waves in bonded plates. Int J Eng Sci 27(7):779–791zbMATHCrossRefGoogle Scholar
  89. Malyarenko EV, Hinders MK (2000) Fan beam and double crosshole Lamb wave tomography for mapping flaws in aging aircraft structures. J Acoust Soc Am 108(4):1631–1639CrossRefGoogle Scholar
  90. Masserey B, Fromme P (2017) Analysis of high frequency guided wave scattering at a fastener hole with a view to fatigue crack detection. Ultrasonics 76:78–86CrossRefGoogle Scholar
  91. McKeon JCP, Hinders MK (1999) Lamb wave scattering from a through hole. J Sound Vib 224(5):843–862CrossRefGoogle Scholar
  92. Mesnil O, Leckey CAC, Ruzzene M (2014) Instantaneous wavenumber estimation for damage quantification in layered plate structures. In: Kundu T (ed) Health monitoring of structural and biological systems 2014. Proceedings of SPIE 9064Google Scholar
  93. Michaels JE (2008) Detection, localization and characterization of damage in plates with an in situ array of spatially distributed ultrasonic sensors. Smart Mater Struct 17(3), 17 035035MathSciNetCrossRefGoogle Scholar
  94. Michaels JE, Lee SJ, Croxford AJ, Wilcox PD (2013) Chirp excitation of ultrasonic guided waves. Ultrasonics 53(1):265–270CrossRefGoogle Scholar
  95. Mudge PJ (2001) Field application of the Teletest (R) long-range ultrasonic testing technique. Insight 43(2):74–77Google Scholar
  96. Murat BIS, Khalili P, Fromme P (2016) Scattering of guided waves at delaminations in composite plates. J Acoust Soc Am 139(6):3044–3052CrossRefGoogle Scholar
  97. Nagy PB, Adler L (1989) Nondestructive evaluation of adhesive joints by guided-waves. J Appl Phys 66(10):4658–4663CrossRefGoogle Scholar
  98. Ng C-T, Veidt M (2011) Scattering of the fundamental anti-symmetric Lamb wave at delaminations in composite laminates. J Acoust Soc Am 129(3):1288–1296CrossRefGoogle Scholar
  99. Ng CT, Veidt M, Rose LRF, Wang CH (2012) Analytical and finite element prediction of Lamb wave scattering at delaminations in quasi-isotropic composite laminates. J Sound Vib 331(22):4870–4883CrossRefGoogle Scholar
  100. Ostachowicz W, Kudela P, Krawczuk M, Zak A (2012) Guided waves in structures for SHM: the time-domain spectral element method. Blackwell Science Publ, OxfordzbMATHCrossRefGoogle Scholar
  101. Pao YH, Chao CC (1964) Diffractions of flexural waves by a cavity in an elastic plate. AIAA J 2(11):2004–2010CrossRefGoogle Scholar
  102. Park B, An YK, Sohn H (2014) Visualization of hidden delamination and debonding in composites through noncontact laser ultrasonic scanning. Compos Sci Technol 100:10–18CrossRefGoogle Scholar
  103. Paskaramoorthy R, Shah AH, Datta SK (1989) Scattering of flexural waves by cavities in a plate. Int J Solids Struct 25(10):1177–1191zbMATHCrossRefGoogle Scholar
  104. Pavlakovic, B., M. Lowe, D. Alleyne and P. Cawley (1997). “DISPERSE: A general purpose program for creating dispersion curves,” in Review of Progress in Quantitative NDE, edited by D. O. Thompson and D. E. Chimenti (Plenum, New York), Vol. 16, pp. 185–192CrossRefGoogle Scholar
  105. Pol CB, Banerjee S (2013) Modeling and analysis of propagating guided wave modes in a laminated composite plate subject to transient surface excitations. Wave Motion 50(5):964–978MathSciNetzbMATHCrossRefGoogle Scholar
  106. Potel C, Baly S, de Belleval JF, Lowe M, Gatignol P (2005) Deviation of a monochromatic Lamb wave beam in anisotropic multilayered media: asymptotic analysis, numerical and experimental results. IEEE Trans Ultrason Ferroelectr Freq Control 52(6):987–1001CrossRefGoogle Scholar
  107. Prada C, Clorennec D, Murray TW, Royer D (2009) Influence of the anisotropy on zero-group velocity Lamb modes. J Acoust Soc Am 126(2):620–625CrossRefGoogle Scholar
  108. Predoi MV, Castaings M, Hosten B, Bacon C (2007) Wave propagation along transversely periodic structures. J Acoust Soc Am 121(4):1935–1944CrossRefGoogle Scholar
  109. Puthillath P, Rose JL (2010) Ultrasonic guided wave inspection of a titanium repair patch bonded to an aluminum aircraft skin. Int J Adhes Adhes 30(7):566–573CrossRefGoogle Scholar
  110. Quarry MJ (2004) Guided wave inspection of multi-layered structures. In: Quantitative nondestructive evaluation. AIP conference proceedings, vol 700, pp 246–253Google Scholar
  111. Rajagopal P, Drozdz M, Skelton EA, Lowe MJS, Craster RV (2012) On the use of absorbing layers to simulate the propagation of elastic waves in unbounded isotropic media using commercially available finite element packages. NDT & E Int 51:30–40CrossRefGoogle Scholar
  112. Rakow A, Chang F-K (2012) A structural health monitoring fastener for tracking fatigue crack growth in bolted metallic joints. Struct Health Monitor 11(3):253–267CrossRefGoogle Scholar
  113. Ramadas C, Balasubramaniam K, Joshi M, Krishnamurthy CV (2010) Interaction of guided Lamb waves with an asymmetrically located delamination in a laminated composite plate. Smart Mater Struct 19(6), 065009CrossRefGoogle Scholar
  114. Ratassepp M, Fletcher S, Lowe MJS (2010) Scattering of the fundamental torsional mode at an axial crack in a pipe. J Acoust Soc Am 127(2):730–740CrossRefGoogle Scholar
  115. Ratnam D, Balasubramaniam K, Maxfield BW (2012) Generation and detection of higher-order mode clusters of guided waves (HOMC-GW) using meander-coil EMATs. IEEE Trans Ultrason Ferroelectr Freq Control 59(4):727–737CrossRefGoogle Scholar
  116. Rokhlin SI, Hefets M, Rosen M (1981) An ultrasonic interface-wave method for predicting the strength of adhesive bonds. J Appl Phys 52(4):2847–2851CrossRefGoogle Scholar
  117. Rose JL (2002a) A baseline and vision of ultrasonic guided wave inspection potential. J PresVessel Technol Tran ASME 124(3):273–282CrossRefGoogle Scholar
  118. Rose JL (2002b) Standing on the shoulders of giants: an example of guided wave inspection. Mater Eval 60(1):53–59Google Scholar
  119. Rose JL (2014) Ultrasonic guided waves in solid media. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  120. Rose JL (2017) Aspects of a hybrid analytical finite element method approach for ultrasonic guided wave inspection design. J Nondestruct Eval Diagnos Prognos Eng Syst 1(1):011001Google Scholar
  121. Rose JL, Zhang L, Avioli MJ, Mudge PJ (2005) A natural focusing low frequency guided wave experiment for the detection of defects beyond elbows. J Press Vessel Technol-Trans ASME 127(3):310–316CrossRefGoogle Scholar
  122. Salas KI, Cesnik CES (2009) Guided wave excitation by a CLoVER transducer for structural health monitoring: theory and experiments. Smart Mater Struct 18(7):1–27CrossRefGoogle Scholar
  123. Sanderson RM, Hutchins DA, Billson DR, Mudge PJ (2013) The investigation of guided wave propagation around a pipe bend using an analytical modeling approach. J Acoust Soc Am 133(3):1404–1414CrossRefGoogle Scholar
  124. Sargent JP (2006) Corrosion detection in welds and heat-affected zones using ultrasonic Lamb waves. Insight 48(3):160–167CrossRefGoogle Scholar
  125. Seifried R, Jacobs LJ, Qu JM (2002) Propagation of guided waves in adhesive bonded components. NDT & E Int 35(5):317–328CrossRefGoogle Scholar
  126. Shen YF, Cesnik CES (2016) Hybrid local FEM/global LISA modeling of damped guided wave propagation in complex composite structures. Smart Mater Struct 25(9):20CrossRefGoogle Scholar
  127. Shen YF, Giurgiutiu V (2015) Effective non-reflective boundary for Lamb waves: Theory, finite element implementation, and applications. Wave Motion 58:22–41MathSciNetzbMATHCrossRefGoogle Scholar
  128. Staszewski WJ, Lee BC, Traynor R (2007) Fatigue crack detection in metallic structures with Lamb waves and 3D laser vibrometry. Meas Sci Technol 18(3):727–739CrossRefGoogle Scholar
  129. Su Z, Ye L, Lu Y (2006) Guided Lamb waves for identification of damage in composite structures: a review. J Sound Vib 295(3–5):753–780CrossRefGoogle Scholar
  130. Terrien N, Osmont D, Royer D, Lepoutre F, Deom A (2007) A combined finite element and modal decomposition method to study the interaction of Lamb modes with micro-defects. Ultrasonics 46(1):74–88CrossRefGoogle Scholar
  131. Thompson RB, Thompson DO (1991) Past experiences in the development of tests for adhesive bond strength. J Adhes Sci Technol 5(8):583–599CrossRefGoogle Scholar
  132. Van Velsor JK, Rose JL, Nestleroth JB (2009) Enhanced coating disbond detection capabilities in pipe using circumferential shear horizontal guided waves. Mater Eval 67(10):1179–1188Google Scholar
  133. Veidt M, Sachse W (1994) Ultrasonic point-source point-receiver measurements in thin specimens. J Acoust Soc Am 96(4):2318–2326CrossRefGoogle Scholar
  134. Velichko A, Wilcox PD (2008) Guided wave arrays for high resolution inspection. J Acoust Soc Am 123(1):186–196CrossRefGoogle Scholar
  135. Viktorov IA (1967) Rayleigh and Lamb waves - physical theory and applications. Plenum, New YorkGoogle Scholar
  136. Vinogradov S, Eason T, Lozev M (2018) Evaluation of magnetostrictive transducers for guided wave monitoring of pressurized pipe at 200 degrees C. J Pres Vessel Technol-Tran ASME 140(2):7Google Scholar
  137. Virieux J (1986) P-SV-wave propagation in heterogeneous media – velocity-stress finite-difference method. Geophysics 51(4):889–901CrossRefGoogle Scholar
  138. Wang CH, Rose JT, Chang FK (2004) A synthetic time-reversal imaging method for structural health monitoring. Smart Mater Struct 13(2):415–423CrossRefGoogle Scholar
  139. Wilcox PD (2003) A rapid signal processing technique to remove the effect of dispersion from guided wave signals. IEEE Trans Ultrason Ferroelectr Freq Control 50(4):419–427CrossRefGoogle Scholar
  140. Wilcox PD, Lowe M, Cawley P (2005) Omnidirectional guided wave inspection of large metallic plate structures using an EMAT array. IEEE Trans Ultrason Ferroelectr Freq Control 52(4):653–665CrossRefGoogle Scholar
  141. Yu L, Giurgiutiu V (2012) Piezoelectric wafer active sensors in Lamb wave-based structural health monitoring. JOM 64(7):814–822CrossRefGoogle Scholar
  142. Zhang F, Krishnaswamy S, Lilley CM (2006) Bulk-wave and guided-wave photoacoustic evaluation of the mechanical properties of aluminum/silicon nitride double-layer thin films. Ultrasonics 45(1–4):66–76CrossRefGoogle Scholar
  143. Zhao X, Royer RL, Owens SE, Rose JL (2011) Ultrasonic Lamb wave tomography in structural health monitoring. Smart Mater Struct 20(10):10Google Scholar
  144. Zhao XL, Rose JL (2004a) Guided circumferential shear horizontal waves in an isotropic hollow cylinder. J Acoust Soc Am 115(5):1912–1916CrossRefGoogle Scholar
  145. Zhao, X. L. and J. L. Rose (2004b). Three-dimensional defect in a plate boundary element modeling for guided wave scattering. In: Lee SS, Yoon DJ, Lee JH, Lee S (eds) Advances in nondestructive evaluation, Pt 1–3. Trans Tech Publications, pp 270–273: 453–460Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUCLLondonUK

Section editors and affiliations

  • Ida Nathan
    • 1
  • Norbert Meyendorf
    • 2
  1. 1.Department of Electrical and Computer EngineeringUniversity of AkronAkronUSA
  2. 2.Center for Nondestructive EvaluationIowa State UniversityAmesUSA

Personalised recommendations