Grazing Incidence X-Ray Reflectivity and Scattering

  • Brian K. TannerEmail author
Reference work entry


The nondestructive evaluation (NDE) technique of grazing incidence X-ray reflectivity is described and set in its historical context. Use of X-ray reflectivity to determine near-surface density is described and the determination of surface interface width presented. It is shown how measurement of the diffuse scatter is necessary in order to distinguish topological surface roughness from compositional grading, as both effects have an identical effect on the true specular scatter. Metrology of single and multiple films is presented, and it is shown how automated fitting of model structures enables the user to extract film thickness with a precision of typically 20 pm. It is demonstrated that the limits of film thickness suitable for such metrology are between 2 nm and 1 μm on flat and smooth substrates. In the context of use of X-ray reflectivity as an NDE technique in a manufacturing environment, there is discussion of approaches to very rapid data collection.


  1. Allain M, Benattar JJ, Rieutord F, Robin P (1987) Surface study of Langmuir-Blodgett films by electron microscopy and X-ray reflectivity. Europhys Lett 3:309–314CrossRefGoogle Scholar
  2. Anastasiadis SH, Russell TP, Satija SK, Majkrzak CF (1989) Neutron reflectivity studies of the surface-induced ordering of diblock copolymer films. Phys Rev Lett 62:1852–1855CrossRefGoogle Scholar
  3. Arakawa E, Voegeli W, Matsushita T, Yano YF, Hatano T (2013) Quick X-ray reflectometry in the simultaneous multiple angle-wavelength dispersive mode. J Phys Conf Ser 425:092002CrossRefGoogle Scholar
  4. Baribeau JM (1993) X-ray reflectometry study of interdiffusion in Si/Ge heterostructures. J Appl Phys 74:3805–3810CrossRefGoogle Scholar
  5. Berman D, Dikopoltsev A (2004) X-ray reflectometry of thin film layers with increased accuracy. US Patent Application No. US 2004/0131151 A1Google Scholar
  6. Bhattacharya M, Mukherjee M, Sanyal M, Geue T, Grenzer J, Pietsch U (2003) Energy dispersive x-ray reflectivity technique to study thermal properties of polymer films. J Appl Phys 94:2882–2887CrossRefGoogle Scholar
  7. Bjorck M, Andersson G (2007) GenX: an extensible X-ray reflectivity refinement program utilizing differential evolution. J Appl Cryst 40:1174–1178CrossRefGoogle Scholar
  8. Blundell SJ, Bland JAC (1992) Polarized neutron reflection as a probe of magnetic films and multilayers. Phys Rev B 46:3391–3400CrossRefGoogle Scholar
  9. Bosio L, Benattar JJ, Rieutford F (1987) X-ray reflectivity of a Langmuir monolayer on water. Rev Phys Appl 22:775–778CrossRefGoogle Scholar
  10. Bowen DK, Tanner BK (2006) X-ray metrology in semiconductor manufacturing. CRC Press, Taylor and Francis, Bocca Raton, p 279Google Scholar
  11. Chason E, Mayer TM (1997) Thin film and surface characterization by specular X-ray reflectivity. Crit Rev Solid State Mater Sci 22:1–67CrossRefGoogle Scholar
  12. Chason E, Warwick DT (1991) X-ray reflectivity measurements of surface roughness using energy dispersive detection. Mater Res Soc Symp Proc 208:151–356Google Scholar
  13. Chason E, Mayer TM, Payne A, Wu D (1992) In-situ energy dispersive X-ray reflectivity measurements of H ion bombardments on SiO2/Si and Si. Appl Phys Lett 60:2353–2355CrossRefGoogle Scholar
  14. Chen H, Heald MJ (1989) Concentration profiling using X-ray reflectivity – application to Cu-Al interfaces. J Appl Phys 66:1793–1799CrossRefGoogle Scholar
  15. Clarke J, Pape I, Normile P, Tanner BK (2003) X-ray scattering from uniform and patterned indium tin oxide thin films. J Phys D Appl Phys 36:A209–A213CrossRefGoogle Scholar
  16. Cole A, Hickey BJ, Hase TPA, Buchanan JDR, Tanner BK (2004) Influence of the interfacial roughness on the electron channelling in Fe/Au(001) multilayers. J Phys Condens Matter 16:1197–1209CrossRefGoogle Scholar
  17. Cubitt R, Fragneto G (2002) D17: the new reflectometer at the ILL. Appl Phys A Mater Sci Process 74:S329–S331CrossRefGoogle Scholar
  18. Dane AD, Veldhuis A, de Boer DKG, Leenaers AJG, Buydens LMC (1998) Application of genetic algorithms for characterization of thin layered materials by glancing incidence X-ray reflectometry. Physica B 253:254–268CrossRefGoogle Scholar
  19. De Boer DKG (1994) Influence of the roughness profile on the specular reflectivity of X-rays and neutrons. Phys Rev B 49:5817–5820CrossRefGoogle Scholar
  20. De Boer DKG (1996) X-ray scattering and X-ray fluorescence from materials with rough interfaces. Phys Rev B 53:6048–6064CrossRefGoogle Scholar
  21. Ferrari AC, Li Bassi A, Tanner BK, Stolojan V, Yuan J, Brown LM, Rodil SE, Kleinsorge B, Robertson J (2000) Density, sp3 fraction, and cross-sectional structure of amorphous carbon films determined by X-ray reflectivity and electron energy-loss spectroscopy. Phys Rev B 61:11089–11103CrossRefGoogle Scholar
  22. Huang TC, Nozieres JP, Speriosu VS, Lefakis H, Gurney BA (1992) X-ray reflectivity analysis of giant-magnetoresistance spin-valve layered structures. Appl Phys Lett 60:1573–1575CrossRefGoogle Scholar
  23. Huang TC, Nozieres JP, Speriosu VS, Gurney BA, Lefakis H (1993) Effect of annealing on the interfaces of giant-magnetoresistance spin-valve structures. Appl Phys Lett 62:1478–1480CrossRefGoogle Scholar
  24. Hudson JM, Tanner BK (1992) Characterization of magnetic multilayers by grazing incidence X-ray reflectivity. IEEE Trans Magn 28:2736–2741CrossRefGoogle Scholar
  25. Hudson JM, Powell AR, Bowen DK, Wormington M, Tanner BK, Kubiak RA, Parker EHC (1992) Thermal degradation of SiGe interfaces studied by X-ray reflectivity and diffraction. Mater Res Soc Symp Proc 239:455–460Google Scholar
  26. Isherwood BJ (1977) Characterization of thin-films by X-ray diffraction. GEC J Sci Technol 43:111–124Google Scholar
  27. Kiessig H (1930) Interferenz von Röntgenstrahlen an dünnen Schichten [Interference of X-rays on thin layers]. Naturwissenschaften 18:847–848CrossRefGoogle Scholar
  28. Kiessig H (1931a) Untershungen zur total reflexion von Röntgenstrahlen. Ann Phys 10:715–768CrossRefGoogle Scholar
  29. Kiessig H (1931b) Interferenz von Röntgenstrahlen an dünnen Schichten. Ann Phys 10:769–788CrossRefGoogle Scholar
  30. Koenig BW, Kruger S, Orts WJ, Majkrzak CF, Berk NF, Silverston JV, Gawrisch K (1996) Neutron reflectivity and atomic force microscopy studies of a lipid bilayer in water adsorbed to the surface of a silicon crystal. Langmuir 12:1343–1350CrossRefGoogle Scholar
  31. Kunz K, Reiter J, Gotzelmann A, Stamm M (1993) Model-free analysis of neutron reflectivity data from polymer thin-films with the simulated annealing technique. Macromolecules 26:4316–4323CrossRefGoogle Scholar
  32. Lewicky R, Herne TM, Tarlov MJ, Satija SK (1998) Using self-assembly to control the structure of DNA monolayers on gold: a neutron reflectivity study. J Am Chem Soc 120:9787–9792CrossRefGoogle Scholar
  33. LiBassi A, Ferrari AC, Stolojan V, Tanner BK, Robertson J, Brown LM (2000) Density, sp3 content and internal layering of DLC films by X-ray reflectivity and electron energy loss spectroscopy. Diamond Relat Mater 9:771–776CrossRefGoogle Scholar
  34. Lucas CA, Hatton PD, Bates S, Ryan TW, Miles S, Tanner BK (1988) Characterization of nanometer-scale epitaxial structures by grazing-incidence X-ray diffraction and specular reflectivity. J Appl Phys 63:1936–1941CrossRefGoogle Scholar
  35. Martinbouyer G, Dethy B (1982) Determination of the thickness of thin-films by the Kiessig fringe technique. Analusis 10:234–238Google Scholar
  36. Meekins JF, Cruddance RG, Gursky H (1986) Optimization of layered synthetic microstructures for narrowband reflectivity at soft X-ray and EUV wavelengths. Appl Optics 25:2757–2763CrossRefGoogle Scholar
  37. Michaelsen C, Ricardo P, Anders D, Schuster M, Schilling J, Goebel H (2000) Improved graded multilayer mirrors for XRD applications. Adv X-Ray Anal 42:308–320Google Scholar
  38. Mizusawa M, Sakurai K (2011) In-situ X-ray reflectivity measurement of polvinyl acetate thin films during glass transition. IOP Conf Ser Mater Sci Eng 24:012013CrossRefGoogle Scholar
  39. Naudon A, Chihab J, Goudeau P, Mimault J (1989) New apparatus for grazing X-ray reflectometry in the angle-resolved dispersive mode. J Appl Cryst 22:460–464CrossRefGoogle Scholar
  40. Nelson A (2006) Co-refinement of multiple-contrast neutron/X-ray reflectivity data using MOTOFIT. J Appl Cryst 39:273–276CrossRefGoogle Scholar
  41. Paci B, Generosi A, Rossi Albertini V, Perfetti P, de Bettignies R, Leroy J, Firon M, Sentein C (2006) Controlling photoinduced degradation in plastic photovoltaic cells: a time-resolved energy dispersive X-ray reflectometry study. Appl Phys Lett 89:043507CrossRefGoogle Scholar
  42. Pape I, Tanner BK, Wormington M (1999) Grazing incidence X-ray scattering measurement of silicate glass surfaces. J Non-Cryst Solids 248:75–83CrossRefGoogle Scholar
  43. Pape I, Lawrence CW, Roberts SG, Briggs GAD, Kolosov OV, Hey AW, Paine CF, Tanner BK (2000) Evaluation of polishing damage in alumina. Philos Mag A 80:1913–1934CrossRefGoogle Scholar
  44. Parratt LG (1954) Surface studies of solids by total reflection of X-rays. Phys Rev 95:359–369CrossRefGoogle Scholar
  45. Penfold J (1991) Instrumentation for neutron reflectivity. Physica B 173:1–10CrossRefGoogle Scholar
  46. Penfold J (2002) Neutron reflectivity and soft condensed matter. Curr Opin Colloid Interface Sci 7:139–147CrossRefGoogle Scholar
  47. Pym ATG, Lamperti A, Tanner BK, Dimopoulos T, Rührig M, Wecker J (2006) Interface sharpening in CoFeB magnetic tunnel junctions. Appl Phys Lett 88:162505CrossRefGoogle Scholar
  48. Regan MJ, Kawamoto EH, Lee S, Pershan PS, Maskil N, Deutsch M, Magnussen OM, Ocko BM, Berman LE (1995) Surface layering in liquid gallium. Phys Rev Lett 75:2498–2501CrossRefGoogle Scholar
  49. Rosen DL, Brown D, Gilfrith J, Burkhalter P (1988) Multilayer roughness evaluated by X-ray reflectivity. J Appl Cryst 21:136–144CrossRefGoogle Scholar
  50. Satchell N, Witt JDS, Burnell G, Curran PJ, Kinane CJ, Charlton TR, Langridge S, Cooper JFK (2017) Probing the spiral magnetic phase in 6 nm textured erbium using polarised neutron reflectometry. J Phys C Condens Matter 29:055801CrossRefGoogle Scholar
  51. Schuster M, Goebel H (1995) Parallel-beam coupling into channel-cut monochromators using curved graded multilayers. J Phys D Appl Phys 28:A270–A275CrossRefGoogle Scholar
  52. Schuster M, Goebel H (1996) Calculation of improvement to HRXRD system through-put using curved graded multilayers. J Phys D Appl Phys 29:1677–1679CrossRefGoogle Scholar
  53. Schuster M, Goebel H, Michaelsen C, Bormann R (2001) X-ray analysis apparatus with a graded multilayer mirror. US Patent US6226349Google Scholar
  54. Shindler JD, Suter RM (1992) Moderate resolution X-ray reflectivity. Rev Sci Instrum 63:5343–5347CrossRefGoogle Scholar
  55. Sinha SK, Sirota EB, Garoff S, Stanley HB (1988) X-ray and neutron scattering from rough surfaces. Phys Rev B 38:2297–2311CrossRefGoogle Scholar
  56. Soles CL, Lee HJ, Hedden RC, Liu DW, Bauer BJ, Wu WL (2003) X-ray porosimetry as a metrology to characterize the pore structure of low-k dielectric films. In: Seiler DG, Diebold AC, Shaffner TJ, McDonald R, Zollner S, Khosla RP, Secula EM (eds) Characterization and metrology for ULSI technology. AIP conference series 683. American Institute of Physics, Melville, pp 576–580Google Scholar
  57. Solookinejad G, Rozatian ASH, Habibi MH (2012) Investigation of sol-gel grown ZnO thin film: wavelet analysis and simulated annealing optimized X-ray reflectivity. In J Mod Phys 26:1250070CrossRefGoogle Scholar
  58. Stevens KH, Braueninger H, Kaase H, Metzdorf J (1986) Reflectivity measurements in the vacuum ultraviolet wavelength range on technical surfaces for the Wolter I telescope on board the X-ray astronomy satellite ROSAT. Astrophys Space Sci 125:169–174CrossRefGoogle Scholar
  59. Stoev K, Sakurai K (2011) Aberration effects in quick X-ray reflectivity of curved samples. IOP Conf Ser Mater Sci Eng 24:012014CrossRefGoogle Scholar
  60. Tanner BK (2015) X-ray scattering from spintronic structures. In: Xu Y, Awschalom DD, Nitta J (eds) Handbook of spintronics. Springer Science and Business Media, Dordrecht, pp 919–945Google Scholar
  61. Tanner BK, Miles SJ, Bowen DK, Hart L, Loxley N (1991) X-ray reflectometry from semiconductor surfaces and interfaces. Mater Res Soc Symp Proc 208:345–350CrossRefGoogle Scholar
  62. Tanner BK, Allwood DA, Mason NJ (2001) Kinetics of native oxide growth on epiready GaAs. Mater Sci Eng B 80:99–103CrossRefGoogle Scholar
  63. Tiilikainen J, Bosund V, Mattila M, Hakkarainen T, Sormunen J, Lipsanen H (2007a) Fitness function and nonunique solutions in X-ray reflectivity curve fitting: crosserror between surface roughness and mass density. J Phys D Appl Phys 40:4259–4263CrossRefGoogle Scholar
  64. Tiilikainen J, Bosund V, Tilli J-M, Sormunen J, Mattila M, Hakkarainen T, Lipsanen H (2007b) Genetic algorithm using independent component analysis in X-ray reflectivity curve fitting of periodic layer structures. J Phys D Appl Phys 40:6000–6004CrossRefGoogle Scholar
  65. Toney MF, Brennan S (1989) Measurements of carbon thin-films by X-ray reflectivity. J Appl Phys 66:1861–1863CrossRefGoogle Scholar
  66. Troughton JG, Downs P, Price R, Atkinson D (2017) Densification of a-IGZP with low-temperature annealing for flexible electronics applications. Appl Phys Lett 110:011903CrossRefGoogle Scholar
  67. Ulyanenkov A, Sobolewski S (2005) Extended genetic algorithm: application to X-ray analysis. J Phys D Appl Phys 38:A235–AA23CrossRefGoogle Scholar
  68. van der Lee AD, Salah F, Harzallah B (2007) A comparison of modern data analysis methods for X-ray and neutron specular reflectivity data. J Appl Cryst 40:820–833CrossRefGoogle Scholar
  69. Vaz CAF, Lauhoff G, Bland JAC, Langridge S, Bucknall D, Penfold J, Clarke J, Halder SK, Tanner BK (2007) Interface dependent magnetic moments in Cu/Co,Ni/Cu/Si(001) epitaxial structures. J Magn Magn Mater 313:89–97CrossRefGoogle Scholar
  70. Veldhuis SA, Brinks P, Stawski TM, Gobel OF, ten Elshof JE (2014) A facile method for the density determination of ceramic thin films using X-ray reflectivity. J Sol-Gel Sci Technol 71:118–128Google Scholar
  71. Voegeli W, Matsushita T, Arakawa E, Shirasawa T, Takahashi T, Yano YF (2013) A method for measuring the specular X-ray reflectivity with millisecond time resolution. J Phys Conf Ser 425:092003CrossRefGoogle Scholar
  72. Voegeli W, Kamezawa C, Arakawa E, Yano YF, Shirasawa TA, Takahashia T, Matsushita T (2017) A quick convergent-beam laboratory X-ray reflectometer using a simultaneous multiple-angle dispersive geometry. J Appl Cryst 50:570–575CrossRefGoogle Scholar
  73. Wainfan N, Parratt LG (1960) X-ray reflection studies of the anneal and oxidation of some thin solid films. J Appl Phys 31:1331–1337CrossRefGoogle Scholar
  74. Wainfan N, Scott NJ, Parratt LG (1959) Density measurements of some thin copper films. J Appl Phys 30:1604–1609CrossRefGoogle Scholar
  75. Wormington M, Pape I, Hase TPA, Tanner BK, Bowen DK (1996) Evidence of grading at polished surfaces from grazing incidence X-ray scattering. Philos Mag Lett 74:211–216CrossRefGoogle Scholar
  76. Wormington M, Panaccione C, Matney KM, Bowen DK (1999) Characterization of structures from X-ray scattering data using genetic algorithms. Philos Trans R Soc Lond A 357:2827–2848CrossRefGoogle Scholar
  77. Woronick SC, Yang BX, Krol A, Kao YH, Munekata H, Chang LL, Phillips JC (1987) X-ray reflectivity of InAs/GaAs heterostructures with surface and interface roughness. J Phys 48:51–56CrossRefGoogle Scholar
  78. Yokhin B, Dikopoltsev A, Mazor I, Berman D (2003) X-ray reflectometer. US Patent No. US 6,512,814 B2Google Scholar
  79. Yoneda Y (1963) Anomalous surface reflection of X-rays. Phys Rev 131:2010–2013CrossRefGoogle Scholar
  80. You H, Chiarello RP, Kim HK, Vandervoort KG (1993) X-ray reflectivity and scanning tunnelling microscopy study of kinetic roughening of sputter deposited gold films during growth. Phys Rev Lett 70:2900–2903CrossRefGoogle Scholar
  81. Zhang R, Somasundaran P (2006) Advances in adsorption of surfactants and their mixtures at solid/solution interfaces. Adv Colloid Interface Sci 123:213–229CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PhysicsDurham UniversityDurhamUK

Section editors and affiliations

  • Ida Nathan
    • 1
  • Norbert Meyendorf
    • 2
  1. 1.Department of Electrical and Computer EngineeringUniversity of AkronAkronUSA
  2. 2.Center for Nondestructive EvaluationIowa State UniversityAmesUSA

Personalised recommendations