Encyclopedia of Evolutionary Psychological Science

Living Edition
| Editors: Todd K. Shackelford, Viviana A. Weekes-Shackelford

Evolution of Hearing and Balance

  • Michael Khalil
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-16999-6_981-1



The evolution of the human ear, the auditory system, and balance.


To have a solid understanding of the capacity to hear and listen to sounds, there must be an education of how the sound firstly travels from its source to our brain. Therefore, there will be a brief discussion of the direction of sounds, followed by an evolutionary standpoint of the middle ear’s ossicles based on Reichert-Gaupp’s theory and more research on the evolution of the mammalian ear.

Next will be a brief discussion of the anatomical structures of the peripheral auditory system, namely the outer (external) ear, the middle ear, and the inner ear, along with its inner most important structures, the cochlea and the otoliths.

Important for keeping balance and movement is the role of the semicircular canals. Also, there will be a brief discussion on the...


Basilar Membrane Hair Cells Basilar Papilla Secondary Auditory Cortex Otolithic Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Avan, P., Giraudet, F., & Büki, B. (2015). Importance of binaural hearing. Audiology and Neurotology, 20(Suppl. 1), 3–6.CrossRefPubMedGoogle Scholar
  2. Balkany, T. J., & Brown, K. D. (2017). The ear book. A complete guide to ear disorders and health. Maryland: Johns Hopkins University Press.Google Scholar
  3. Bavi, O., Nikolaev, Y., Bavi, N., Martinac, A., Ridone, P., Martinac, B., et al. (2017). Chapter 4: Principles of Mechanosensing at the membrane Interface. In J.M. Ruysschaert & R. Epand (Eds.), The biophysics of cell membranes. Biological consequences, Springer Series in Biophysics (Vol. 19, pp. 85–120). Singapore: Springer.  https://doi.org/10.1007/978-981-10-6244-5.
  4. Beisel, K. W., Wang-Lundberg, Y., Maklad, A., & Fritzsch, B. (2005). Development and evolution of the vestibular sensory apparatus of the mammalian ear. Journal of Vestibular Research, 15(5,6), 225–241.PubMedPubMedCentralGoogle Scholar
  5. Bilecen, D., Seifritz, E., Scheffler, K., & Schulte, A. (2002). Amplitopicity of the human auditory cortex: An fMRI study. NeuroImage, 17, 710–718.CrossRefPubMedGoogle Scholar
  6. Boulpaep, E. L., & Boron, W. F. (2005). Medical physiology. Oxford: Elsevier.Google Scholar
  7. Chandrasekhar, S. (2013). The assessment of balance and dizziness in the TBI patient. NeuroRehabilitation, 32, 445–454.PubMedGoogle Scholar
  8. Chang, R., & Khana, S. (2013). Anatomy of the vestibular system: A review. NeuroRehabilitation, 32, 437–443.  https://doi.org/10.3233/NRE-130866.PubMedGoogle Scholar
  9. Chen, Z., Li, J., Liu, M., & Ma, L. (2013). Structural connectivity between visual cortex and auditory cortex in healthy adults: A diffusion tensor imaging study. Journal of Southern Medical University, 33(3), 338–341.PubMedGoogle Scholar
  10. Dallos, P. (2008). Cochlear amplification, outer hair cells and Prestin. Current Opinion in Neurobiology, 18(4), 370–376.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Delmas, P., & Coste, B. (2013). Mechano-gated ion channels in sensory systems. Cell, 155(2), 278–284.CrossRefPubMedGoogle Scholar
  12. Demanez, J. P., & Demanez, L. (2003). Anatomophysiology of the central auditory nervous system: Basic concepts. Acta Oto-Rhino-Laryngologica Belgica, 57(4), 227–236.PubMedGoogle Scholar
  13. Fetter, M., Haslwanter, T., Bork, M., & Dichgans, J. (1999). New insights into positional alcohol nystagmus using three-dimensional eye-movement analysis. Annals of Neurology, 45(2), 216–223.CrossRefPubMedGoogle Scholar
  14. Franchini, L. F., & Elgoyhen, A. B. (2006). Adaptive evolution in mammalian proteins involved in Cochlear outer hair cell Electromotility. Molecular Phylogenetics and Evolution, 41(3), 622–635.CrossRefPubMedGoogle Scholar
  15. Fritzsch, B. (1987). Inner ear of the coelacanth fish Latimeria has tetrapod affinities. Nature, 327(6118), 153–154.CrossRefPubMedGoogle Scholar
  16. Gelfand, S. A. (2010). Chapter 4: Cochlear mechanisms and processes. In S. A. Gelfand (Ed.), Hearing: An introduction to psychological and physiological acoustics (5th ed., pp. 72–102). London: Informa Healthcare.Google Scholar
  17. Hackett, T. A. (2015). Anatomic organization of the auditory cortex. Handbook of Clinical Neurology, 129, 27–53.  https://doi.org/10.1016/B978-0-444-62630-1.00002-0.CrossRefPubMedGoogle Scholar
  18. Hafstrom, A., Modig, F., Karlberg, M., & Fransson, P. A. (2007). Increased visual dependence and otolith dysfunction with alcohol intoxication. Neuroreport, 18(4), 391–394.CrossRefPubMedGoogle Scholar
  19. Hain, T. C., & Helminsky, J. O. (2007). Anatomy and physiology of the normal vestibular system. In Vestibular rehabilitation (3rd ed., p. 214). Philadelphia: FA Davis Company.Google Scholar
  20. Hanson, J., Anson, B., & Strickland, E. (1962). Branchial sources of auditory Ossicles in ManI. Literature. Archives of Otolaryngology, 76(2), 100–122.  https://doi.org/10.1001/archotol.1962.00740050106003.CrossRefPubMedGoogle Scholar
  21. Hawley, M. L., Litovsky, R. Y., & Culling, J. F. (2004). The benefit of binaural hearing in a cocktail party: Effect of location and type of interferer. The Journal of the Acoustical Society of America, 115(2), 833–843.CrossRefPubMedGoogle Scholar
  22. Hosokawa, Y., Sugimoto, S., Kubota, M., Horikawa, J., & Ojima, H. (2017). Auditory-visual integration in fields of the auditory cortex. Hearing Research, 346, 25–33.  https://doi.org/10.1016/j.heares.2017.01.012.CrossRefPubMedGoogle Scholar
  23. Hoy, R. R. (2012). Convergent evolution of hearing. Science, 338(6109), 894–895.CrossRefPubMedGoogle Scholar
  24. Ikeda, Y., Sasa, M., & Takaori, S. (1980). Selective effect of ethanol on the vestibular nucleus neurons in the cat. The Japanese Journal of Pharmacology, 30, 665–673.CrossRefPubMedGoogle Scholar
  25. Isaa, J. B., Haeffele, B. D., Young, E. D., & Yue, D. T. (2017). Multiscale mapping of frequency sweep rate in mouse auditory cortex. Hearing Research, 344, 207–222.CrossRefGoogle Scholar
  26. Jelliffe, S. E. (1920). Magnus Gustaf Retzius. The Journal of Nervous and Mental Disease, 51(3), 311.CrossRefGoogle Scholar
  27. Johnsson, L. G., & Hawkins, J. E. (1967). A direct approach to Cochlear anatomy and pathology in man. Archives of Otolaryngology, 85(6), 599–613.CrossRefPubMedGoogle Scholar
  28. Kita, T., Freeman, S., & Ladher, R. (2013). Chapter 1: The birth of a Mechanosensor: Development of vertebrate hair cells. In A. Zubair & R. Saima (Eds.), Inner ear development and hearing loss (pp. 1–24). New York: Nova Science Publishers.Google Scholar
  29. Köppl, C. (2011). Birds–same thing, but different? Convergent evolution in the avian and mammalian auditory systems provides informative comparative models. Hearing Research, 273(1), 65–71.CrossRefPubMedGoogle Scholar
  30. Kung, C. (2005). A possible unifying principle for mechanosensation. Nature, 436(7051), 647–654.CrossRefPubMedGoogle Scholar
  31. Li, Y., Liu, Z., Shi, P., & Zhang, J. (2010). The hearing gene Prestin unites Echolocating bats and whales. Current Biology, 20(2), R55–R56.CrossRefPubMedGoogle Scholar
  32. Lithari, C., & Weisz, N. (2017). Amplitude modulation rate dependent topographic Organization of the auditory steady-state response in human auditory cortex. Hearing Research, 354, 102–108.  https://doi.org/10.1016/j.heares.2017.09.003.CrossRefPubMedGoogle Scholar
  33. Maier, W., & Ruf, I. (2016). Evolution of the mammalian middle ear: A historical review. Journal of Anatomy, 228(2), 270–283.  https://doi.org/10.1111/joa.12379/full.CrossRefPubMedGoogle Scholar
  34. Manley, G. A. (2010). An evolutionary perspective on middle ears. Hearing Research, 263, 3–8.CrossRefPubMedGoogle Scholar
  35. Manley, G. A. (2017). The mammalian cretaceous Cochlear revolution. Hearing Research, 352, 23–29.CrossRefPubMedGoogle Scholar
  36. Masterton, B., Heffner, H., & Ravizza, R. (1968). The evolution of human hearing. The Journal of the Acoustical Society of America, 45(4), 966–985.CrossRefGoogle Scholar
  37. Modig, F., Fransson, P. A., Magnusson, M., & Patel, M. (2012a). Blood alcohol concentration at 0.06 and 0.10% causes a complex multifaceted deterioration of body movement control. Alcohol, 46(1), 75–88.CrossRefPubMedGoogle Scholar
  38. Modig, F., Patel, M., Magnusson, M., & Fransson, P. A. (2012b). Study I: Effects of 0.06% and 0.10% blood alcohol concentration on human postural control. Gait & Posture, 35(3), 410–418.CrossRefGoogle Scholar
  39. Moller, A. R. (2013). Hearing. Anatomy, physiology, and disorders of the auditory system (3rd ed.). San Diego: Plural Publishing.Google Scholar
  40. Montealegre-z, F., Jonsson, T., Robson-Brown, K. A., Postles, M., & Robert, D. (2012). Convergent evolution between insect and mammalian audition. Science, 338(6109), 968–971.CrossRefPubMedGoogle Scholar
  41. Moore, B. (2001). Hearing and psychoacoustics. Grove Music Online. Retrieved January 08, 2018, from Grove Music Online. Hearing and psychoacoustics: http://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000042531.
  42. Moore, D. (1991). Anatomy and physiology of binaural hearing. Audiology, 30(3), 125–134.CrossRefPubMedGoogle Scholar
  43. Munir, N., & Clarke, R. (2013). Ear, nose and throat at a glance. West Sussex: Wiley-Blackwell.Google Scholar
  44. Nieschalk, M., Ortmann, C., West, A., Schmäl, F., Stoll, W., & Fechner, G. (1999). Effects of alcohol on body-sway patterns in human subjects. International Journal of Legal Medicine, 112(4), 253–260.CrossRefPubMedGoogle Scholar
  45. Oghalai, J. S., & Brownell, W. E. (2012). Chapter 44. Anatomy & Physiology of the ear. In A. Lalwani (Ed.), Current Diagnosis & Treatment in otolaryngology – Head & Neck Surgery (3rd ed.). New York: McGraw-Hill.Google Scholar
  46. Otto, H. (1984). An error in the Reichert-Gaupp theory. A contribution to onto- and Phylogenesis f the temporomandibular joint and ear Ossicles in mammals. Anatomischer Anzeiger, 155(1–5), 223–238.PubMedGoogle Scholar
  47. Pickles, J. O. (2012). An introduction to the physiology of hearing (4th ed.). Bingley: Emerald Group Publishing Limited.Google Scholar
  48. Polley, D., Nelken, I., & Kanold, P. (2014). Local versus global scales of Organization in Auditory Cortex. Trends in Neurosciences, 37(9), 502–510.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Radojevic, V., Levano, S., Brand, Y., Naldi, A., Pak, K., Ryan, A., et al. (2015). All Akt isoforms (Akt1, Akt2, Akt3) are involved in normal hearing, but only Akt2 and Akt3 are involved in auditory hair cell survival in the mammalian inner ear. PLoS One, 10, 1–13.  https://doi.org/10.1371/journal.pone.0121599.Google Scholar
  50. Reichert, C. (1837). Über die Visceralbogen der Wirbelthiere im Allgemeinen und deren Metamorphosen bei den Vögeln und Säugethieren. Arch Anat Physiol Wiss Med, 1837, 120–222.Google Scholar
  51. Richardson, G. P., de Monvel, J. B., & Petit, C. (2011). How the genetics of deafness illuminates auditory physiology. Annual Review of Physiology, 73, 311–334.CrossRefPubMedGoogle Scholar
  52. Romand, R., & Ehret, G. (1997). The central auditory system. New York/Oxford: Oxford University Press.Google Scholar
  53. Russell, I. J., & Sellick, P. M. (1978). Intracellular studies of hair cells in the mammalian cochlea. The Journal of Physiology, 284(1), 261–290.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Saenz, M., & Langers, D. R. (2014). Tonotopic mapping of human auditory cortex. Hearing Research, 307, 42–52.CrossRefPubMedGoogle Scholar
  55. Seikel, A. J., King, D. W., & Drumright, D. G. (2010a). Chapter 9: Anatomy of hearing. In Anatomy & Physiology for speech, language, and hearing (4th ed., pp. 447–478). New York/Delmar: Cengage Learning.Google Scholar
  56. Seikel, A. J., King, D. W., & Drumright, D. G. (2010b). Chapter 10: Auditory physiology. In Anatomy & Physiology for speech, language, and hearing (4th ed., pp. 479–520). New York/Delmar: Cengage Learning.Google Scholar
  57. Shen, Y., Cheng, Y., Uyeda, T. Q., & Plaza, G. R. (2017). Cell mechanosensors and the possibilities of using magnetic nanoparticles to study them and to modify cell fate. Annals of Biomedical Engineering, 45(10), 2475–2486.CrossRefPubMedGoogle Scholar
  58. Takechi, M., & Shigeru, K. (2010). History of studies on mammalian middle ear evolution: A comparative morphological and developmental biology perspective. Journal of Experimental Zoology (Molecular and Developmental Evolution), 314(6), 417–433.CrossRefGoogle Scholar
  59. Vazquez, A. E. (2016). α9α10 acetylcholine receptors: Structure and functions. Neurotransmitter, 3, e1298.Google Scholar
  60. Velluti, R. A. (2008). The auditory system in sleep. London: Elsevier.Google Scholar
  61. von Bekesy, G. (1948). On the elasticity of the cochlear partition. The Journal of the Acoustical Society of America, 20(3), 227–241.Google Scholar
  62. Wang, X., & Eliades, S. J. (2017). Contributions of sensory tuning to auditory-vocal interactions in marmoset auditory cortex. Hearing Research, 348, 98–111.  https://doi.org/10.1016/j.heares.2017.03.001.CrossRefPubMedGoogle Scholar
  63. Warchol, M. E. (2011). Sensory regeneration in the vertebrate inner ear: Differences at the levels of cells and species. Hearing Research, 273(1), 72–79.CrossRefPubMedGoogle Scholar
  64. Wasserthal, C., Brechmann, A., Stadler, J., Fischl, B., & Engel, K. (2014). Localizing the human primary auditory cortex in vivo using structural MRI. Neuroimage, 93(Pt 2), 237–251.  https://doi.org/10.1016/j.neuroimage.2013.07.046.CrossRefPubMedGoogle Scholar
  65. Westoll, T. S. (1944). New light on the mammalian ear ossicles. Nature, 154(770), 293–330.Google Scholar
  66. Wolak, T., Lorens, A., Cieśla, K., Lewandowska, M., Kochanek, K., Wójcik, J., et al. (2017). Tonotopic organisation of the auditory cortex in sloping sensorineural hearing loss. Hearing Research, 355, 81–96.  https://doi.org/10.1016/j.heares.2017.09.012.CrossRefPubMedGoogle Scholar
  67. Woollacott, M. H. (1983). Effects of ethanol on postural adjustments in humans. Experimental Neurology, 80(1), 55–68.CrossRefPubMedGoogle Scholar
  68. World Heritage Encyclopedia. (2017). Reichert–Gaupp theory. Retrieved November 6, 2017 from World Public Library Association: http://www.gutenberg.us/articles/reichert%E2%80%93gaupp_theory#Reichert.E2.80.93Gaupp_theory
  69. Zheng, J., Madison, L. D., Oliver, D., Fakler, B., & Dallos, P. (2002). Prestin, the motor protein of outer hair cells. Audiology and Neurotology, 7(1), 9–12.CrossRefPubMedGoogle Scholar
  70. Zheng, J., Shen, W., He, D. Z., Long, K. B., Madison, L. D., & Dallos, P. (2000). Prestin is the motor protein of cochlear outer hair cells. Nature, 405(6783), 149–155.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Michael Khalil
    • 1
  1. 1.University of NicosiaNicosiaCyprus

Section editors and affiliations

  • Menelaos Apostolou
    • 1
  1. 1.University of NicosiaNicosiaCyprus