Encyclopedia of Evolutionary Psychological Science

Living Edition
| Editors: Todd K. Shackelford, Viviana A. Weekes-Shackelford

Brain Development

  • Andrew WeeksEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-16999-6_801-1

Synonyms

Definition

Brain development, which occurs rapidly early in life but continues throughout life, involves the interplay of genetic expression and environmental impacts on the growth and maturation of neurons and the connected networks they form.

Introduction

The human brain is arguably the ultimate result of natural selection. It is the most complex organ in the human body with approximately 100 billion neurons and over 100 trillion synaptic connections. This basic description does not include the billions of supporting cells or the complex genetic, hormonal, chemical, and electrochemical interactions that are constantly occurring. The brain gives rise to our sensations and perceptions, houses our memories, and more generally directs our behavior. Therefore, understanding how the human brain develops is of great interest and importance to many fields of psychology. Generations of scientists have examined brain development in humans...

This is a preview of subscription content, log in to check access.

References

  1. Amaral, D. G., Schumann, C. M., & Nordahl, C. W. (2008). Neuroanatomy of autism. Trends in Neurosciences, 31, 137–145.CrossRefPubMedGoogle Scholar
  2. Assali, A., Gaspar, P., & Rebsam, A. (2014). Activity dependent mechanisms of visual map formation – From retinal waves to molecular regulators. Seminars in Cell & Developmental Biology, 35, 136–146.CrossRefGoogle Scholar
  3. Bintu, L., Yong, J., Antebi, Y. E., McCue, K., Kazuki, Y., Uno, N., … & Elowitz, M. B. (2016). Dynamics of epigenetic regulation at the single-cell level. Science, 351, 720–724.Google Scholar
  4. Blundell, C., Tess, E. R., Schanzer, A. S. R., Coutifaris, C., Su, E. J., Parry, S., & Huh, D. (2016). A microphysiological model of the human placental barrier. Lab on a Chip, 16, 3065–3073.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bolton, J. L., & Bilbo, S. D. (2014). Developmental programming of brain and behavior by perinatal diet: focus on inflammatory mechanisms. Dialogues in Clinical Neuroscience, 16, 307–320.PubMedPubMedCentralGoogle Scholar
  6. Borodinsky, L. N., Belgacem, Y. H., & Swapna, I. (2012). Electrical activity as a developmental regulator in the formation of spinal cord circuits. Current Opinion in Neurobiology, 22(4), 624–630.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bourgeron, T. (2015). From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nature Reviews Neuroscience, 16, 551–563.CrossRefPubMedGoogle Scholar
  8. Caputo, C., Wood, E., & Jabbour, L. (2016). Impact of fetal alcohol exposure on body systems: A systematic review. Birth Defects Research. Part C, Embryo Today: Reviews, 108.  https://doi.org/10.1002/bdrc.21129.
  9. Carmeliet, P., Ferreira, V., Breier, G. Pollefeyt, S., Kieckens, L., … & Nagy, A. (1996). Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature, 380, 435–439.Google Scholar
  10. Casey, L. (2013). Caring for children with phenylketonuria. Canadian Family Physician, 59, 837–840.PubMedPubMedCentralGoogle Scholar
  11. Clarke, L. E., & Barres, B. A. (2013). Emerging roles of astrocytes in neural circuit development. Nature Reviews. Neuroscience, 14, 311–321.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Curtiss, S. (1977). Genie: A psycholinguistic study of a modern-day “wild child”. New York: Academic.Google Scholar
  13. Dekker, A. D., Strydom, A., Coppus, A. M. W., Nizetic, D., Vermeiren, Y., Naudé, P. J., Van Dam, D., Potier, M., Fortea, J., & De Deyn, P. P. (2015). Behavioural and psychological symptoms of dementia in Down syndrome: Early indicators of clinical Alzheimer’s disease? Cortex, 73, 36–61.CrossRefPubMedGoogle Scholar
  14. del Blanco, B., & Barco, A. (2018). Impact of environmental conditions and chemicals on the neuronal epigenome. Current Opinion in Chemical Biology, 45, 157–165.CrossRefPubMedGoogle Scholar
  15. Dudanova, I., & Klein, R. (2013). Integration of guidance cues: parallel signaling and crosstalk. Trends in Neurosciences, 36, 295–304.CrossRefPubMedGoogle Scholar
  16. Garret, B., & Hough, G. (2018). Brain & behavior: An introduction to behavioral neuroscience (5th ed.). Los Angeles: Sage.Google Scholar
  17. Goldman, S. A., & Nottebohm, F. (1983). Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proceedings of the National Academy of Sciences of the United States of America, 80, 2390–2394.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Greenough, W. T. (1975). Experiential modification of the developing brain. American Scientist, 63, 37–46.Google Scholar
  19. Greig, L., Woodworth, M., Galazo, M., Padmanabhan, H., & Macklis, J. (2013). Molecular logic of neocortical projection neuron specification, development and diversity. Nature Reviews. Neuroscience, 14(11), 755–769.CrossRefGoogle Scholar
  20. Hata, Y., & Stryker, M. P. (1994). Control of thalamocortical afferent rearrangement by postsynaptic activity in developing visual cortex. Science, 265, 1732–1735.CrossRefPubMedGoogle Scholar
  21. Hebb, D. O. (1949). Organization of behavior: A neurological theory. New York: Wiley.Google Scholar
  22. Hubel, D. H., Wiesel, T. N., & LeVay, S. (1977). Plasticity of ocular dominance columns in monkey striate cortex. Philosophical Transactions of the Royal Society of London, 278, 377–409.CrossRefPubMedGoogle Scholar
  23. Karri, V., Schuhmacher, M., & Kumar, V. (2016). Heavy metals (Pb, Cd, As and MeHg) as risk factors for cognitive dysfunction: A general review of metal mixture mechanism in brain. Environmental Toxicology and Pharmacology, 48, 203–213.CrossRefPubMedGoogle Scholar
  24. Kerstein, P. C., Nichol, R. H., & Gomez, T. M. (2015). Mechanochemical regulation of growth cone motility. Frontiers in Cellular Neuroscience, 9, 244.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kiecker, C., & Lumsden, A. (2012). The role of organizers in patterning the nervous system. Annual Reviews in Neuroscience, 35(1), 347–367.CrossRefGoogle Scholar
  26. Kohwi, M., & Doe, C. Q. (2013). Temporal fate specification and neural progenitor competence during development. Nature Reviews. Neuroscience, 14(12), 823–838.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Li, G., Lin, W., Gilmore, J. H., & Shen, D. (2015). Spatial patterns, longitudinal development, and hemispheric asymmetries of cortical thickness in infants from birth to 2 years of age. The Journal of Neuroscience, 35, 9150–9162.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lien, W.-H., Klezovitch, O., Fernandez, T. E., Delrow, J., & Vasioukhin, V. (2006). αE-catenin controls cerebral cortical size by regulating hedgehog signalling pathway. Science, 311, 1609–1612.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Makinodan, M., Rosen, K. M., Ito, S., & Corfas, G. (2012). A critical period for social experience–dependent oligodendrocyte maturation and myelination. Science, 337, 1357–1360.CrossRefPubMedPubMedCentralGoogle Scholar
  30. May, A. (2011). Experience-dependent structural plasticity in the adult human brain. Trends in Cognitive Sciences, 15, 465–482.CrossRefGoogle Scholar
  31. Mechoulam, R., & Parker, L. A. (2012). The endocannabinoid system and the brain. Annual Review of Psychology, 64, 21–47.CrossRefPubMedGoogle Scholar
  32. Merzenich, M. M., Nelson, R. J., Kaas, J. H., Stryker, M. P., Jenkins, W. M., Zook, J. M., Cynader, M. S., & Schoppmann, A. (1987). Variability in hand surface representations in areas 3b and 1 in adult owl and squirrel monkeys. Journal of Comparative Neurology, 258(2), 281–296.CrossRefPubMedGoogle Scholar
  33. Miguel-Aliaga, I., & Thor, S. (2009). Programmed cell death in the nervous system – a programmed cell fate? Current Opinion in Neurobiology, 19, 127–133.CrossRefPubMedGoogle Scholar
  34. Mori, M., Rikitake, Y., Mandai, K., & Takai, Y. (2014). Roles of nectins or nectin-like molecules in the nervous system. In Advances in Neurobiology (Vol. 8, pp. 91–116).Google Scholar
  35. Morishita, H., & Hensch, T. L. (2008). Critical period revisited: impact on vision. Current Opinion in Neurobiology, 18, 101–107.CrossRefPubMedGoogle Scholar
  36. Mullins, C., Fishell, G., & Tsien, R. W. (2016). Unifying views of autism spectrum disorders: a consideration of autoregulatory feedback loops. Neuron, 89, 1131–1156.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Newton, C. A., Chou, P., Perkins, I., & Klein, T. W. (2009). CB1 and CB2 cannabinoid receptors mediate different aspects of delta-9-tetrahydrocannabinol (THC)-induced T helper cell shift following immune activation by Legionella pneumophila infection. Journal of Neuroimmune Pharmacology, 4, 92–102.CrossRefPubMedGoogle Scholar
  38. Ohshima, T. (2015). Neuronal migration and protein kinases. Frontiers in Neuroscience, 8, 458.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Ou, C.-Y., & Shen, K. (2010). Setting up presynaptic structures at specific positions. Current Opinion in Neurobiology, 20, 489–493.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Pinel, J. P., & Barnes, S. (2018). Biopsychology (10th ed.). Toronto: Pearson.Google Scholar
  41. Purger, D., Gibson, E. M., & Monje, M. (2016). Myelin plasticity in the central nervous system. Neuropharmacology, 110, 563–573.CrossRefPubMedGoogle Scholar
  42. Repo, E., Landry, N., Bent, T., Stillar, A., Saari, M., & Weeks, A. C. (2016). Adolescent THC exposure following stress induces synaptic changes in adult rats. Society for Neuroscience – Abstracts, 42, 76.Google Scholar
  43. Romeo, R. D., & McEwen, B. S. (2006). Stress and the adolescent brain. Annals of the New York Academy of Sciences, 1093, 202–214.CrossRefGoogle Scholar
  44. Rosenberg, R. S., & Kosslyn, S. M. (2014). Abnormal psychology (2nd ed.). New York: Worth.Google Scholar
  45. Roussotte, F. F., Sulik, K., Mattson, S. N., Riley, E. P., Jones, K. L., Adnams, C., May, P. A., O’Connor, M. J., Narr, K. L., & Sowell, E. R. (2012). Regional brain volume reductions relate to facial dysmorphology and neurocognitive function in fetal alcohol spectrum disorders. Human Brain Mapping, 33, 930–937.CrossRefGoogle Scholar
  46. Rymer, R. (1993). Genie. New York: HarperCollins.Google Scholar
  47. Salthouse, T. A. (2005). Relations between cognitive abilities and measures of executive functioning. Neuropsychology, 19, 532–545.CrossRefPubMedGoogle Scholar
  48. Schubeler, D. (2012). Epigenetic islands in a genetic ocean. Science, 338, 756–757.CrossRefPubMedGoogle Scholar
  49. Smith, S., Garic, A., Flentke, G., & Berres, M. (2014). Neural crest development in fetal alcohol syndrome. Birth Defects Research. Part C, Embryo Today: Reviews, 102, 210–220.CrossRefGoogle Scholar
  50. Sorrells, S. F., Paredes, M. F., Cebrian-Silla, A., … & Alvarez-Buylla, A. (2018). Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature, 555, 377–381.Google Scholar
  51. Stiles, J., & Jernigan, T. L. (2010). The basics of brain development. Neuropsychology Review, 20(4), 327–348.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Strisciuglio, P., & Concolino, D. (2014). New strategies for the treatment of Phenylketonuria (PKU). Metabolites, 4, 1007–1017.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Sweatt, J. D. (2013). The emerging field of neuroepigenetics. Neuron, 80, 624–632.CrossRefPubMedGoogle Scholar
  54. Sylvester, P. E. (1983). The hippocampus in Down’s syndrome. Journal of Mental Deficiency Research, 27(3), 227–236.PubMedGoogle Scholar
  55. Tsai, H.-H., Li, H., Fuentealba, L. C., Molofsky, A. V., Taveira-Marques, R., Zhuang, H., Tenney, A., Murnen, A. T., Fancy, S. P., Merkle, F., Kessaris, N., Alvarez-Buylla, A., Richardson, W. D., & Rowitch, D. H. (2012). Regional astrocyte allocation regulates CNS synaptogenesis and repair. Science, 337, 358–362.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Weaver, I. C., Cervoni, N., Champagne, F. A., D’Alessio, A. C., Sharma, S., Seckl, J. R., Dymov, S., Szyf, M., & Meaney, M. J. (2004). Epigenetic programming by maternal behavior. Nature Neuroscience, 7, 847–854.CrossRefPubMedGoogle Scholar
  57. Weeks, A. C., Boudreault, M., Norris, K., Andrews, J., Landry, N., Lalonde, C., Weegar, B., Stillar, A., & Saari, M. J. (2015). Chronic adolescent exposure to THC and induced anxiety changes behaviour in adult rats. Society for Neuroscience – Abstracts, 41, 783.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Nipissing UniversityNorth BayCanada

Section editors and affiliations

  • Steven Arnocky
    • 1
  1. 1.Department of Psychology, Faculty of Arts and SciencesNipissing UniversityNorth BayCanada