Advertisement

Nonlinear Resonant Acoustic Spectroscopy

  • Bart Van DammeEmail author
  • Koen Van Den Abeele
Reference work entry

Abstract

Ultrasound nondestructive evaluation methods are popular since they are noninvasive, can be done by a trained technician, and can be used in situ. Pulse echo measurements with a single transducer and more advanced material examination using phased arrays allow for the detection of cracks and cavities in homogeneous materials. However, some types of damage remain invisible to traditional ultrasound nondestructive testing (NDT). Early stage fatigue damage, closed cracks, or delaminations in composites are typically difficult to discern. This chapter deals with the assessment of nonlinear wave distortion due to the presence of damage. In nonlinear elastic materials, resonance frequencies depend on the excitation amplitude. Nonlinear reverberation spectroscopy (NRS) exploits this small frequency shift in the ringing of a sample that was harmonically excited at resonance. Two successful applications are described. First, NRS was used to quantify thermal damage of carbon fiber reinforced polymers (CFRP) samples. The nonlinear parameters are much more sensitive to the microdamage than linear properties, such as a change of the Young’s modulus or the damping coefficient. Moreover, the NRS results correlate well with optically gathered crack density values, and they can be modeled using a hysteretic elastic constitutive equation. The second example is the detection of early fatigue damage. A single closed crack in a steel sample can be exposed and even located when combining the NRS results with a finite element modal analysis.

References

  1. Aleshin V, Van Den Abeele K (2005) Micro-potential model for stress-strain hysteresis of micro-cracked materials. J Mech Phys Solids 53(4):795–824MathSciNetCrossRefGoogle Scholar
  2. Aleshin V, Van Den Abeele K (2007) Microcontact-based theory for acoustics in microdamaged materials. J Mech Phys Solids 55(2):366–390CrossRefGoogle Scholar
  3. Aleshin V, Van Den Abeele K (2009) Preisach analysis of the hertz-mindlin system. J Mech Phys Solids 57(4):657–672CrossRefGoogle Scholar
  4. Antonets V, Donskoy D, Sutin A (1986) Nonlinear vibro-diagnostics of flaws in multilayered structures. Mech Compos Mater 15(5):934–937Google Scholar
  5. Bentahar M, El Aqra H, El Guerjouma R, Griffa M, Scalerandi M (2006) Hysteretic elasticity in damaged concrete: quantitative analysis of slow and fast dynamics. Phys Rev B 73(1):14,116CrossRefGoogle Scholar
  6. Blanch J, Robertsson J, Symes W (1995) Modeling of a constant-Q – methodology and algorithm for an efficient and optimally inexpensive viscoelastic technique. Geophysics 60(1):176–184CrossRefGoogle Scholar
  7. Buck O, Morris W, Richardson J (1978) Acoustic harmonic generation at unbonded interfaces and fatigue cracks. Appl Phys Lett 33(5):371–373CrossRefGoogle Scholar
  8. Courtney C, Drinkwater B, Neild S, Wilcox P (2008) Factors affecting the ultrasonic intermodulation crack detection technique using bispectral analysis. NDT & E Int 41(3):223–234CrossRefGoogle Scholar
  9. Darling T, TenCate J, Brown D, Clausen B, Vogel S (2004) Neutron diffraction study of the contribution of grain contacts to nonlinear stress-strain behavior. Geophys Res Lett 31:L16,604CrossRefGoogle Scholar
  10. Géradin M, Rixen D (1994) Mechanical vibrations: theory and application to structural dynamics, vol 25. Wiley, New YorkGoogle Scholar
  11. Gliozzi A, Griffa M, Scalerandi M (2006) Efficiency of time-reversed acoustics for nonlinear damage detection in solids. J Acoust Soc Am 120:2506CrossRefGoogle Scholar
  12. Guyer R, Johnson P (1999) Nonlinear mesoscopic elasticity: evidence for a new class of materials. Phys Today 52:30–36CrossRefGoogle Scholar
  13. Guyer RA, Johnson PA (2009) Nonlinear mesoscopic elasticity: the complex behaviour of rocks, soil, concrete. Wiley, New YorkCrossRefGoogle Scholar
  14. Guyer R, McCall K, Boitnott G (1995) Hysteresis, discrete memory, and nonlinear wave propagation in rock: a new paradigm. Phys Rev Lett 74(17):3491–3494CrossRefGoogle Scholar
  15. Guyer R, McCall K, Van Den Abeele K (1998) Slow elastic dynamics in a resonant bar of rock. Geophys Res Lett 25(10):1585–1588CrossRefGoogle Scholar
  16. Hamilton M (1986) Fundamentals and applications of nonlinear acoustics, in nonlinear wave propagation in mechanics. The American Society of Mechanical Engineers, New YorkGoogle Scholar
  17. Haupert S, Guerard S, Peyrin F, Mitton D, Laugier P (2014) Non destructive characterization of cortical bone micro-damage by nonlinear resonant ultrasound spectroscopy. PLoS One 9(1):e83,599CrossRefGoogle Scholar
  18. Hyllengren F (2001) Tech. Rep. No. TEK01-0022, C.S.M. Materialteknik, LinköpingGoogle Scholar
  19. Jin J, Moreno MG, Riviere J, Shokouhi P (2017) Impact-based nonlinear acoustic testing for characterizing distributed damage in concrete. J Nondestruct Eval 36(3):51CrossRefGoogle Scholar
  20. Johnson P, Sutin A (2005) Slow dynamics and anomalous nonlinear fast dynamics in diverse solids. J Acoust Soc Am 117:124CrossRefGoogle Scholar
  21. Johnson P, Zinszner B, Rasolofosaon P (1996) Resonance and elastic nonlinear phenomena in rock. J Geophys Res 101(B5):11,553–11,564CrossRefGoogle Scholar
  22. Johnson P, Zinszner B, Rasolofosaon P, Cohen-Tenoudji F, Van Den Abeele K (2004) Dynamic measurements of the nonlinear elastic parameter α in rock under varying conditions. J Geophys Res 109(B2):B02,202CrossRefGoogle Scholar
  23. Kawashima K, Murase M, Yamada R, Matsushima M, Uematsu M, Fujita F (2006) Nonlinear ultrasonic imaging of imperfectly bonded interfaces. Ultrasonics 44:e1329–e1333CrossRefGoogle Scholar
  24. Kazakov V, Sutin A, Johnson P (2002) Sensitive imaging of an elastic nonlinear wave-scattering source in a solid. Appl Phys Lett 81:646CrossRefGoogle Scholar
  25. Kim J, Jacobs L, Qu J (2011) Nonlinear ultrasonic techniques for nondestructive damage assessment in metallic materials. In: Fu-Kuo Chang (ed) 8th International workshop on structural health monitoring 2011: condition-based maintenance and intelligent structures. Department of Aeronautics and Astronautics, Stanford University, DEStech Publications, IncorporatedGoogle Scholar
  26. Korotkov A, Sutin A (1994) Modulation of ultrasound by vibrations in metal constructions with cracks. Acoust Lett 18(4):59–62Google Scholar
  27. Landau LD, Lifshitz EM (1959) Theory of elasticity. Pergamon, TarrytownzbMATHGoogle Scholar
  28. Lawn D, Brian R (1998) Nonlinear stress-strain curves for solids containing closed cracks with friction. J Mech Phys Solids 46(1):85–113CrossRefGoogle Scholar
  29. Lesnicki KJ, Kim JY, Kurtis KE, Jacobs LJ (2011) Characterization of asr damage in concrete using nonlinear impact resonance acoustic spectroscopy technique. NDT & E Int 44(8):721–727CrossRefGoogle Scholar
  30. Mason W (1969) Internal friction mechanism that produces an attenuation in the earth’s crust proportional to the frequency. J Geophys Res 74(20):4963–4966CrossRefGoogle Scholar
  31. Matzkanin G (1999) Heat damage in graphite epoxy composites: degradation, measurement and detection. J Nondestruct Test Ultrason (Germany) 4(3). https://www.ndt.net/article/v04n03/ntiac/ntiac.htm
  32. Mavko G (1979) Frictional attenuation: an inherent amplitude dependence. J Geophys Res 84(B9):4769–4775CrossRefGoogle Scholar
  33. McCall K, Guyer R (1994) Equation of state and wave propagation in hysteretic nonlinear elastic materials. J Geophys Res 99(B12):23CrossRefGoogle Scholar
  34. Mix PE (2005) Introduction to nondestructive testing: a training guide, 2nd edn. Wiley, HobokenGoogle Scholar
  35. Morris W, Buck O, Inman R (1979) Acoustic harmonic generation due to fatigue damage in high-strength aluminum. J Appl Phys 50(11):6737–6741CrossRefGoogle Scholar
  36. Muller M, Renaud G (2011) Nonlinear acoustics for non-invasive assessment of bone micro-damage. In: Bone quantitative ultrasound. Springer, Dordrecht, pp 381–408Google Scholar
  37. Nagy P (1998) Fatigue damage assessment by nonlinear ultrasonic materials characterization. Ultrasonics 36(1–5):375–381CrossRefGoogle Scholar
  38. Nazarov V, Radostin A (2015) Nonlinear acoustic waves in micro-inhomogeneous solids. Wiley, HobokenGoogle Scholar
  39. Pecorari C (2003) Nonlinear interaction of plane ultrasonic waves with an interface between rough surfaces in contact. J Acoust Soc Am 113:3065CrossRefGoogle Scholar
  40. Pecorari C (2004) Adhesion and nonlinear scattering by rough surfaces in contact: beyond the phenomenology of the preisach-mayergoyz framework. J Acoust Soc Am 116:1938–1947CrossRefGoogle Scholar
  41. Rayleigh B (1896) The theory of sound. Macmillan, LondonzbMATHGoogle Scholar
  42. Schmerr LW (2016) Probability of detection and reliability. Springer International Publishing, Cham, pp 685–695Google Scholar
  43. Sharma M, Tutuncu A (1994) Grain contact adhesion hysteresis: a mechanism for attenuation of seismic waves. Geophys Res Lett 21(21):2323–2326CrossRefGoogle Scholar
  44. Shkolnik I (1993) Nondestructive testing of concretes: new aspects. Nondestruct Test Eval 10(6):351–358CrossRefGoogle Scholar
  45. Solodov I, Busse G (2007) Nonlinear air-coupled emission: the signature to reveal and image microdamage in solid materials. Appl Phys Lett 91(251):910Google Scholar
  46. Sutin A, Donskoy D (1998) Vibro-acoustic modulation nondestructive evaluation technique. In: Proceedings of SPIE, vol 3397. International Society for Optics and Photonics, p 226Google Scholar
  47. Sutin A, Delclos C, Lenclud M (1995) Investigations of the second harmonic generation due to cracks in large carbon electrodes. In: Proceeding of the 2nd international symposium on acoustical and vibratory surveillance methods and diagnostic techniques, Senlis, pp 725–735Google Scholar
  48. Sutin A, Johnson P, TenCate J (2003) Development of nonlinear time reversed acoustics (nltra) for applications to crack detection in solids. In: Proceedings of the word congress of ultrasonics, pp 7–10Google Scholar
  49. Taylor R (2011) Fiber composite aircraft-capability and safety. http://www.atsb.gov.au/media/27758/ar2007021.pdf
  50. Ten Cate J, Shankland T (1996) Slow dynamics in the nonlinear elastic response of Berea sandstone. Geophys Res Lett 23(21):3019–3022CrossRefGoogle Scholar
  51. Van Damme B, Van Den Abeele K (2014) The application of nonlinear reverberation spectroscopy for the detection of localized fatigue damage. J Nondestruct Eval 33(2):263–268Google Scholar
  52. Van Den Abeele K, De Visscher J (2000) Damage assessment in reinforced concrete using spectral and temporal nonlinear vibration techniques. Cem Concr Res 30(9):1453–1464CrossRefGoogle Scholar
  53. Van Den Abeele K, Johnson P, Guyer R, McCall K (1997) On the quasi-analytic treatment of hysteretic nonlinear response in elastic wave propagation. J Acoust Soc Am 101:1885–1898CrossRefGoogle Scholar
  54. Van Den Abeele K, Carmeliet J, TenCate J, Johnson P (2000a) Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part II: single-mode nonlinear resonance acoustic spectroscopy. Res Nondestruct Eval 12(1):31–42CrossRefGoogle Scholar
  55. Van Den Abeele K, Johnson P, Sutin A (2000b) Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part I: nonlinear wave modulation spectroscopy (NWMS). Res Nondestruct Eval 12(1):17–30CrossRefGoogle Scholar
  56. Van Den Abeele K, Carmeliet J, Johnson P, Zinszner B (2002) Influence of water saturation on the nonlinear elastic mesoscopic response in earth materials and the implications to the mechanism of nonlinearity. J Geophys Res 107(6):2121CrossRefGoogle Scholar
  57. Van Den Abeele K, Carmeliet J, Van De Velde K (2004a) Inferring the degradation of pultruded composites from dynamic nonlinear resonance measurements. Polym Compos 22(4):555–567CrossRefGoogle Scholar
  58. Van Den Abeele K, Schubert F, Aleshin V, Windels F, Carmeliet J (2004b) Resonant bar simulations in media with localized damage. Ultrasonics 42(1–9):1017–1024CrossRefGoogle Scholar
  59. Van Den Abeele K, Katkowski T, Wilkie-Chancellier N, Desadeleer W (2006) Laboratory experiments using nonlinear elastic wave spectroscopy (NEWS): a precursor to health monitoring applications in aeronautics, cultural heritage, and civil engineering. In: Universality of nonclassical nonlinearity, Springer, New York, pp 389–409Google Scholar
  60. Van Den Abeele K, Le Bas P, Van Damme B, Katkowski T (2009) Quantification of material nonlinearity in relation to microdamage density using nonlinear reverberation spectroscopy: experimental and theoretical study. J Acoust Soc Am 126:963CrossRefGoogle Scholar
  61. Vanaverbeke S, Van Den Abeele K (2006) Multiscale approach for simulating nonlinear wave propagation in materials with localized microdamage. In: AIP conference proceedings, vol 838, p 91Google Scholar
  62. Walsh J (1966) Seismic wave attenuation in rock due to friction. J Geophys Res 71(10):2591–2599CrossRefGoogle Scholar
  63. Zagrai A, Donskoy D, Chudnovsky A, Golovin E (2008) Micro-and macroscale damage detection using the nonlinear acoustic vibro-modulation technique. Res Nondestruct Eval 19(2):104–128CrossRefGoogle Scholar
  64. Zhang J (2016) Defect detection, classification, and characterization using ultrasound. In: Structural health monitoring (SHM) in aerospace structures. Elsevier, Amsterdam, pp 307–323CrossRefGoogle Scholar
  65. Zumpano G, Meo M (2007) A new nonlinear elastic time reversal acoustic method for the identification and localisation of stress corrosion cracking in welded plate-like structures-a simulation study. Int J Solids Struct 44(11–12):3666–3684CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Empa, Swiss Federal Laboratories for Materials Science and TechnologyDubendorfSwitzerland
  2. 2.Physics, Kulak Kortrijk CampusKortrijkBelgium

Section editors and affiliations

  • Ida Nathan
    • 1
  • Norbert Meyendorf
    • 2
  1. 1.Department of Electrical and Computer EngineeringUniversity of AkronAkronUSA
  2. 2.Center for Nondestructive EvaluationIowa State UniversityAmesUSA

Personalised recommendations