Positron Annihilation

  • Luca Chiari
  • Masanori FujinamiEmail author
Reference work entry


Positron annihilation spectroscopy is a nondestructive technique that has been extensively applied in recent decades to detect the presence of vacancy-type defects in a large variety of materials. It is particularly suitable to investigate the size and concentration of vacancy-type defects at various depths in metals, alloys, semiconductors, porous materials, and polymers. In this chapter, the main experimental techniques that take advantage of positron annihilation are reviewed, the data analysis procedures are discussed, and the information obtained in this kind of measurements is described. Typical applications of these methods are illustrated through examples of investigations on various kinds of materials. Advantages, present limitations, and potential future developments of these techniques are discussed in detail.


  1. Ackermann U, Egger W, Sperr P, Dollinger G (2015) Time- and energy-resolution measurements of BaF2, BC-418, LYSO and CeBr3 scintillators. Nucl Instrum Methods Phys Res A 768:5–11CrossRefGoogle Scholar
  2. Alatalo M, Barbiellini B, Hakala M, Kauppinen H, Korhonen T, Puska MJ, Saarinen K, Hautojärvi P, Nieminen RM (1996) Theoretical and experimental study of positron annihilation with core electrons in solids. Phys Rev B 54:2397–2409CrossRefGoogle Scholar
  3. Anderson CD (1933) The positive electron. Phys Rev 43:491–494MathSciNetCrossRefGoogle Scholar
  4. Asoka-Kumar P, Alatalo M, Ghosh VJ, Kruseman AC, Nielsen B, Lynn KG (1996) Increased elemental specificity of positron annihilation spectra. Phys Rev Lett 77:2097–2100CrossRefGoogle Scholar
  5. Bečvář F, Čížek J, Procházka I (2008) High-resolution positron lifetime measurement using ultra fast digitizers Acqiris DC211. Appl Surf Sci 255:111–114CrossRefGoogle Scholar
  6. Bell RE, Graham RL (1953) Time distribution of positron annihilation in liquids and solids. Phys Rev 90:644–654CrossRefGoogle Scholar
  7. Beringer R, Montgomery CG (1942) The angular distribution of positron annihilation radiation. Phys Rev 61:222–224CrossRefGoogle Scholar
  8. Bertolaccini L, Zappa S (1967) Source-supporting foil effect on the shape of positron time annihilation spectra. Nuovo Cimento B 52:487–494CrossRefGoogle Scholar
  9. Bertolaccini M, Bisi A, Gambarini G, Zappa L (1971) Positron states in ionic media. J Phys C 4:734CrossRefGoogle Scholar
  10. Brandt W (1974) Positron dynamics in solids. Appl Phys 5:1–23CrossRefGoogle Scholar
  11. Brandt W, Paulin R (1977) Positron implantation-profile effects in solids. Phys Rev B 15:2511–2518CrossRefGoogle Scholar
  12. Chadi DJ, Chang KJ (1988) Metastability of the isolated arsenic-antisite defect in GaAs. Phys Rev Lett 60:2187–2190CrossRefGoogle Scholar
  13. Charlton M, Humberston JW (eds) (2001) Positron physics. Cambridge University Press, New YorkGoogle Scholar
  14. Chen Z, Ito K, Yanagishita H, Oshima N, Suzuki R, Kobayashi Y (2011) Correlation study between free-volume holes and molecular separations of composite membranes for reverse osmosis processes by means of variable-energy positron annihilation techniques. J Phys Chem C 115:18055–18060CrossRefGoogle Scholar
  15. Coleman PG (ed) (2000) Positron beams and their applications. World Scientific, SingaporeGoogle Scholar
  16. Connors DC, West RN (1969) Positron annihilation and defects in metals. Phys Lett A 30:24–25CrossRefGoogle Scholar
  17. Dabrowski J, Scheffler M (1988) Theoretical evidence for an optically inducible structural transition of the isolated As antisite in GaAs: identification and explanation of EL2? Phys Rev Lett 60:2183–2186CrossRefGoogle Scholar
  18. Dirac PAM (1928) The quantum theory of the electron. Proc R Soc A 117:610–624zbMATHCrossRefGoogle Scholar
  19. Eldrup M, Lightbody D, Sherwood NJ (1981) The temperature dependence of positron lifetimes in solid pivalic acid. Chem Phys 63:51–58CrossRefGoogle Scholar
  20. Ferrell RA (1956) Theory of positron annihilation in solids. Rev Mod Phys 28:308–337CrossRefGoogle Scholar
  21. Fong C, Dong AW, Hill AJ, Boyd BJ, Drummond CJ (2015) Positron annihilation lifetime spectroscopy (PALS): a probe for molecular organisation in self-assembled biomimetic systems. Phys Chem Chem Phys 17:17527CrossRefGoogle Scholar
  22. Fujinami M (1996) Oxygen-related defects in Si studied by variable-energy positron annihilation spectroscopy. Phys Rev B 53:13047–13050CrossRefGoogle Scholar
  23. Fujinami M, Miyagoe T, Sawada T, Akahane T (2003) Improved depth profiling with slow positrons of ion implantation-induced damage in silicon. J Appl Phys 94:4382–4388CrossRefGoogle Scholar
  24. Fujioka T, Oshima N, Suzuki R, Price WE, Nghiem LD (2015) Probing the internal structure of reverse osmosis membranes by positron annihilation spectroscopy: gaining more insight into the transport of water and small solutes. J Membr Sci 486:106–118CrossRefGoogle Scholar
  25. Ghosh VJ, Alatalo M, Asoka-Kumar P, Nielsen B, Lynn KG, Kruseman AC, Mijnarends PE (2000) Calculation of the Doppler broadening of the electron-positron annihilation radiation in defect-free bulk materials. Phys Rev B 61:10092–10099CrossRefGoogle Scholar
  26. Gidley DW, Peng HG, Vallery RS (2006) Positron annihilation as a method to characterize porous materials. Annu Rev Mater Res 36:49–79CrossRefGoogle Scholar
  27. Greif H, Haaks M, Holzwarth U, Männig U, Tongbhoyai M, Wider T, Maier K, Bihr J, Huber B (1997) High resolution positron-annihilation spectroscopy with a new positron microprobe. Appl Phys Lett 71:2115CrossRefGoogle Scholar
  28. Guagliardo PR, Vance ER, Zhang Z, Davis J, Williams JF, Samarin SN (2012) Positron annihilation lifetime studies of Nb-doped TiO2, SnO2, and ZrO2. J Am Ceram Soc 95:1727CrossRefGoogle Scholar
  29. Guo WF, Chen XL, Du HJ, Weng HM, Ye BJ (2009) Positron annihilation in carbon nanotubes. In: Wang SJ, Chen ZQ, Wang B, Jean YC (eds) Materials science forum. Trans Tech Publications, Churerstrasse, pp 198–200Google Scholar
  30. Hagiwara K, Ougizawa T, Inoue T, Hirata K, Kobayashi Y (2000) Studies on the free volume and the volume expansion behavior of amorphous polymers. Radiat Phys Chem 58:525–530CrossRefGoogle Scholar
  31. Hautojärvi P (ed) (1979) Positrons in solids. Springer, BerlinGoogle Scholar
  32. Hodges CH (1970) Trapping of positrons at vacancies in metals. Phys Rev Lett 25:284–287CrossRefGoogle Scholar
  33. Jean YC, Mallon PE, Schrader DM (eds) (2003) Principles and applications of positron & positronium chemistry. World Scientific, SingaporeGoogle Scholar
  34. Jean YC, Van Horn JD, Hung WS, Lee KR (2013) Perspective of positron annihilation spectroscopy in polymers. Macromolecules 46:7133–7145CrossRefGoogle Scholar
  35. Kaminska M, Weber R (1993) EL2 defect in GaAs. In: Weber ER (ed) Semiconductors and semimetals, vol 38. Academic, New York, pp 59–89Google Scholar
  36. Kansy J (1996) Microcomputer program for analysis of positron annihilation lifetime spectra. Nucl Instrum Methods Phys Res A 374:235–244CrossRefGoogle Scholar
  37. Kirkegaard P, Eldrup M (1972) POSITRONFIT: a versatile program for analysing positron lifetime spectra. Comput Phys Commun 3:240–255CrossRefGoogle Scholar
  38. Kirkegaard P, Eldrup M (1974) Positronfit extended: a new version of a program for analysing position lifetime spectra. Comput Phys Commun 7:401–409CrossRefGoogle Scholar
  39. Knoll GF (2000) Radiation detection and measurement. Wiley, New YorkGoogle Scholar
  40. Krause R, Saarinen K, Hautojärvi P, Polity A, Gärtner G, Corbel C (1990) Observation of a monovacancy in the metastable state of the EL2 defect in GaAs by positron annihilation. Phys Rev Lett 65:3329–3332CrossRefGoogle Scholar
  41. Krause-Rehberg R, Leipner HS (1997) Determination of absolute vacancy concentrations in semiconductors by means of positron annihilation. Appl Phys A Mater Sci Process 64:457Google Scholar
  42. Krause-Rehberg R, Leipner HS (eds) (1999) Positron annihilation in semiconductors: defect studies. Springer, HeidelbergGoogle Scholar
  43. Kršjak V, Slugen V, Mikloš M, Petriska M, Ballo P (2008) Application of positron annihilation spectroscopy on the ion implantation damaged Fe–Cr alloys. Appl Surf Sci 255:153–156CrossRefGoogle Scholar
  44. Kumar N, Sanyal D, Sundaresan A (2009) Defect induced ferromagnetism in MgO nano-particles studied by optical and positron annihilation spectroscopy. Chem Phys Lett 477:360–364CrossRefGoogle Scholar
  45. Lahtinen J, Vehanen A, Huomo H, Mäkinen J, Huttunen P, Rytsölä K, Bentzon M, Hautojärvi P (1986) High-intensity variable-energy positron beam for surface and near-surface studies. Nucl Instrum Methods Phys Res B 17:73–80CrossRefGoogle Scholar
  46. Lee KP, Arnot TC, Mattia D (2011) A review of reverse osmosis membrane materials for desalination – development to date and future potential. J Membr Sci 370:1–22CrossRefGoogle Scholar
  47. Lynn KG, Kong Y (1992) Positron surface states. Solid State Phenom 28–29:275–292CrossRefGoogle Scholar
  48. Lynn KG, Frieze WE, Schultz PJ (1984) Measurement of the positron surface-state lifetime for Al. Phys Rev Lett 52:1137–1140CrossRefGoogle Scholar
  49. Maekawa M, Kawasuso A (2008) Construction of a positron microbeam in JAEA. Appl Surf Sci 255:39–41CrossRefGoogle Scholar
  50. Makkonen I, Puska MJ (2007) Energetics of positron states trapped at vacancies in solids. Phys Rev B 76:054119CrossRefGoogle Scholar
  51. Mallon PE, Schrader DM (eds) (2003) Principles and applications of positron & positronium chemistry. World Scientific, SingaporeGoogle Scholar
  52. Manninen M, Nieminen RM (1981) Positron detrapping from defects: a thermodynamic approach. Appl Phys A Mater Sci Process 26:93–100CrossRefGoogle Scholar
  53. Mogensen OE (ed) (1995) Positron annihilation in chemistry. Springer, BerlinGoogle Scholar
  54. Myler U, Simpson PJ (1997) Survey of elemental specificity in positron annihilation peak shapes. Phys Rev B 56:14303–14309CrossRefGoogle Scholar
  55. Nagai Y, Hasegawa M, Tang Z, Hempel A, Yubuta K, Shimamura T, Kawazoe Y, Kawai A, Kano F (2000) Positron confinement in ultrafine embedded particles: quantum-dot-like state in an Fe-Cu alloy. Phys Rev B 61:6574–6578CrossRefGoogle Scholar
  56. Nakanishi H, Wang SJ, Jean YC (1988) Microscopic surface tension studied by positron annihilation. In: Sharma SC (ed) Positron annihilation studies of fluids. Word Scientific, Singapore, pp 292–298Google Scholar
  57. Nieminen R, Manninen M (1974) Positron surface states in metals. Solid State Commun 15:403–406CrossRefGoogle Scholar
  58. Ohkubo H, Tang Z, Nagai Y, Hasegawa M, Tawara T, Kiritani M (2003) Positron annihilation study of vacancy-type defects in high-speed deformed Ni, Cu and Fe. Mater Sci Eng A 350:95–101CrossRefGoogle Scholar
  59. Oka T, Jinno S, Fujinami M (2009) Analytical methods using a positron microprobe. Anal Sci 25:837–844CrossRefGoogle Scholar
  60. Olsen JV, Kirkegaard P, Pedersen NJ, Eldrup M (2007) PALSfit: a new program for the evaluation of positron lifetime spectra. Phys Status Solidi C 4:4004–4006CrossRefGoogle Scholar
  61. Oshima N, Suzuki R, Ohdaira T, Kinomura A, Kubota S, Watanabe H, Tenjinbayashi K, Uedono A, Fujinami M (2011) Imaging of the distribution of average positron lifetimes by using a positron probe microanalyzer. J Phys Conf Ser 262:012044CrossRefGoogle Scholar
  62. Petersen K, Thrane N, Cotterill RMJ (1974) A positron annihilation study of the annealing of, and void formation in, neutron-irradiated molybdenum. Philos Mag 29:9–23CrossRefGoogle Scholar
  63. Puska MJ, Nieminen RM (1994) Theory of positrons in solids and on solid surfaces. Rev Mod Phys 66:841–897CrossRefGoogle Scholar
  64. Puska MJ, Corbel C, Nieminen RM (1990) Positron trapping in semiconductors. Phys Rev B 41:9980–9993CrossRefGoogle Scholar
  65. Puska MJ, Šob M, Brauer G, Korhonen T (1994) First-principles calculation of positron lifetimes and affinities in perfect and imperfect transition-metal carbides and nitrides. Phys Rev B 49:10947–10957CrossRefGoogle Scholar
  66. Reurings F, Laakso A (2007) Analysis of the time resolution of a pulsed positron beam. Phys Status Solidi C 4:3965–3968CrossRefGoogle Scholar
  67. Saarinen K, Kuisma S, Hautojärvi P, Corbel C, LeBerre C (1994) Metastable vacancy in the EL2 defect in GaAs studied by positron-annihilation spectroscopies. Phys Rev B 49:8005–8016CrossRefGoogle Scholar
  68. Saarinen K, Hautojärvi P, Corbel C (1998) Positron annihilation spectroscopy of defects in semiconductors. In: Stavola M (ed) Identification of defects in semiconductors, vol 51A. Academic, San Diego, pp 209–285CrossRefGoogle Scholar
  69. Saito H, Nagashima Y, Kurihara T, Hyodo T (2002) A new positron lifetime spectrometer using a fast digital oscilloscope and BaF2 scintillators. Nucl Instrum Methods Phys Res A 487:612–617CrossRefGoogle Scholar
  70. Schrader DM, Jean YC (1983) Positron and positronium chemistry. Elsevier, AmsterdamGoogle Scholar
  71. Schultz PJ (1988) A variable-energy positron beam for low to medium energy research. Nucl Instrum Methods Phys Res B 30:94–104CrossRefGoogle Scholar
  72. Schultz PJ, Lynn KG (1988) Interaction of positron beams with surfaces, thin films, and interfaces. Rev Mod Phys 60:701–779CrossRefGoogle Scholar
  73. Seeger A (1974) The study of defects in crystals by positron annihilation. Appl Phys 4:183–199CrossRefGoogle Scholar
  74. Siegel RW (1980) Positron-annihilation spectroscopy. Annu Rev Mater Sci 10:393–425CrossRefGoogle Scholar
  75. Singh AN (2016) Positron annihilation spectroscopy in tomorrow’s material defect studies. Appl Spectrosc Rev 51:359–378CrossRefGoogle Scholar
  76. Stanja J, Hergenhahn U, Niemann H, Paschkowski N, Sunn Pedersen T, Saitoh H, Stenson EV, Stoneking MR, Hugenschmidt C, Piochacz C (2016) Characterization of the NEPOMUC primary and remoderated positron beams at different energies. Nucl Instrum Methods Phys Res A 827:52–62CrossRefGoogle Scholar
  77. Stewart AT (1957) Momentum distribution of metallic electrons by positron annihilation. Can J Phys 35:168–183CrossRefGoogle Scholar
  78. Suzuki R, Kobayashi Y, Mikado T, Ohgaki H, Chiwaki M, Yamazaki T, Tomimasu T (1991) Slow positron pulsing system for variable energy positron lifetime spectroscopy. Jpn J Appl Phys 30:L532–L534CrossRefGoogle Scholar
  79. Tao SJ (1972) Positronium annihilation in molecular substances. J Chem Phys 56:5499–5510CrossRefGoogle Scholar
  80. Toyama T, Tang Z, Inoue K, Chiba T, Ohkubo T, Hono K, Nagai Y, Hasegawa M (2012) Size estimation of embedded Cu nanoprecipitates in Fe by using affinitively trapped positrons. Phys Rev B 86:104106CrossRefGoogle Scholar
  81. Tuomisto F, Makkonen I (2013) Defect identification in semiconductors with positron annihilation: experiment and theory. Rev Modern Phys 85:1583–1631CrossRefGoogle Scholar
  82. van Veen A, Schut H, de Vries J, Hakvoort RA, Ijpma MR (1991) Analysis of positron profiling data by means of “VEPFIT”. AIP Conf Proc 218:171–198CrossRefGoogle Scholar
  83. Vehanen A, Hautojärvi P, Johansson J, Yli-Kauppila J, Moser P (1982) Vacancies and carbon impurities in α-iron: electron irradiation. Phys Rev B 25:762–780CrossRefGoogle Scholar
  84. West R (1979) Positron studies of lattice defects in metals. In: Hautojärvi P (ed) Positrons in solids. Springer, Berlin, pp 89–144CrossRefGoogle Scholar
  85. Yu Y (2011) Positron annihilation lifetime spectroscopy studies of amorphous and crystalline molecular materials. Dissertation, Martin-Luther-Universität Halle-WittenbergGoogle Scholar
  86. Zecca A (2002) Positron beam development and design. Appl Surf Sci 194:4–12CrossRefGoogle Scholar
  87. Ziegler JF, Biersack JP, Littmark U (1985) The stopping and range of ions in solids. Pergamon, New YorkGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Applied Chemistry and BiotechnologyGraduate School of Engineering, Chiba UniversityChibaJapan

Section editors and affiliations

  • Ida Nathan
    • 1
  • Norbert Meyendorf
    • 2
  1. 1.Department of Electrical and Computer EngineeringUniversity of AkronAkronUSA
  2. 2.Center for Nondestructive EvaluationIowa State UniversityAmesUSA

Personalised recommendations